Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.5. DMA
- 2.6. Memory
- 2.7. Boot Sequence
- 2.8. Bootrom
- 2.9. Power Supplies
- 2.10. Core Supply Regulator
- 2.11. Power Control
- 2.12. Chip-Level Reset
- 2.13. Power-On State Machine
- 2.14. Subsystem Resets
- 2.15. Clocks
- 2.16. Crystal Oscillator (XOSC)
- 2.17. Ring Oscillator (ROSC)
- 2.18. PLL
- 2.19. GPIO
- 2.20. Sysinfo
- 2.21. Syscfg
- 2.22. TBMAN
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. UART
- 4.3. I2C
- 4.3.1. Features
- 4.3.2. IP Configuration
- 4.3.3. I2C Overview
- 4.3.4. I2C Terminology
- 4.3.5. I2C Behaviour
- 4.3.6. I2C Protocols
- 4.3.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.3.8. Multiple Master Arbitration
- 4.3.9. Clock Synchronization
- 4.3.10. Operation Modes
- 4.3.11. Spike Suppression
- 4.3.12. Fast Mode Plus Operation
- 4.3.13. Bus Clear Feature
- 4.3.14. IC_CLK Frequency Configuration
- 4.3.15. DMA Controller Interface
- 4.3.16. Operation of Interrupt Registers
- 4.3.17. List of Registers
- 4.4. SPI
- 4.5. PWM
- 4.6. Timer
- 4.7. Watchdog
- 4.8. RTC
- 4.9. ADC and Temperature Sensor
- 4.10. SSI
- 4.10.1. Overview
- 4.10.2. Features
- 4.10.3. IP Modifications
- 4.10.4. Clock Ratios
- 4.10.5. Transmit and Receive FIFO Buffers
- 4.10.6. 32-Bit Frame Size Support
- 4.10.7. SSI Interrupts
- 4.10.8. Transfer Modes
- 4.10.9. Operation Modes
- 4.10.10. Partner Connection Interfaces
- 4.10.11. DMA Controller Interface
- 4.10.12. APB Interface
- 4.10.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
- Appendix C: Documentation Release History
51 } while (true);
52 return ((uint64_t) hi << 32u) | lo;
53 }
4.6.4.2. Set an alarm
The standalone timer example, timer_lowlevel, demonstrates how to set an alarm at a hardware level, without the
additional abstraction over the timer that the SDK provides. To use these abstractions see Section 4.6.4.4.
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/timer/timer_lowlevel/timer_lowlevel.c Lines 25 - 72
25 // Use alarm 0
26 #define ALARM_NUM 0
27 #define ALARM_IRQ TIMER_IRQ_0
28
29 // Alarm interrupt handler
30 static volatile bool alarm_fired;
31
32 static void alarm_irq(void) {
33 // Clear the alarm irq
34 hw_clear_bits(&timer_hw->intr, 1u << ALARM_NUM);
35
36 // Assume alarm 0 has fired
37 printf("Alarm IRQ fired\n");
38 alarm_fired = true;
39 }
40
41 static void alarm_in_us(uint32_t delay_us) {
42 // Enable the interrupt for our alarm (the timer outputs 4 alarm irqs)
43 hw_set_bits(&timer_hw->inte, 1u << ALARM_NUM);
44 // Set irq handler for alarm irq
45 irq_set_exclusive_handler(ALARM_IRQ, alarm_irq);
46 // Enable the alarm irq
47 irq_set_enabled(ALARM_IRQ, true);
48 // Enable interrupt in block and at processor
49
50 // Alarm is only 32 bits so if trying to delay more
51 // than that need to be careful and keep track of the upper
52 // bits
53 uint64_t target = timer_hw->timerawl + delay_us;
54
55 // Write the lower 32 bits of the target time to the alarm which
56 // will arm it
57 timer_hw->alarm[ALARM_NUM] = (uint32_t) target;
58 }
59
60 int main() {
61 stdio_init_all();
62 printf("Timer lowlevel!\n");
63
64 // Set alarm every 2 seconds
65 while (1) {
66 alarm_fired = false;
67 alarm_in_us(1000000 * 2);
68 // Wait for alarm to fire
69 while (!alarm_fired);
70 }
71 }
RP2040 Datasheet
4.6. Timer 558