Owner manual
Table Of Contents
- Contents
- Figures
- Tables
- Preface
- Section I
- Basic Operations
- Chapter 1
- Overview
- Chapter 2
- Enhanced Stacking
- Chapter 3
- SNMPv1 and SNMPv2c
- Chapter 4
- MAC Address Table
- Chapter 5
- Static Port Trunks
- Chapter 6
- LACP Port Trunks
- Chapter 7
- Port Mirror
- Section II
- Advanced Operations
- Chapter 8
- File System
- Chapter 9
- Event Logs and the Syslog Client
- Chapter 10
- Classifiers
- Chapter 11
- Access Control Lists
- Chapter 12
- Class of Service
- Chapter 13
- Quality of Service
- Chapter 14
- Denial of Service Defenses
- Chapter 15
- Power Over Ethernet
- Section III
- Snooping Protocols
- Chapter 16
- IGMP Snooping
- Chapter 17
- MLD Snooping
- Chapter 18
- RRP Snooping
- Chapter 19
- Ethernet Protection Switching Ring Snooping
- Section IV
- SNMPv3
- Chapter 20
- SNMPv3
- Section V
- Spanning Tree Protocols
- Chapter 21
- Spanning Tree and Rapid Spanning Tree Protocols
- Chapter 22
- Multiple Spanning Tree Protocol
- Section VI
- Virtual LANs
- Chapter 23
- Port-based and Tagged VLANs
- Chapter 24
- GARP VLAN Registration Protocol
- Chapter 25
- Multiple VLAN Modes
- Chapter 26
- Protected Ports VLANs
- Chapter 27
- MAC Address-based VLANs
- Section VII
- Routing
- Chapter 28
- Internet Protocol Version 4 Packet Routing
- Supported Platforms
- Overview
- Routing Interfaces
- Interface Names
- Static Routes
- Routing Information Protocol (RIP)
- Default Routes
- Equal-cost Multi-path (ECMP) Routing
- Routing Table
- Address Resolution Protocol (ARP) Table
- Internet Control Message Protocol (ICMP)
- Routing Interfaces and Management Features
- Local Interface
- AT-9408LC/SP AT-9424T/GB, and AT-9424T/SP Switches
- Routing Command Example
- Non-routing Command Example
- Upgrading from AT-S63 Version 1.3.0 or Earlier
- Chapter 29
- BOOTP Relay Agent
- Chapter 30
- Virtual Router Redundancy Protocol
- Section VIII
- Port Security
- Chapter 31
- MAC Address-based Port Security
- Chapter 32
- 802.1x Port-based Network Access Control
- Section IX
- Management Security
- Chapter 33
- Web Server
- Chapter 34
- Encryption Keys
- Chapter 35
- PKI Certificates and SSL
- Chapter 36
- Secure Shell (SSH)
- Chapter 37
- TACACS+ and RADIUS Protocols
- Chapter 38
- Management Access Control List
- Appendix A
- AT-S63 Management Software Default Settings
- Address Resolution Protocol Cache
- Boot Configuration File
- BOOTP Relay Agent
- Class of Service
- Denial of Service Defenses
- 802.1x Port-Based Network Access Control
- Enhanced Stacking
- Ethernet Protection Switching Ring (EPSR) Snooping
- Event Logs
- GVRP
- IGMP Snooping
- Internet Protocol Version 4 Packet Routing
- MAC Address-based Port Security
- MAC Address Table
- Management Access Control List
- Manager and Operator Account
- Multicast Listener Discovery Snooping
- Public Key Infrastructure
- Port Settings
- RJ-45 Serial Terminal Port
- Router Redundancy Protocol Snooping
- Server-based Authentication (RADIUS and TACACS+)
- Simple Network Management Protocol
- Simple Network Time Protocol
- Spanning Tree Protocols (STP, RSTP, and MSTP)
- Secure Shell Server
- Secure Sockets Layer
- System Name, Administrator, and Comments Settings
- Telnet Server
- Virtual Router Redundancy Protocol
- VLANs
- Web Server
- Appendix B
- SNMPv3 Configuration Examples
- Appendix C
- Features and Standards
- 10/100/1000Base-T Twisted Pair Ports
- Denial of Service Defenses
- Ethernet Protection Switching Ring Snooping
- Fiber Optic Ports (AT-9408LC/SP Switch)
- File System
- DHCP and BOOTP Clients
- Internet Protocol Multicasting
- Internet Protocol Version 4 Routing
- MAC Address Table
- Management Access and Security
- Management Access Methods
- Management Interfaces
- Management MIBs
- Port Security
- Port Trunking and Mirroring
- Spanning Tree Protocols
- System Monitoring
- Traffic Control
- Virtual LANs
- Virtual Router Redundancy Protocol
- Appendix D
- MIB Objects
- Index

Chapter 12: Class of Service
136 Section II: Advanced Operations
Scheduling
A switch port needs a mechanism for knowing the order in which it should
handle the packets in its eight egress queues. For example, if all the
queues contain packets, should the port transmit all packets from Q7, the
highest priority queue, before moving on to the other queues, or should it
instead just do a few packets from each queue and, if so, how many?
This control mechanism is called scheduling. Scheduling determines the
order in which a port handles the packets in its egress queues. The
AT-S63 software has two types of scheduling:
Strict priority
Weighted round robin priority
Note
Scheduling is set at the switch level. You cannot set this on a per-
port basis.
Strict Priority
Scheduling
With this type of scheduling, a port transmits all packets out of higher
priority queues before transmitting any from the lower priority queues. For
instance, as long as there are packets in Q7 it does not handle any
packets in Q6.
The value to this type of scheduling is that high priority packets are always
handled before low priority packets.
The problem with this method is that some low priority packets might
never be transmitted out the port because a port might never get to the low
priority queues. A port handling a large volume of high priority traffic may
be so busy transmitting that traffic that it never has an opportunity to get to
any of the packets stored in its low priority queues.
Weighted Round
Robin Priority
Scheduling
The weighted round robin scheduling method functions as its name
implies. The port transmits a set number of packets from each queue, in a
round robin fashion, so that each has a chance to transmit traffic. This
method guarantees that every queue receives some attention from the
port for transmitting packets.
To use this scheduling method, you need to specify the maximum number
of packets a port should transmit from a queue before moving to the next
queue. This is referred to as specifying the “weight” of a queue. In most
cases, you will want to give greater weight to the higher priority queues
over the lower priority queues.