Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.5. DMA
- 2.6. Memory
- 2.7. Boot Sequence
- 2.8. Bootrom
- 2.9. Power Supplies
- 2.10. Core Supply Regulator
- 2.11. Power Control
- 2.12. Chip-Level Reset
- 2.13. Power-On State Machine
- 2.14. Subsystem Resets
- 2.15. Clocks
- 2.16. Crystal Oscillator (XOSC)
- 2.17. Ring Oscillator (ROSC)
- 2.18. PLL
- 2.19. GPIO
- 2.20. Sysinfo
- 2.21. Syscfg
- 2.22. TBMAN
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. UART
- 4.3. I2C
- 4.3.1. Features
- 4.3.2. IP Configuration
- 4.3.3. I2C Overview
- 4.3.4. I2C Terminology
- 4.3.5. I2C Behaviour
- 4.3.6. I2C Protocols
- 4.3.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.3.8. Multiple Master Arbitration
- 4.3.9. Clock Synchronization
- 4.3.10. Operation Modes
- 4.3.11. Spike Suppression
- 4.3.12. Fast Mode Plus Operation
- 4.3.13. Bus Clear Feature
- 4.3.14. IC_CLK Frequency Configuration
- 4.3.15. DMA Controller Interface
- 4.3.16. Operation of Interrupt Registers
- 4.3.17. List of Registers
- 4.4. SPI
- 4.5. PWM
- 4.6. Timer
- 4.7. Watchdog
- 4.8. RTC
- 4.9. ADC and Temperature Sensor
- 4.10. SSI
- 4.10.1. Overview
- 4.10.2. Features
- 4.10.3. IP Modifications
- 4.10.4. Clock Ratios
- 4.10.5. Transmit and Receive FIFO Buffers
- 4.10.6. 32-Bit Frame Size Support
- 4.10.7. SSI Interrupts
- 4.10.8. Transfer Modes
- 4.10.9. Operation Modes
- 4.10.10. Partner Connection Interfaces
- 4.10.11. DMA Controller Interface
- 4.10.12. APB Interface
- 4.10.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
- Appendix C: Documentation Release History
13 # Fixed hardware parameters
14 fbdiv_range = range(16, 320 + 1)
15 postdiv_range = range(1, 7 + 1)
16
17 best = (0, 0, 0, 0)
18 best_margin = args.output
19
20 for fbdiv in (fbdiv_range if args.low_vco else reversed(fbdiv_range)):
21 vco = args.input * fbdiv
22 if vco < args.vco_min or vco > args.vco_max:
23 continue
24 # pd1 is inner loop so that we prefer higher ratios of pd1:pd2
25 for pd2 in postdiv_range:
26 for pd1 in postdiv_range:
27 out = vco / pd1 / pd2
28 margin = abs(out - args.output)
29 if margin < best_margin:
30 best = (out, fbdiv, pd1, pd2)
31 best_margin = margin
32
33 print("Requested: {} MHz".format(args.output))
34 print("Achieved: {} MHz".format(best[0]))
35 print("FBDIV: {} (VCO = {} MHz)".format(best[1], args.input * best[1]))
36 print("PD1: {}".format(best[2]))
37 print("PD2: {}".format(best[3]))
Given an input and output frequency, this script will find the best possible set of PLL parameters to get as close as
possible. Where multiple equally good combinations are found, it returns the parameters which yield the highest VCO
frequency, for best output stability. The -l or --low-vco flag will instead prefer lower frequencies, for reduced power
consumption.
Here a 48 MHz output is requested:
$ ./vcocalc.py 48
Requested: 48.0 MHz
Achieved: 48.0 MHz
FBDIV: 120 (VCO = 1440 MHz)
PD1: 6
PD2: 5
Asking for a 48 MHz output with a lower VCO frequency, if possible:
$ ./vcocalc.py -l 48
Requested: 48.0 MHz
Achieved: 48.0 MHz
FBDIV: 36 (VCO = 432 MHz)
PD1: 3
PD2: 3
For a 125 MHz system clock with a 12 MHz input, the minimum VCO frequency is quite high.
$ ./vcocalc.py -l 125
Requested: 125.0 MHz
Achieved: 125.0 MHz
FBDIV: 125 (VCO = 1500 MHz)
PD1: 6
RP2040 Datasheet
2.18. PLL 253