Owner manual
Table Of Contents
- Contents
- Figures
- Tables
- Preface
- Section I
- Basic Operations
- Chapter 1
- Overview
- Chapter 2
- Enhanced Stacking
- Chapter 3
- SNMPv1 and SNMPv2c
- Chapter 4
- MAC Address Table
- Chapter 5
- Static Port Trunks
- Chapter 6
- LACP Port Trunks
- Chapter 7
- Port Mirror
- Section II
- Advanced Operations
- Chapter 8
- File System
- Chapter 9
- Event Logs and the Syslog Client
- Chapter 10
- Classifiers
- Chapter 11
- Access Control Lists
- Chapter 12
- Class of Service
- Chapter 13
- Quality of Service
- Chapter 14
- Denial of Service Defenses
- Chapter 15
- Power Over Ethernet
- Section III
- Snooping Protocols
- Chapter 16
- IGMP Snooping
- Chapter 17
- MLD Snooping
- Chapter 18
- RRP Snooping
- Chapter 19
- Ethernet Protection Switching Ring Snooping
- Section IV
- SNMPv3
- Chapter 20
- SNMPv3
- Section V
- Spanning Tree Protocols
- Chapter 21
- Spanning Tree and Rapid Spanning Tree Protocols
- Chapter 22
- Multiple Spanning Tree Protocol
- Section VI
- Virtual LANs
- Chapter 23
- Port-based and Tagged VLANs
- Chapter 24
- GARP VLAN Registration Protocol
- Chapter 25
- Multiple VLAN Modes
- Chapter 26
- Protected Ports VLANs
- Chapter 27
- MAC Address-based VLANs
- Section VII
- Routing
- Chapter 28
- Internet Protocol Version 4 Packet Routing
- Supported Platforms
- Overview
- Routing Interfaces
- Interface Names
- Static Routes
- Routing Information Protocol (RIP)
- Default Routes
- Equal-cost Multi-path (ECMP) Routing
- Routing Table
- Address Resolution Protocol (ARP) Table
- Internet Control Message Protocol (ICMP)
- Routing Interfaces and Management Features
- Local Interface
- AT-9408LC/SP AT-9424T/GB, and AT-9424T/SP Switches
- Routing Command Example
- Non-routing Command Example
- Upgrading from AT-S63 Version 1.3.0 or Earlier
- Chapter 29
- BOOTP Relay Agent
- Chapter 30
- Virtual Router Redundancy Protocol
- Section VIII
- Port Security
- Chapter 31
- MAC Address-based Port Security
- Chapter 32
- 802.1x Port-based Network Access Control
- Section IX
- Management Security
- Chapter 33
- Web Server
- Chapter 34
- Encryption Keys
- Chapter 35
- PKI Certificates and SSL
- Chapter 36
- Secure Shell (SSH)
- Chapter 37
- TACACS+ and RADIUS Protocols
- Chapter 38
- Management Access Control List
- Appendix A
- AT-S63 Management Software Default Settings
- Address Resolution Protocol Cache
- Boot Configuration File
- BOOTP Relay Agent
- Class of Service
- Denial of Service Defenses
- 802.1x Port-Based Network Access Control
- Enhanced Stacking
- Ethernet Protection Switching Ring (EPSR) Snooping
- Event Logs
- GVRP
- IGMP Snooping
- Internet Protocol Version 4 Packet Routing
- MAC Address-based Port Security
- MAC Address Table
- Management Access Control List
- Manager and Operator Account
- Multicast Listener Discovery Snooping
- Public Key Infrastructure
- Port Settings
- RJ-45 Serial Terminal Port
- Router Redundancy Protocol Snooping
- Server-based Authentication (RADIUS and TACACS+)
- Simple Network Management Protocol
- Simple Network Time Protocol
- Spanning Tree Protocols (STP, RSTP, and MSTP)
- Secure Shell Server
- Secure Sockets Layer
- System Name, Administrator, and Comments Settings
- Telnet Server
- Virtual Router Redundancy Protocol
- VLANs
- Web Server
- Appendix B
- SNMPv3 Configuration Examples
- Appendix C
- Features and Standards
- 10/100/1000Base-T Twisted Pair Ports
- Denial of Service Defenses
- Ethernet Protection Switching Ring Snooping
- Fiber Optic Ports (AT-9408LC/SP Switch)
- File System
- DHCP and BOOTP Clients
- Internet Protocol Multicasting
- Internet Protocol Version 4 Routing
- MAC Address Table
- Management Access and Security
- Management Access Methods
- Management Interfaces
- Management MIBs
- Port Security
- Port Trunking and Mirroring
- Spanning Tree Protocols
- System Monitoring
- Traffic Control
- Virtual LANs
- Virtual Router Redundancy Protocol
- Appendix D
- MIB Objects
- Index

AT-S63 Management Software Features Guide
Section VII: Routing 315
Routing Information Protocol (RIP)
A switch can automatically learn routes to remote destinations by sharing
the contents of its routing table with its neighboring routers in the network
with the Routing Information Protocol (RIP) versions 1 and 2.
RIP is a fairly simple distance vector routing protocol that defines networks
based in how many hops they are from the switch, just as with static
routes. Once a network is more than fifteen hops away (one hop is one
link), it is considered as unreachable and is not included in the routing
table.
RIP version 2 permits the addition of subnet masks and next hop
information in RIP updates. This allows the use of different sized subnet
masks on different subnets within the same network.
RIP broadcasts are automatically activated when the protocol is added to
a routing interface on the switch. An interface sends RIP packets to the
RIP multicast address 224.0.0.9 when sending version 2 packets or uses
the broadcast address when sending out version 1 packets.
A route is propagated by RIP if its status at the physical level is active. An
active route has at least active one port in the VLAN. RIP does not
propagate an inactive route where there are no active ports in the VLAN.
RIP can be added to a maximum of 100 interfaces on a switch and the
route table can store up to 1024 dynamic routes.
Since the interfaces on a switch can route packets among the local
subnets without the presence of RIP or static routes, the routing protocol is
only necessary if the switch is to learn remote destinations by sharing the
switch’s routing table with the neighboring routers, and you choose not to
specify the routes manually with static routes.
You add RIP to the routing interfaces where there are neighboring routers
to remote destinations. You do not need to add RIP to interfaces where
there are no neighboring routers.
A route learned by RIP is immediately added to the routing table, where it
becomes available to all the interfaces on the switch.
When you add RIP to an interface, you can specify the type of RIP packets
the routing protocol is to send and receive. The AT-9400 Switch can send
either version 1 or 2 packets and accept either or both versions.
Version 2 supports the addition of a password of up to sixteen
alphanumeric characters to protect routers and their tables from
incorporating bogus routing updates. The switch adds the password into
the routing table when it broadcasts the contents of the table to its
neighboring routing devices, which check the password prior to updating