White Papers

Administration best practices
18 Dell EMC PowerVault ME4 Series and Microsoft Hyper-V | 3921-BP-WS
To mitigate risks, consider the following recommendations:
Create a Hyper-V physical host volume that is large enough so that current and future expanding
dynamic virtual hard disks will not fill the host volume to capacity. Creating large Hyper-V host
volumes will not waste space on ME4 Series arrays that leverage thin provisioning.
- If Hyper-V based snapshots are used (which create differencing virtual hard disks on the same
physical volume), allow adequate overhead on the host volume for the extra space consumed by
the differencing virtual hard disks.
- Expand existing host volumes as needed to avoid the risks associated with overprovisioning.
- If a physical host volume that hosts virtual hard disks is overprovisioned, set up monitoring so that
if a percent-full threshold is exceeded (such as 90 percent), an alert is generated with enough
lead time to allow for remediation.
Monitor alerts on ME4 Series storage so that warnings about disk group and pool capacity thresholds
are remediated before they reach capacity.
3.4 Present ME4 Series storage to Hyper-V
There are several ways to present ME4 Series storage to Windows Server Hyper-V hosts, nodes, and VMs.
A summary is provided in the following bullet points. For more information about cabling guidance, see the
ME4 Series Administrator’s Guide and Deployment Guide.
ME4 Series storage can be presented to physical Hyper-V hosts and cluster nodes using FC, iSCSI,
or SAS in either a direct-attached configuration (SAS, FC, iSCSI) or as part of a SAN (FC or iSCSI).
ME4 Series storage can also be presented directly to Hyper-V guest VMs using the following:
- In-guest iSCSI
- Pass-through disks (this is a legacy configuration option introduced with Hyper-V 2008 that Dell
EMC and Microsoft discourage using with Hyper-V 2012 and 2016)
3.4.1 Transport options
ME4 Series storage can be presented to Hyper-V environments using SAS, FC, or iSCSI, and will typically
include an MPIO configuration for load balancing and failover protection.
Typically, an environment is configured to use a preferred transport when it is built and will be part of the
infrastructure core design. When deploying Hyper-V to existing environments, the existing transport is
typically used. Deciding which transport to use is usually based on customer preference and factors such as
size of the environment, cost of the hardware, and the required support expertise.
It is not uncommon, especially in larger environments, to have more than one transport available. This might
be required to support collocated but diverse platforms with different transport requirements. When this is the
case, administrators might be able to choose between different transport options.
Regardless of the transport chosen, it is a best practice to ensure redundant paths to both ME4 Series
controller heads A and B. Refer to section 2.3 and the ME4 Series Deployment Guide for more information.
While the ME4 Series array permits front-end cabling that does not include redundancy, it is a best practice in
a production environment to configure cabling for redundancy. For test or development environments that can
accommodate down time without business impact, a less-costly, less-resilient design may be acceptable to
the business.