1.5
Table Of Contents
- Color User Manual
- Contents
- Welcome to Color
- Color Correction Basics
- Color Correction Workflows
- An Overview of the Color Workflow
- Limitations in Color
- Video Finishing Workflows Using Final Cut Pro
- Importing Projects from Other Video Editing Applications
- Digital Cinema Workflows Using Apple ProRes 4444
- Finishing Projects Using RED Media
- Digital Intermediate Workflows Using DPX/Cineon Media
- Using EDLs, Timecode, and Frame Numbers to Conform Projects
- Using the Color Interface
- Importing and Managing Projects and Media
- Creating and Opening Projects
- Saving Projects
- Saving and Opening Archives
- Moving Projects from Final Cut Pro to Color
- Before You Export Your Final Cut Pro Project
- Move Clips That Aren’t Being Composited to Track V1 in the Timeline
- Remove Unnecessary Video Filters
- Organize All Color Corrector 3-Way Filters
- Divide Long Projects into Reels
- Export Self-Contained QuickTime Files for Effects Clips You Need to Color Correct
- Use Uncompressed or Lightly Compressed Still Image Formats
- Make Sure All Freeze Frame Effects Are on Track V1
- Make Sure All Clips Have the Same Frame Rate
- Media Manage Your Project, If Necessary
- Recapture Offline Media at Online Quality, If Necessary
- Check All Transitions and Effects If You Plan to Render 2K or 4K Image Sequences for Film Out
- Using the Send To Color Command in Final Cut Pro
- Importing an XML File into Color
- Before You Export Your Final Cut Pro Project
- Importing EDLs
- EDL Import Settings
- Relinking Media
- Importing Media Directly into the Timeline
- Compatible Media Formats
- Moving Projects from Color to Final Cut Pro
- Exporting EDLs
- Reconforming Projects
- Converting Cineon and DPX Image Sequences to QuickTime
- Importing Color Corrections
- Exporting JPEG Images
- Configuring the Setup Room
- The File Browser
- Using the Shots Browser
- The Grades Bin
- The Project Settings Tab
- The Messages Tab
- The User Preferences Tab
- Monitoring Your Project
- Timeline Playback, Navigation, and Editing
- Basic Timeline Elements
- Customizing the Timeline Interface
- Working with Tracks
- Selecting the Current Shot
- Timeline Playback
- Zooming In and Out of the Timeline
- Timeline Navigation
- Selecting Shots in the Timeline
- Working with Grades in the Timeline
- The Settings 1 Tab
- The Settings 2 Tab
- Editing Controls and Procedures
- Analyzing Signals Using the Video Scopes
- The Primary In Room
- The Secondaries Room
- What Is the Secondaries Room Used For?
- Where to Start in the Secondaries Room?
- The Enabled Button in the Secondaries Room
- Choosing a Region to Correct Using the HSL Qualifiers
- Controls in the Previews Tab
- Isolating a Region Using the Vignette Controls
- Adjusting the Inside and Outside of a Secondary Operation
- The Secondary Curves Explained
- Reset Controls in the Secondaries Room
- The Color FX Room
- The Primary Out Room
- Managing Corrections and Grades
- The Difference Between Corrections and Grades
- Saving and Using Corrections and Grades
- Managing Grades in the Timeline
- Using the Copy To Buttons in the Primary Rooms
- Using the Copy Grade and Paste Grade Memory Banks
- Setting a Beauty Grade in the Timeline
- Disabling All Grades
- Managing Grades in the Shots Browser
- Managing a Shot’s Corrections Using Multiple Rooms
- Keyframing
- The Geometry Room
- The Still Store
- The Render Queue
- Appendix A: Calibrating Your Monitor
- Appendix B: Keyboard Shortcuts in Color
- Appendix C: Using Multi-Touch Controls in Color
- Appendix D: Setting Up a Control Surface
The Q Bar
The Q bar shows the proper angle at which the hue of the purple box in the color bars
test pattern should appear. This purple box, which is located at the right of the 100-percent
white reference square, is referred to as the +Quadrature signal, or Q for short.
When troubleshooting a video signal, the correspondence between the Inphase and
+Quadrature components of the color bars signal and the position of the –I and Q bars
shows you whether or not the components of the video signal are being demodulated
correctly.
The Histogram
The Histogram provides a very different type of analysis than the waveform-based scopes.
Whereas waveforms have a built-in correspondence between the horizontal position of
the image being analyzed and that of the waveform graph, histograms provide a statistical
analysis of the image.
Histograms work by calculating the total number of pixels of each color or luma level in
the image and plotting a graph that shows the number of pixels there are at each
percentage. It’s really a bar graph of sorts, where each increment of the scale from left
to right represents a percentage of luma or color, while the height of each segment of
the histogram graph shows the number of pixels that correspond to that percentage.
The RGB Histogram
The RGB histogram display shows separate histogram analyses for each color channel.
This lets you compare the relative distribution of each color channel across the tonal
range of the image.
198 Chapter 8 Analyzing Signals Using the Video Scopes










