Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.5. DMA
- 2.6. Memory
- 2.7. Boot Sequence
- 2.8. Bootrom
- 2.9. Power Supplies
- 2.10. Core Supply Regulator
- 2.11. Power Control
- 2.12. Chip-Level Reset
- 2.13. Power-On State Machine
- 2.14. Subsystem Resets
- 2.15. Clocks
- 2.16. Crystal Oscillator (XOSC)
- 2.17. Ring Oscillator (ROSC)
- 2.18. PLL
- 2.19. GPIO
- 2.20. Sysinfo
- 2.21. Syscfg
- 2.22. TBMAN
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. UART
- 4.3. I2C
- 4.3.1. Features
- 4.3.2. IP Configuration
- 4.3.3. I2C Overview
- 4.3.4. I2C Terminology
- 4.3.5. I2C Behaviour
- 4.3.6. I2C Protocols
- 4.3.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.3.8. Multiple Master Arbitration
- 4.3.9. Clock Synchronization
- 4.3.10. Operation Modes
- 4.3.11. Spike Suppression
- 4.3.12. Fast Mode Plus Operation
- 4.3.13. Bus Clear Feature
- 4.3.14. IC_CLK Frequency Configuration
- 4.3.15. DMA Controller Interface
- 4.3.16. Operation of Interrupt Registers
- 4.3.17. List of Registers
- 4.4. SPI
- 4.5. PWM
- 4.6. Timer
- 4.7. Watchdog
- 4.8. RTC
- 4.9. ADC and Temperature Sensor
- 4.10. SSI
- 4.10.1. Overview
- 4.10.2. Features
- 4.10.3. IP Modifications
- 4.10.4. Clock Ratios
- 4.10.5. Transmit and Receive FIFO Buffers
- 4.10.6. 32-Bit Frame Size Support
- 4.10.7. SSI Interrupts
- 4.10.8. Transfer Modes
- 4.10.9. Operation Modes
- 4.10.10. Partner Connection Interfaces
- 4.10.11. DMA Controller Interface
- 4.10.12. APB Interface
- 4.10.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
- Appendix C: Documentation Release History
19 out x, 1 ; Start of bit period: always assert transition
20 jmp !x high_0 side 1 [6] ; Test the data bit we just shifted out of OSR
21 high_1:
22 nop
23 jmp initial_high side 0 [6] ; For `1` bits, also transition in the middle
24 high_0:
25 jmp initial_low [7] ; Otherwise, the line is stable in the middle
26
27 initial_low:
28 out x, 1 ; Always shift 1 bit from OSR to X so we can
29 jmp !x low_0 side 0 [6] ; branch on it. Autopull refills OSR for us.
30 low_1:
31 nop
32 jmp initial_low side 1 [6] ; If there are two transitions, return to
33 low_0:
34 jmp initial_high [7] ; the initial line state is flipped!
The .pio file also includes a helper function to initialise a state machine for differential Manchester TX, and connect it to
a chosen GPIO. We arbitrarily choose a 32-bit frame size and LSB-first serialisation (shift_to_right is true in
sm_config_set_out_shift), but as the program operates on one bit at a time, we could change this by reconfiguring the
state machine.
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/differential_manchester/differential_manchester.pio Lines 37 - 52
37 static inline void differential_manchester_tx_program_init(PIO pio, uint sm, uint offset,
Ê uint pin, float div) {
38 pio_sm_set_pins_with_mask(pio, sm, 0, 1u << pin);
39 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
40 pio_gpio_init(pio, pin);
41
42 pio_sm_config c = differential_manchester_tx_program_get_default_config(offset);
43 sm_config_set_sideset_pins(&c, pin);
44 sm_config_set_out_shift(&c, true, true, 32);
45 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
46 sm_config_set_clkdiv(&c, div);
47 pio_sm_init(pio, sm, offset + differential_manchester_tx_offset_start, &c);
48
49 // Execute a blocking pull so that we maintain the initial line state until data is
Ê available
50 pio_sm_exec(pio, sm, pio_encode_pull(false, true));
51 pio_sm_set_enabled(pio, sm, true);
52 }
The RX program uses the following strategy:
•
Wait until the initial transition at the start of the bit period, so we stay aligned to the transmit clock
•
Then wait 3/4 of the configured bit period, so that we are centred on the second half-bit-period (see Figure 54)
•
Sample the line at this point to determine whether there are one or two transitions in this bit period
•
Repeat
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/differential_manchester/differential_manchester.pio Lines 54 - 84
54 .program differential_manchester_rx
55
56 ; Assumes line is idle low
57 ; One bit is 16 cycles. In each bit period:
58 ; - A '0' is encoded as a transition at time 0
59 ; - A '1' is encoded as a transition at time 0 and a transition at time T/2
RP2040 Datasheet
3.6. Examples 377