Owner manual
Table Of Contents
- Contents
- Figures
- Tables
- Preface
- Section I
- Basic Operations
- Chapter 1
- Overview
- Chapter 2
- Enhanced Stacking
- Chapter 3
- SNMPv1 and SNMPv2c
- Chapter 4
- MAC Address Table
- Chapter 5
- Static Port Trunks
- Chapter 6
- LACP Port Trunks
- Chapter 7
- Port Mirror
- Section II
- Advanced Operations
- Chapter 8
- File System
- Chapter 9
- Event Logs and the Syslog Client
- Chapter 10
- Classifiers
- Chapter 11
- Access Control Lists
- Chapter 12
- Class of Service
- Chapter 13
- Quality of Service
- Chapter 14
- Denial of Service Defenses
- Chapter 15
- Power Over Ethernet
- Section III
- Snooping Protocols
- Chapter 16
- IGMP Snooping
- Chapter 17
- MLD Snooping
- Chapter 18
- RRP Snooping
- Chapter 19
- Ethernet Protection Switching Ring Snooping
- Section IV
- SNMPv3
- Chapter 20
- SNMPv3
- Section V
- Spanning Tree Protocols
- Chapter 21
- Spanning Tree and Rapid Spanning Tree Protocols
- Chapter 22
- Multiple Spanning Tree Protocol
- Section VI
- Virtual LANs
- Chapter 23
- Port-based and Tagged VLANs
- Chapter 24
- GARP VLAN Registration Protocol
- Chapter 25
- Multiple VLAN Modes
- Chapter 26
- Protected Ports VLANs
- Chapter 27
- MAC Address-based VLANs
- Section VII
- Routing
- Chapter 28
- Internet Protocol Version 4 Packet Routing
- Supported Platforms
- Overview
- Routing Interfaces
- Interface Names
- Static Routes
- Routing Information Protocol (RIP)
- Default Routes
- Equal-cost Multi-path (ECMP) Routing
- Routing Table
- Address Resolution Protocol (ARP) Table
- Internet Control Message Protocol (ICMP)
- Routing Interfaces and Management Features
- Local Interface
- AT-9408LC/SP AT-9424T/GB, and AT-9424T/SP Switches
- Routing Command Example
- Non-routing Command Example
- Upgrading from AT-S63 Version 1.3.0 or Earlier
- Chapter 29
- BOOTP Relay Agent
- Chapter 30
- Virtual Router Redundancy Protocol
- Section VIII
- Port Security
- Chapter 31
- MAC Address-based Port Security
- Chapter 32
- 802.1x Port-based Network Access Control
- Section IX
- Management Security
- Chapter 33
- Web Server
- Chapter 34
- Encryption Keys
- Chapter 35
- PKI Certificates and SSL
- Chapter 36
- Secure Shell (SSH)
- Chapter 37
- TACACS+ and RADIUS Protocols
- Chapter 38
- Management Access Control List
- Appendix A
- AT-S63 Management Software Default Settings
- Address Resolution Protocol Cache
- Boot Configuration File
- BOOTP Relay Agent
- Class of Service
- Denial of Service Defenses
- 802.1x Port-Based Network Access Control
- Enhanced Stacking
- Ethernet Protection Switching Ring (EPSR) Snooping
- Event Logs
- GVRP
- IGMP Snooping
- Internet Protocol Version 4 Packet Routing
- MAC Address-based Port Security
- MAC Address Table
- Management Access Control List
- Manager and Operator Account
- Multicast Listener Discovery Snooping
- Public Key Infrastructure
- Port Settings
- RJ-45 Serial Terminal Port
- Router Redundancy Protocol Snooping
- Server-based Authentication (RADIUS and TACACS+)
- Simple Network Management Protocol
- Simple Network Time Protocol
- Spanning Tree Protocols (STP, RSTP, and MSTP)
- Secure Shell Server
- Secure Sockets Layer
- System Name, Administrator, and Comments Settings
- Telnet Server
- Virtual Router Redundancy Protocol
- VLANs
- Web Server
- Appendix B
- SNMPv3 Configuration Examples
- Appendix C
- Features and Standards
- 10/100/1000Base-T Twisted Pair Ports
- Denial of Service Defenses
- Ethernet Protection Switching Ring Snooping
- Fiber Optic Ports (AT-9408LC/SP Switch)
- File System
- DHCP and BOOTP Clients
- Internet Protocol Multicasting
- Internet Protocol Version 4 Routing
- MAC Address Table
- Management Access and Security
- Management Access Methods
- Management Interfaces
- Management MIBs
- Port Security
- Port Trunking and Mirroring
- Spanning Tree Protocols
- System Monitoring
- Traffic Control
- Virtual LANs
- Virtual Router Redundancy Protocol
- Appendix D
- MIB Objects
- Index
Chapter 22: Multiple Spanning Tree Protocol
244 Section V: Spanning Tree Protocols
Common and
Internal
Spanning Tree
(CIST)
MSTP has a default spanning tree instance called the Common and
Internal Spanning Tree (CIST). This instance has an MSTI ID of 0.
This instance has unique features and functions that make it different from
the MSTIs that you create yourself. Firstly, you cannot delete this instance
and you cannot change its MSTI ID.
Secondly, when you create a new port-based or tagged VLAN, it is by
default associated with the CIST and is automatically given an MSTI ID of
0. The Default_VLAN is also associated by default with CIST.
Another critical difference is that when you assign a VLAN to another
MSTI, it still partially remains a member of CIST. This is because CIST is
used by MSTP to communicate with other MSTP regions and with any
RSTP and STP single-instance spanning trees in the network. MSTP uses
CIST to participate in the creation of a spanning tree between different
regions and between regions and single-instance spanning tree, to form
one spanning tree for the entire bridged network.
MSTP uses CIST to form the spanning tree of an entire bridged network
because CIST can cross regional boundaries, while a MSTI cannot. If a
port is a boundary port, that is, if it is connected to another region, that port
automatically belongs solely to CIST, even if it was assigned to an MSTI,
because only CIST is active outside of a region.
As mentioned earlier, every MSTI must have a root bridge, referred to as a
regional root, in order to locate loops that might exist within the instance.
CIST must also have a regional root. However, the CIST regional root
communicates with the other MSTP regions and single-instance spanning
trees in the bridged network.
The CIST regional root is set with the CIST Priority parameter. This
parameter, which functions similar to the RSTP bridge priority value,
selects the root bridge for the entire bridged network. If the AT-9400
Switch has the lowest CIST Priority value among all the spanning tree
bridges, it functions as the root bridge for all the MSTP regions and STP
and RSTP single-instance spanning trees in the network.
MSTP with STP
and RSTP
MSTP is fully compatible with STP and RSTP. If a port on the AT-9400
Switch running MSTP receives STP BPDUs, the port sends only STP
BPDU packets. If a port receives RSTP BPDUs, the port sends MSTP
BPDUs because RSTP can process MSTP BPDUs.
A port connected to a bridge running STP or RSTP is considered to be a
boundary port of the MSTP region and the bridge as belonging to a
different region.
An MSTP region can be considered as a virtual bridge. The implication is
that other MSTP regions and STP and RSTP single-instance spanning
trees cannot discern the topology or constitution of a MSTP region. The
only bridge they are aware of is the regional root of the CIST instance.