Instruction manual
Table Of Contents
- Introduction
- Declarations of conformity
- Safety instructions
- PIKE types and highlights
- FireWire
- Overview
- FireWire in detail
- Serial bus
- FireWire connection capabilities
- Capabilities of 1394a (FireWire 400)
- Capabilities of 1394b (FireWire 800)
- Compatibility between 1394a and 1394b
- Image transfer via 1394a and 1394b
- 1394b bandwidths
- FireWire Plug & play capabilities
- FireWire hot plug precautions
- Operating system support
- 1394a/b comparison
- System components
- Specifications
- Camera dimensions
- PIKE standard housing (2 x 1394b copper)
- PIKE (1394b: 1 x GOF, 1 x copper)
- Tripod adapter
- Pike W90 (2 x 1394b copper)
- Pike W90 (1394b: 1 x GOF, 1 x copper)
- Pike W90 S90 (2 x 1394b copper)
- Pike W90 S90 (1394b: 1 x GOF, 1 x copper)
- Pike W270 (2 x 1394b copper)
- Pike W270 (1394b: 1 x GOF, 1 x copper)
- Pike W270 S90 (2 x 1394b copper)
- Pike W270 S90 (1394b: 1 x GOF, 1 x copper)
- Cross section: C-Mount (VGA size filter)
- Cross section: C-Mount (large filter)
- Adjustment of C-Mount
- F-Mount, K-Mount, M39-Mount
- Camera interfaces
- Description of the data path
- Block diagrams of the cameras
- Sensor
- Channel balance
- White balance
- Auto shutter
- Auto gain
- Manual gain
- Brightness (black level or offset)
- Horizontal mirror function
- Shading correction
- Look-up table (LUT) and gamma function
- Binning (b/w models)
- Sub-sampling
- High SNR mode (High Signal Noise Ratio)
- Frame memory and deferred image transport
- Color interpolation (BAYER demosaicing)
- Sharpness
- Hue and saturation
- Color correction
- Color conversion (RGB ‡ YUV)
- Bulk Trigger
- Level Trigger
- Serial interface
- Controlling image capture
- Video formats, modes and bandwidth
- How does bandwidth affect the frame rate?
- Configuration of the camera
- Camera_Status_Register
- Configuration ROM
- Implemented registers
- Camera initialize register
- Inquiry register for video format
- Inquiry register for video mode
- Inquiry register for video frame rate and base address
- Inquiry register for basic function
- Inquiry register for feature presence
- Inquiry register for feature elements
- Inquiry register for absolute value CSR offset address
- Status and control register for feature
- Feature control error status register
- Video mode control and status registers for Format_7
- Advanced features
- Version information inquiry
- Advanced feature inquiry
- Camera status
- Maximum resolution
- Time base
- Extended shutter
- Test images
- Look-up tables (LUT)
- Shading correction
- Deferred image transport
- Frame information
- Input/output pin control
- Delayed Integration enable
- Auto shutter control
- Auto gain control
- Autofunction AOI
- Color correction
- Trigger delay
- Mirror image
- AFE channel compensation (channel balance)
- Soft Reset
- High SNR mode (High Signal Noise Ratio)
- User profiles
- GPDATA_BUFFER
- Firmware update
- Glossary
- Index

Controlling image capture
PIKE Technical Manual V3.1.0
158
Jitter at start of exposure
The following chapter discusses the latency time which exists for all CCD
models when either a hardware or software trigger is generated, until the
actual image exposure starts.
Owing to the well-known fact that an Interline Transfer CCD sensor has both
a light sensitive area and a separate storage area, it is common to interleave
image exposure of a new frame and output that of the previous one. It makes
continuous image flow possible, even with an external trigger.
The uncertain time delay before the start of exposure depends on the state
of the sensor. A distinction is made as follows:
FVal is active Æ the sensor is reading out, the camera is busy
In this case the camera must not change horizontal timing so that the trigger
event is synchronized with the current horizontal clock. This introduces a
max. uncertainty which is equivalent to the line time. The line time depends
on the sensor used and therefore can vary from model to model.
FVal is inactive Æ the sensor is ready, the camera is idle
In this case the camera can resynchronize the horizontal clock to the new
trigger event, leaving only a very short uncertainty time of the master clock
period.
Model Camera (while FVal) Camera idle
Pike F-032 ± 4.9 µs ± 8.3 ns
Pike F-100 ± 8.2 µs ± 8.3 ns
Pike F-145 ± 16 µs ± 8.3 ns
Pike F-210 ± 14.25 µs ± 8.3 ns
Pike F-421 ± 15 µs ± 8.3 ns
Table 67: Jitter at exposure start
Note
L
• Jitter at the beginning of an exposure has no effect on
the length of exposure, i.e. it is always constant.










