Datasheet
Table Of Contents
- FEATURES
- APPLICATIONS
- FUNCTIONAL BLOCK DIAGRAM
- PRODUCT HIGHLIGHTS
- TABLE OF CONTENTS
- REVISION HISTORY
- GENERAL DESCRIPTION
- SPECIFICATIONS
- ADC DC SPECIFICATIONS—AD9640ABCPZ-80, AD9640BCPZ80, AD9640ABCPZ-105, AND AD9640BCPZ-105
- ADC DC SPECIFICATIONS—AD9640ABCPZ-125, AD9640BCPZ125, AD9640ABCPZ-150, AND AD9640BCPZ150
- ADC AC SPECIFICATIONS—AD9640ABCPZ-80, AD9640BCPZ80, AD9640ABCPZ-105, AND AD9640BCPZ-105
- ADC AC SPECIFICATIONS—AD9640ABCPZ-125, AD9640BCPZ125, AD9640ABCPZ-150, AND AD9640BCPZ 150
- DIGITAL SPECIFICATIONS
- SWITCHING SPECIFICATIONS—AD9640ABCPZ-80, AD9640BCPZ-80, AD9640ABCPZ-105, AND AD9640BCPZ105
- SWITCHING SPECIFICATIONS—AD9640ABCPZ-125, AD9640BCPZ-125, AD9640ABCPZ-150, AND AD9640BCPZ150
- TIMING SPECIFICATIONS
- ABSOLUTE MAXIMUM RATINGS
- PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
- EQUIVALENT CIRCUITS
- TYPICAL PERFORMANCE CHARACTERISTICS
- THEORY OF OPERATION
- ADC OVERRANGE AND GAIN CONTROL
- SIGNAL MONITOR
- BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST
- CHANNEL/CHIP SYNCHRONIZATION
- SERIAL PORT INTERFACE (SPI)
- MEMORY MAP
- READING THE MEMORY MAP TABLE
- EXTERNAL MEMORY MAP
- MEMORY MAP REGISTER DESCRIPTION
- Sync Control (Register 0x100)
- Fast Detect Control (Register 0x104)
- Fine Upper Threshold (Register 0x106 and Register 0x107)
- Fine Lower Threshold (Register 0x108 and Register 0x109)
- Signal Monitor DC Correction Control (Register 0x10C)
- Signal Monitor DC Value Channel A (Register 0x10D and Register 0x10E)
- Signal Monitor DC Value Channel B (Register 0x10F and Register 0x110)
- Signal Monitor SPORT Control (Register 0x111)
- Signal Monitor Control (Register 0x112)
- Signal Monitor Period (Register 0x113 to Register 0x115)
- Signal Monitor Result Channel A (Register 0x116 to Register 0x118)
- Signal Monitor Result Channel B (Register 0x119 to Register 0x11B)
- APPLICATIONS INFORMATION
- OUTLINE DIMENSIONS

AD9640
Rev. B | Page 31 of 52
DIGITAL OUTPUTS
The AD9640 output drivers can be configured to interface with
1.8 V to 3.3 V CMOS logic families by matching DRVDD to the
digital supply of the interfaced logic. The AD9640 can also be
configured for LVDS outputs using a DRVDD supply voltage
of 1.8 V.
In CMOS output mode, the output drivers are sized to provide
sufficient output current to drive a wide variety of logic families.
However, large drive currents tend to cause current glitches on
the supplies that may affect converter performance.
Applications requiring the ADC to drive large capacitive loads
or large fan-outs may require external buffers or latches.
The output data format can be selected for either offset binary
or twos complement by setting the SCLK/DFS pin when operating
in the external pin mode (see Table 15).
As detailed in the AN-877 Application Note, Interfacing to High
Speed ADCs via SPI, the data format can be selected for offset
binary, twos complement, or gray code when using the SPI control.
Table 15. SCLK/DFS Mode Selection (External Pin Mode)
Voltage at Pin SCLK/DFS SDIO/DCS
AGND Offset binary (default) DCS disabled
AVDD Twos complement DCS enabled (default)
Digital Output Enable Function (OEB)
The AD9640 has a flexible three-state ability for the digital output
pins. The three-state mode is enabled using the SMI SDO/OEB
pin or through the SPI interface. If the SMI SDO/OEB pin is low,
the output data drivers are enabled. If the SMI SDO/OEB pin is
high, the output data drivers are placed in a high impedance state.
This OEB function is not intended for rapid access to the data
bus. Note that OEB is referenced to the digital supplies (DRVDD)
and should not exceed that supply voltage.
When using the SPI interface, the data and fast detect outputs
of each channel can be independently three-stated by using the
output enable bar bit in Register 0x14.
TIMING
The AD9640 provides latched data with a pipeline delay of
twelve clock cycles. Data outputs are available one propagation
delay (t
PD
) after the rising edge of the clock signal.
The length of the output data lines and loads placed on them
should be minimized to reduce transients within the AD9640.
These transients can degrade converter dynamic performance.
The lowest typical conversion rate of the AD9640 is 10 MSPS.
At clock rates below 10 MSPS, dynamic performance can degrade.
Data Clock Output (DCO)
The AD9640 provides two data clock output (DCO) signals
intended for capturing the data in an external register. The data
outputs are valid on the rising edge of DCO, unless the DCO clock
polarity has been changed via the SPI. See Figure 2 and Figure 3
for a graphical timing description.
Table 16. Output Data Format
Input (V) Condition (V) Offset Binary Output Mode Twos Complement Mode OVR
VIN+ − VIN− < −VREF − 0.5 LSB 00 0000 0000 0000 10 0000 0000 0000 1
VIN+ − VIN− = −VREF 00 0000 0000 0000 10 0000 0000 0000 0
VIN+ − VIN− = 0 10 0000 0000 0000 00 0000 0000 0000 0
VIN+ − VIN− = +VREF − 1.0 LSB 11 1111 1111 1111 01 1111 1111 1111 0
VIN+ − VIN− > +VREF − 0.5 LSB 11 1111 1111 1111 01 1111 1111 1111 1