User`s guide

Chapter 3 _______________________________________________________ Functional Description
VAISALA ________________________________________________________________________ 19
Auto-Calibration
The auto-calibration feature of the MPS1 multiparameter sensor is an
automatic procedure which greatly reduces the possible drift in the dry
end of the dewpoint measurement. It is performed at one hour intervals,
and when the power is switched on. During auto-calibration the sensor is
warmed for a short period (< 1 min) and the sensor capacitance values
are evaluated at the elevated temperature. The possible dry end drift is
then corrected to correspond to the calibrated values. During the auto-
calibration the transmitter outputs the dewpoint value prior to the
procedure.
Auto-calibration is carried out only if several criteria for the
measurement environment are fulfilled. This ensures the reliability of the
adjustments, and maintains the excellent long term stability. These
criteria include, for example, a stable enough moisture level in the
measured atmosphere. If the conditions are not fulfilled, the auto-
calibration function is postponed until satisfactory conditions are
reached.
Sensor Purge
Sensor purge is also an automatic procedure that minimizes the drift at
the wet end readings of the dewpoint measurement. Sensor purge is
performed twice a day, and five minutes after the power is switched on.
The sensor is heated for several minutes which will then evaporate all
excess molecules out of the sensor polymer. This, together with the auto-
calibration, results in a very small drift of the sensor due to the very
linear behavior of the polymer technology.
BAROCAP® Technology
The BAROCAP® silicon capacitive absolute pressure sensor was
developed by Vaisala for barometric pressure measurement applications.
The BAROCAP® sensor has excellent hysteresis and repeatability
characteristics, low temperature dependence, and a very good long-term
stability. The ruggedness of the BAROCAP® sensor is outstanding and
the sensor is resistant to mechanical and thermal shocks. The pressure
measurement of the MPS1 multiparameter sensor is based on an
advanced RC oscillator and reference capacitors against which the
capacitive pressure sensor is continuously measured. The microprocessor
of the transmitter performs compensation for pressure linearity and
temperature dependence.