Owner manual
Table Of Contents
- Contents
- Figures
- Tables
- Preface
- Section I
- Basic Operations
- Chapter 1
- Overview
- Chapter 2
- Enhanced Stacking
- Chapter 3
- SNMPv1 and SNMPv2c
- Chapter 4
- MAC Address Table
- Chapter 5
- Static Port Trunks
- Chapter 6
- LACP Port Trunks
- Chapter 7
- Port Mirror
- Section II
- Advanced Operations
- Chapter 8
- File System
- Chapter 9
- Event Logs and the Syslog Client
- Chapter 10
- Classifiers
- Chapter 11
- Access Control Lists
- Chapter 12
- Class of Service
- Chapter 13
- Quality of Service
- Chapter 14
- Denial of Service Defenses
- Chapter 15
- Power Over Ethernet
- Section III
- Snooping Protocols
- Chapter 16
- IGMP Snooping
- Chapter 17
- MLD Snooping
- Chapter 18
- RRP Snooping
- Chapter 19
- Ethernet Protection Switching Ring Snooping
- Section IV
- SNMPv3
- Chapter 20
- SNMPv3
- Section V
- Spanning Tree Protocols
- Chapter 21
- Spanning Tree and Rapid Spanning Tree Protocols
- Chapter 22
- Multiple Spanning Tree Protocol
- Section VI
- Virtual LANs
- Chapter 23
- Port-based and Tagged VLANs
- Chapter 24
- GARP VLAN Registration Protocol
- Chapter 25
- Multiple VLAN Modes
- Chapter 26
- Protected Ports VLANs
- Chapter 27
- MAC Address-based VLANs
- Section VII
- Routing
- Chapter 28
- Internet Protocol Version 4 Packet Routing
- Supported Platforms
- Overview
- Routing Interfaces
- Interface Names
- Static Routes
- Routing Information Protocol (RIP)
- Default Routes
- Equal-cost Multi-path (ECMP) Routing
- Routing Table
- Address Resolution Protocol (ARP) Table
- Internet Control Message Protocol (ICMP)
- Routing Interfaces and Management Features
- Local Interface
- AT-9408LC/SP AT-9424T/GB, and AT-9424T/SP Switches
- Routing Command Example
- Non-routing Command Example
- Upgrading from AT-S63 Version 1.3.0 or Earlier
- Chapter 29
- BOOTP Relay Agent
- Chapter 30
- Virtual Router Redundancy Protocol
- Section VIII
- Port Security
- Chapter 31
- MAC Address-based Port Security
- Chapter 32
- 802.1x Port-based Network Access Control
- Section IX
- Management Security
- Chapter 33
- Web Server
- Chapter 34
- Encryption Keys
- Chapter 35
- PKI Certificates and SSL
- Chapter 36
- Secure Shell (SSH)
- Chapter 37
- TACACS+ and RADIUS Protocols
- Chapter 38
- Management Access Control List
- Appendix A
- AT-S63 Management Software Default Settings
- Address Resolution Protocol Cache
- Boot Configuration File
- BOOTP Relay Agent
- Class of Service
- Denial of Service Defenses
- 802.1x Port-Based Network Access Control
- Enhanced Stacking
- Ethernet Protection Switching Ring (EPSR) Snooping
- Event Logs
- GVRP
- IGMP Snooping
- Internet Protocol Version 4 Packet Routing
- MAC Address-based Port Security
- MAC Address Table
- Management Access Control List
- Manager and Operator Account
- Multicast Listener Discovery Snooping
- Public Key Infrastructure
- Port Settings
- RJ-45 Serial Terminal Port
- Router Redundancy Protocol Snooping
- Server-based Authentication (RADIUS and TACACS+)
- Simple Network Management Protocol
- Simple Network Time Protocol
- Spanning Tree Protocols (STP, RSTP, and MSTP)
- Secure Shell Server
- Secure Sockets Layer
- System Name, Administrator, and Comments Settings
- Telnet Server
- Virtual Router Redundancy Protocol
- VLANs
- Web Server
- Appendix B
- SNMPv3 Configuration Examples
- Appendix C
- Features and Standards
- 10/100/1000Base-T Twisted Pair Ports
- Denial of Service Defenses
- Ethernet Protection Switching Ring Snooping
- Fiber Optic Ports (AT-9408LC/SP Switch)
- File System
- DHCP and BOOTP Clients
- Internet Protocol Multicasting
- Internet Protocol Version 4 Routing
- MAC Address Table
- Management Access and Security
- Management Access Methods
- Management Interfaces
- Management MIBs
- Port Security
- Port Trunking and Mirroring
- Spanning Tree Protocols
- System Monitoring
- Traffic Control
- Virtual LANs
- Virtual Router Redundancy Protocol
- Appendix D
- MIB Objects
- Index

AT-S63 Management Software Features Guide
Section III: Snooping Protocols 183
Overview
IPv4 routers use IGMP to create lists of nodes that are members of
multicast groups. (A multicast group is a group of end nodes that want to
receive multicast packets from a multicast application.) The router creates
a multicast membership list by periodically sending out queries to the local
area networks connected to its ports.
A node wanting to become a member of a multicast group responds to a
query by sending a report. A report indicates an end node’s desire to
become a member of a multicast group. Nodes that join a multicast group
are referred to as host nodes. After becoming a member of a multicast
group, a host node must continue to periodically issue reports to remain a
member.
After the router has received a report from a host node, it notes the
multicast group that the host node wants to join and the port on the router
where the node is located. Any multicast packets belonging to that
multicast group are then forwarded by the router out the port. If a particular
port on the router has no nodes that want to be members of multicast
groups, the router does not send multicast packets out the port. This
improves network performance by restricting multicast packets only to
router ports where host nodes are located.
There are three versions of IGMP — versions 1, 2, and 3. One of the
differences between the versions is how a host node signals that it no
longer wants to be a member of a multicast group. In version 1 it stops
sending reports. If a router does not receive a report from a host node after
a predefined length of time, referred to as a time-out value, it assumes that
the host node no longer wants to receive multicast frames, and removes it
from the membership list of the multicast group.
In version 2 a host node exits from a multicast group by sending a leave
request. After receiving a leave request from a host node, the router
removes the node from appropriate membership list. The router also stops
sending multicast packets out the port to which the node is connected if it
determines there are no further host nodes on the port.
Version 3 adds the ability of host nodes to join or leave specific sources in
a multicast group.
The IGMP snooping feature on the AT-9400 Switch supports all three
versions of IGMP. The switch monitors the flow of queries from routers
and reports and leave messages from host nodes to build its own multicast
membership lists. It uses the lists to forward multicast packets only to
switch ports where there are host nodes that are members of multicast
groups. This improves switch performance and network security by
restricting the flow of multicast packets only to those switch ports
connected to host nodes.