White Papers

Introduction
6 Dell EMC PowerVault ME4 Series and Microsoft Hyper-V | 3921-BP-WS
Support for mixed transport environments (FC and iSCSI)
Up to nine back-end (BE) expansion enclosures can be added to each ME4 Series array with 12Gb
SAS to expand drive capacity
Support for up to 336 drives with up to 4 petabytes (PB) raw capacity in the ME4084 array
Direct-attached storage (DAS) support for FE ports (SAS, FC, and iSCSI)
Storage area network (SAN) support for FE ports connected to FC and iSCSI switches (FE SAS
supports DAS only)
Scheduled and on-demand volume snapshots with rollback and refresh options
Asynchronous replication over FC or iSCSI to another ME4 Series array for DR protection
Note: Most of these features work seamlessly in the background, regardless of the platform. In most cases,
the default settings for these features work well with Hyper-V or at least serve as good configuration starting
points. This document highlights additional configuration or tuning steps that may enhance performance,
usability, or other factors.
To learn more about these and other ME4 Series features, refer to the ME4 Series Administrator’s Guide and
Deployment Guide, and the additional documentation listed in appendix A.
1.2 Microsoft Hyper-V overview
The Windows Server platform leverages Hyper-V for virtualization technology. Initially offered with Windows
Server 2008, Hyper-V has matured with each release to include many new features and enhancements. The
ME4 Series supports Windows Server 2012 Hyper-V and Windows Server 2016 Hyper-V.
Note: In January 2020, Microsoft will discontinue patches and security updates for Windows Server 2008 R2
(end of support). Customers still running Windows Server 2008 R2 should plan to migrate their Hyper-V
environments before support ends.
Microsoft Hyper-V has evolved to become a mature, robust, proven virtualization platform. In simplest terms,
it is a layer of software that presents the physical host server hardware resources in an optimized and
virtualized manner to guest virtual machines (VMs). Hyper-V hosts (also referred to as nodes when clustered)
greatly enhance utilization of physical hardware (such as processors, memory, NICs, and power) by allowing
many VMs to share these resources at the same time. Hyper-V Manager and related management tools such
as Failover Cluster Manager, Microsoft System Center Virtual Machine Manager (SCVMM), and PowerShell
®
,
offer administrators great control and flexibility for managing host and VM resources.
Note: Many core Hyper-V features (such as dynamic memory) are storage agnostic, and are not covered in
detail in this guide. To learn more about core Hyper-V features, functionality, and general best practices, see
the Hyper-V Best Practices Checklist and other resources on Microsoft TechNet.
1.3 Best practices overview
Best practices are typically based on and developed from the collective wisdom and experience of many
users over time, and this learning is built into the design of next-generation products. With mature
technologies such as Hyper-V or Dell EMC storage arrays, best practices are already factored in to the
default configurations, settings, and recommendations.
Because default settings typically incorporate best practices, tuning is often unnecessary (and discouraged)
unless a specific design, situation, or workload is known to benefit from a different configuration. For example,