Installation Manual

© 2015 Sensata Technologies
Page 7
Installation
2.1.3 Locating the Inverter
Only install the inverter in a location that meets the following requirements:
Clean and Dry – The inverter should not be installed in an area that allows dust, fumes, insects, or
rodents to enter or block the inverter’s ventilation openings. This area also must be free from any
risk of condensation, water, or any other liquid that can enter or fall on the inverter. The inverter
uses stainless steel fasteners, plated copper busbars, and a power-coated aluminum base. The
internal circuit boards are conformal coated. All of this is done to help ght the harmful effects
of corrosive environments. However, the inverter’s life is uncertain if used in the above types of
environments, and inverter failure under these conditions is not covered under warranty.
Info: If the inverter is installed in an area where moisture may occur, we recommend
putting silicone dielectric grease compound into the electrical ports (Items 3-6, Figure
1-1). Before installing the cables, or if leaving any ports open, squirt a liberal amount
into each port. Silicone dielectric compound makes an effective moisture and corrosive
barrier to help protect and prevent corrosion to the RJ11 connections.
Cool – The inverter should be protected from direct sun exposure or equipment that produces
extreme heat. The ambient temperature around the inverter must not exceed 77°F (25°C) to
meet power speci cations.
Ventilation – In order for the inverter to provide full output power and avoid over-temperature
fault conditions; do not cover or block the inverter’s ventilation openings, or install this inverter in
an area with limited air ow. The inverter uses two fans to provide forced-air cooling, these fans
pull in air through the intake vents (Figure 1-2, Item 9) and blow out air through the exhaust vents
(Figure 1-3, Item 13). Allow at the minimum an airspace clearance of 6” (15.2 cm) at the intake
and exhaust vents, and 3” (7.6 cm) everywhere else to provide adequate ventilation.
If installed in an enclosure, a fresh-air intake opening must be provided directly to the front side
(intake vents) of the inverter, and an exhaust opening on the back side (exhaust vents) of the
inverter. This allows cool air from the outside to ow into the inverter, and heated air to exit the
inverter and the enclosure. When mounted in an enclosed compartment, air ow must be 100
cfm in order to maintain no more than a 68°F (20°C) rise in compartment temperature.
CAUTION: Do not mount this inverter in a zero clearance compartment, nor cover or
obstruct the ventilation openings—overheating may result.
Safe – Keep any ammable/combustible material (e.g., paper, cloth, plastic, etc.) that may be
ignited by heat, sparks, or ames at a minimum distance of 2 feet (61 cm) away from the inverter.
WARNING: The ME Series inverter/charger is not ignition-protected. Do not install this
inverter in any area that contains extremely ammable liquids like gasoline or propane.
Close to the battery bank – The inverter should be located as close to the batteries as possible.
Long DC wires tend to loose ef ciency and reduce the overall performance of an inverter. However,
the unit should NOT be installed in the same compartment as the batteries, or mounted where it
will be exposed to gases produced by the batteries. These gases are corrosive and will damage
the inverter; also, if these gases are not ventilated and allowed to collect, they could ignite and
cause an explosion.
Accessible Do not block access to the inverter’s remote control and accessory ports, as well
as the inverter’s controls and status indicator. Also allow enough room to access the AC and DC
wiring terminals and connections, as they will need to be checked and tightened periodically. See
Figure 2-3 for the ME Series’ inverter/charger dimensions.
Away from sensitive electronic equipment – High-powered inverters can generate levels of RFI
(Radio Frequency Interference). Locate any electronic equipment susceptible to radio frequency
and electromagnetic interference as far away from the inverter as possible.