7
Table Of Contents
- Logic Pro 7
- Plug-In Reference
- Contents
- Introducing Logic’s Plug-ins
- Basics
- Instruments and Effects
- Equalizer
- Dynamic
- Distortion
- Filter
- Delay
- Modulation
- Reverb
- Convolution Reverb: SpaceDesigner
- Special
- Helper
- Vocoder—Basics
- The EVOC20PS
- Vocoder History
- Synthesizer Basics
- EFM 1
- ES M
- ES P
- ES E
- ES1
- ES2
- Concept and Function
- The ES2 Parameters
- Tutorials
- Sound Workshop: Logic ES2
- Tutorial Setting: Analog Saw Init
- Tutorial Setting: Analog Saw 3Osc
- Tutorial Setting: Analog Unison
- Tutorial Setting: Analog Bass clean
- Tutorial Setting: Analog Bass distorted
- Tutorial Setting: FM Start
- Tutorial Setting: FM Envelope
- Tutorial Setting: FM Drive
- Tutorial Setting: FM DigiWave
- Tutorial Setting: FM Wavetable
- Tutorial Setting: FM Megafat
- Tutorial Setting: FM Out of Tune and FM Tuned
- Tutorial Settings: PWM Start, PWM Slow, PWM Fast, and PWMScaled
- Tutorial Settings: PWM 2 Osc and PWM Soft Strings
- Tutorial Setting: Ringmod Start
- Tutorial Setting: Sync Start
- Tutorial Setting: Vector Start and Vector Envelope
- Tutorial Settings: Vector Envelope and Vector XY
- Tutorial Settings: Vector Loop
- Tutorial Setting: Vector Kick
- Tutorial Settings: Vector Perc Synth and Vector Punch Bass
- Templates for Logic’s ES2
- Sound Workshop: Logic ES2
- Ultrabeat
- Sculpture
- The Synthesis Core of Sculpture
- Sculpture’s Parameters
- Global Parameters
- String and Object Parameters
- Processing
- Post Processing
- Modulation Generators
- The Control Envelopes
- Morph
- MIDI Controller Assignments
- Programming: Quick Start Guide
- Programming: In Depth
- KlopfGeist
- EVB3
- EVD6
- The EVD6—Concept and Functions
- Parameters of the EVD6
- Controlling the EVD6 via MIDI
- A Brief History of the Clavinet
- EVP88
- EXS24 mkII
- Using Instruments
- File Organization
- Sample File Import
- EXS24 Key Commands
- A Brief History of Sampling
- MIDI Controller List
- GarageBand Instruments
- External Instrument
- Glossary
- Index
198 Chapter 16 Synthesizer Basics
Fourier Theorem and Harmonics
“Every periodic wave can be seen as the sum of sine waves with certain wave lengths
and amplitudes, the wave lengths of which have harmonic relations (ratios of small
numbers)”. This is known as the Fourier theorem. Roughly translated into more musical
terms, this means that any tone with a certain pitch can be regarded as a mix of sine
partial tones. This is comprised of the basic fundamental tone and its harmonics
(overtones). As an example: The basic oscillation (the first partial tone) is an “A” at
220 Hz. The second partial has double the frequency (440 Hz), the third one oscillates
three times as fast (660 Hz), the next ones 4 and 5 times as fast, and so on.
You can emphasize the partials around the cutoff frequency by using high resonance
values. The picture below shows a sawtooth wave with a high resonance setting, and
the cutoff frequency set to the frequency of the third partial (660 Hz). This tone sounds
a duodecima (an octave and a fifth) higher than the basic tone. It’s apparent that
exactly three cycles of the strongly emphasized overtone fit into one cycle of the basic
wave:
The effect of the resonating filter is comparable to a graphic equalizer with all faders
higher than 660 Hz pulled all the way down, but with only 660 Hz (Cutoff Frequency)
pushed to its maximum position (resonance). The faders for frequencies below 660 Hz
remain in the middle (0 dB).
If you switch off the oscillator signal, a maximum resonance setting results in the self-
oscillation of the filter. It will then generate a sine wave.










