Owner manual
Table Of Contents
- Contents
- Figures
- Tables
- Preface
- Section I
- Basic Operations
- Chapter 1
- Overview
- Chapter 2
- Enhanced Stacking
- Chapter 3
- SNMPv1 and SNMPv2c
- Chapter 4
- MAC Address Table
- Chapter 5
- Static Port Trunks
- Chapter 6
- LACP Port Trunks
- Chapter 7
- Port Mirror
- Section II
- Advanced Operations
- Chapter 8
- File System
- Chapter 9
- Event Logs and the Syslog Client
- Chapter 10
- Classifiers
- Chapter 11
- Access Control Lists
- Chapter 12
- Class of Service
- Chapter 13
- Quality of Service
- Chapter 14
- Denial of Service Defenses
- Chapter 15
- Power Over Ethernet
- Section III
- Snooping Protocols
- Chapter 16
- IGMP Snooping
- Chapter 17
- MLD Snooping
- Chapter 18
- RRP Snooping
- Chapter 19
- Ethernet Protection Switching Ring Snooping
- Section IV
- SNMPv3
- Chapter 20
- SNMPv3
- Section V
- Spanning Tree Protocols
- Chapter 21
- Spanning Tree and Rapid Spanning Tree Protocols
- Chapter 22
- Multiple Spanning Tree Protocol
- Section VI
- Virtual LANs
- Chapter 23
- Port-based and Tagged VLANs
- Chapter 24
- GARP VLAN Registration Protocol
- Chapter 25
- Multiple VLAN Modes
- Chapter 26
- Protected Ports VLANs
- Chapter 27
- MAC Address-based VLANs
- Section VII
- Routing
- Chapter 28
- Internet Protocol Version 4 Packet Routing
- Supported Platforms
- Overview
- Routing Interfaces
- Interface Names
- Static Routes
- Routing Information Protocol (RIP)
- Default Routes
- Equal-cost Multi-path (ECMP) Routing
- Routing Table
- Address Resolution Protocol (ARP) Table
- Internet Control Message Protocol (ICMP)
- Routing Interfaces and Management Features
- Local Interface
- AT-9408LC/SP AT-9424T/GB, and AT-9424T/SP Switches
- Routing Command Example
- Non-routing Command Example
- Upgrading from AT-S63 Version 1.3.0 or Earlier
- Chapter 29
- BOOTP Relay Agent
- Chapter 30
- Virtual Router Redundancy Protocol
- Section VIII
- Port Security
- Chapter 31
- MAC Address-based Port Security
- Chapter 32
- 802.1x Port-based Network Access Control
- Section IX
- Management Security
- Chapter 33
- Web Server
- Chapter 34
- Encryption Keys
- Chapter 35
- PKI Certificates and SSL
- Chapter 36
- Secure Shell (SSH)
- Chapter 37
- TACACS+ and RADIUS Protocols
- Chapter 38
- Management Access Control List
- Appendix A
- AT-S63 Management Software Default Settings
- Address Resolution Protocol Cache
- Boot Configuration File
- BOOTP Relay Agent
- Class of Service
- Denial of Service Defenses
- 802.1x Port-Based Network Access Control
- Enhanced Stacking
- Ethernet Protection Switching Ring (EPSR) Snooping
- Event Logs
- GVRP
- IGMP Snooping
- Internet Protocol Version 4 Packet Routing
- MAC Address-based Port Security
- MAC Address Table
- Management Access Control List
- Manager and Operator Account
- Multicast Listener Discovery Snooping
- Public Key Infrastructure
- Port Settings
- RJ-45 Serial Terminal Port
- Router Redundancy Protocol Snooping
- Server-based Authentication (RADIUS and TACACS+)
- Simple Network Management Protocol
- Simple Network Time Protocol
- Spanning Tree Protocols (STP, RSTP, and MSTP)
- Secure Shell Server
- Secure Sockets Layer
- System Name, Administrator, and Comments Settings
- Telnet Server
- Virtual Router Redundancy Protocol
- VLANs
- Web Server
- Appendix B
- SNMPv3 Configuration Examples
- Appendix C
- Features and Standards
- 10/100/1000Base-T Twisted Pair Ports
- Denial of Service Defenses
- Ethernet Protection Switching Ring Snooping
- Fiber Optic Ports (AT-9408LC/SP Switch)
- File System
- DHCP and BOOTP Clients
- Internet Protocol Multicasting
- Internet Protocol Version 4 Routing
- MAC Address Table
- Management Access and Security
- Management Access Methods
- Management Interfaces
- Management MIBs
- Port Security
- Port Trunking and Mirroring
- Spanning Tree Protocols
- System Monitoring
- Traffic Control
- Virtual LANs
- Virtual Router Redundancy Protocol
- Appendix D
- MIB Objects
- Index

AT-S63 Management Software Features Guide
Section II: Advanced Operations 141
Overview
Quality of Service allows you to prioritize traffic and/or limit the bandwidth
available to it. The concept of QoS is a departure from the original
networking protocols, which treated all traffic on the Internet or within a
LAN in the same manner. Without QoS, every traffic type is equally likely
to be dropped if a link becomes oversubscribed. This approach is now
inadequate in many networks, because traffic levels have increased and
networks transport time-critical applications such as streams of video and
data. QoS also enables service providers to easily supply different
customers with different amounts of bandwidth.
Configuring Quality of Service involves two separate stages:
Classifying traffic into flows, according to a wide range of criteria.
Classification is performed by the switch’s packet classifiers, described
in Chapter 10, “Classifiers” on page 109.
Acting on these traffic flows.
Quality of Service is a broadly used term that encompasses as a minimum
both Layer 2 and Layer 3 in the OSI model. QoS is typically demonstrated
by how the switch accomplishes the following:
Assigns priority to incoming frames, if they do not carry priority
information
Maps prioritized frames to traffic classes, or maps frames to traffic
classes based upon other criteria
Maps traffic classes to egress queues, or maps prioritized frames to
egress queues
Provides maximum bandwidth limiting for traffic classes, egress
queues and/or ports
Schedules frames in egress queues for transmission (for example,
empty queues in strict priority or samples each queue)
Relabels the priority of frames
Determines which frames to drop if the network becomes congested
Reserves memory for switching/routing or QoS operation (e.g.
reserving buffers for egress queues, or buffers to store packets with
particular characteristics)
Note
QoS is only performed on packets that are switched at wire speed.
This includes IP, IP multicast, IPX, and Layer 2 traffic within VLANs.