Tutorial
Table Of Contents
- 1. Premise
- 2. Raspberry Pi System Installation and Developmen
- 3 Log In to The Raspberry Pi and Install The App
- 4 Assembly and Precautions
- 5 Controlling Robot via WEB App
- 6 Common Problems and Solutions(Q&A)
- 7 Set The Program to Start Automatically
- 8 Remote Operation of Raspberry Pi Via MobaXterm
- 9 How to Control WS2812 RGB LED
- 10 How to Control The Servo
- 11 How to Control DC Motor
- 12 Ultrasonic Module
- 13 Line Tracking
- 14 Make A Police Light or Breathing Light
- 15 Real-Time Video Transmission
- 16 Automatic Obstacle Avoidance
- 17 Why OpenCV Uses Multi-threading to Process Vide
- 18 OpenCV Learn to Use OpenCV
- 19 Using OpenCV to Realize Color Recognition and T
- 20 Machine Line Tracking Based on OpenCV
- 21 Create A WiFi Hotspot on The Raspberry Pi
- 22 Install GUI Dependent Item under Window
- 23 How to Use GUI
- 24 Control The WS2812 LED via GUI
- 25 Real-time Video Transmission Based on OpenCV
- 26 Use OpenCV to Process Video Frames on The PC
- 27 Enable UART
- 28 Control Your AWR with An Android Device
- Conclusion
93
18 OpenCV Learn to Use OpenCV
●The real-time video transmission function comes from the open source project of Github the MIT open
source agreement flask-video-streaming.
●First, prepare two .py files in the same folder in the Raspberry Pi. The code is as follows:
·app.py
#!/usr/bin/env python3
from importlib import import_module
import os
from flask import Flask, render_template, Response
from camera_opencv import Camera
app = Flask(__name__)
def gen(camera):
while True:
frame = camera.get_frame()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
@app.route('/')
def video_feed():
return Response(gen(Camera()),
mimetype='multipart/x-mixed-replace; boundary=frame')
if __name__ == '__main__':
app.run(host='0.0.0.0', threaded=True)
·base_camera.py
import time
import threading
try:
from greenlet import getcurrent as get_ident
except ImportError:
try: