Onix Tubing Installation Manual

page 8Watts Radiant: Onix Installation Manual
Step 1:
Initial Design
Considerations
There are three primary considerations
in a radiant design.
1. Heat Loss - how much energy
do we have to impart to the
system to keep the occupants
warm or the surface snow
and ice free.
2. Tubing - how much and what
type of tubing is required to
deliver the needed heat.
3. Control and Performance -
system operation will vary greatly
depending on how the system is
controlled and operated.
To answer these questions, some initial
information is needed. This informa-
tion primarily relates to the heat loss
calculation. It is important to gather
as much project information as possi-
ble. Even though this information is
conveyed to the end-user via the
RadiantWorks Assumption Report,
it saves time and effort to have the
correct information at the beginning.
To perform an accurate heat loss and
radiant design, the following informa-
tion is required.
Heating:
1. Wall R-Values
2. Ceiling R-Values
3. Window R-Values and Sizes
4. Amount of exposed wall
5. Fireplaces or other high
infiltration sources, such as
overhead hoods and vents
6. Floor Cross Section: It is
important to know how many
separate layers make up the
floor. Different floor coverings
may have anywhere from one
to four distinct layers
7. Floor Covering Materials
8. General Site Information
Snowmelting*
1. Slab construction details
2. Amount of snowfall
3. Desired response time
4. General Site Information
*Additional criteria concerning snowmelting
systems will be discussed in the Snowmelting
section.
Floor Coverings
More questions arise concerning floor
coverings than any other item. The
main misconception regarding floor
coverings tend to center on whether or
not carpet or wood can be used over a
radiant floor.
Virtually any floor covering can be
used if the insulative value for that
covering is accounted for in the radi-
ant design and installation process. In
a radiant floor heating system, the
floor is the room s heat source. The
floor gives off heat (energy) to the
room because it is warmer than the
surroundings - hot moves to
cold. If we want to maintain a
room temperature of 70¡F, the
floor has to be warmer than
70¡F. The warmer the floor,
the more energy it will emit
into the space. So, the higher
the heating load, the warmer
the floor needs to be. The
room does not care what the
floor type is, or what the con-
struction details are as long as
the required floor surface tem-
perature is achieved.
There is a limit. In theory, we
could heat any room to any
temperature with the use of a
radiant floor heating system.
The limiting factor is us. The
maximum temperature we can
allow the floor surface to reach
is 85¡F. Temperatures above
this point become too warm
for our bodies and in turn
make the floor uncomfortable
to stand on. This 85¡F floor limit in
turn limits the maximum BTU output
of the floor to around 45 BTU/sq.ft.
With this in mind, let s return to the
floor itself and look at the different
floor coverings. All floor coverings
have different conductivity values.
Conductivity values relate a material s
ability to transfer energy. The higher
the conductivity, the better the material
conducts, or transfers energy. For
example, wood has a conductivity
value of approximately 0.078
Btu/hr/ft./¡F while tile has a conduc-
tivity of 0.41 Btu/hr/ft./¡F. In this
example, tile will transfer energy
faster. But does that make tile a better
choice? Not really. Both the hardwood
floor and the tile floor will perform
exactly the same if we maintain the
same surface temperature. To do this,
we have to vary the supply water tem-
perature depending on the floor cover-
ing and construction. A hardwood
floor may require 120¡F supply tem-
Floor Coverings
Carpet and pad are
generally the most
difficult of the floor
coverings. This
means a higher
supply fluid
temperature.
Hardwoods are the
most popular floor cov-
ering to use over a
radiant floor
system.
Tile and other stone
floor coverings are the
most efficient to use
over a radiant system.
The more conductive
the floor covering the
lower the required sup-
ply water temperature.