Datasheet

Table Of Contents
Figure 2. A system
overview of the
RP2040 chip
Code may be executed directly from external memory through a dedicated SPI, DSPI or QSPI interface. A small cache
improves performance for typical applications.
Debug is available via the SWD interface.
Internal SRAM can contain code or data. It is addressed as a single 264 kB region, but physically partitioned into 6
banks to allow simultaneous parallel access from different masters.
DMA bus masters are available to offload repetitive data transfer tasks from the processors.
GPIO pins can be driven directly, or from a variety of dedicated logic functions.
Dedicated hardware for fixed functions such as SPI, I2C, UART.
Flexible configurable PIO controllers can be used to provide a wide variety of IO functions.
A USB controller with embedded PHY can be used to provide FS/LS Host or Device connectivity under software control.
Four ADC inputs which are shared with GPIO pins.
Two PLLs to provide a fixed 48MHz clock for USB or ADC, and a flexible system clock up to 133MHz.
An internal Voltage Regulator to supply the core voltage so the end product only needs supply the IO voltage.
1.4. Pinout Reference
This section provides a quick reference for pinout and pin functions. Full details, including electrical specifications and
package drawings, can be found in Chapter 5.
1.4.1. Pin Locations
RP2040 Datasheet
1.4. Pinout Reference 11