Technical information
3
53 – 6 = 47 53 - 6 M+
-)45×2 = 90 45 × 2 SHIFT M-
(Total) -11 RCL M
■ Variables
● There are nine variables (A through F, M, X and Y), which can be used to store
data, constants, results, and other values.
● Use the following operation to delete data assigned to a particular variable: 0
SHIFT STO A . This operation deletes the data assigned to variable A.
● Perform the following key operation when you want to clear the values
assigned to all of the variables.
SHIFT CLR 1 (Mcl) =
● Example: 193.2 ÷ 23 = 8.4
193.2 ÷ 28 = 6.9
193.2 SHIFT STO A ÷ 23 =
ALPHA A ÷ 28 =
Scientific Function Calculations
● Use the COMP mode for Scientific Function calculations.
● Certain types of calculations may take a long time to complete.
● Wait for the result to appear on the display before starting the next calculation.
● π= 3.14159265359
■ Trigonometric/Inverse Trigonometric Functions
● To change the default angle unit (degrees, radians, grads), press the MODE
MODE. Press the number key( 1 , 2 or 3 )that corresponds to the angle
unit you want to use.
(90˚=π/2 radians = 100 grads)
● Example 1: sin63˚52′41″= 0.897859012
MODE MODE 1 →(D)
Sin 63 ° ′ ″ 52 ° ′ ″ 41 ° ′ ″ =
● Example 2: cos ( rad) = 0.5
MODE MODE 2 →(R)
Cos ( SHIFT π ÷ 3 ) =
● Example 3: cos
-1
=0.25π(rad) ( = (rad) )
MODE MODE 2 →(R)
SHIFT cos
-1
( √ 2 ÷ 2 ) = Ans ÷ SHIFT π =
● Example 4: tan
-1
0.741 = 36.53844577°
MODE MODE 1 →(D)
SHIFT tan
-1
0.741 =
■ Hyperbolic/Inverse Hyperbolic Functions
● Example 1: sinh 3.6 = 18.28545536
hyp sin 3.6 =
● Example 2: sinh-1 30 = 4.094622224
hyp SHIFT sin
-1
30 =
■ Common and Natural Logarithms/ Antilogarithms
● Example 1: log 1.23=0.089905111
log 1.23 =
● Example 2: ln 90 (= log
e
90) = 4.49980967
ln 90 =
lne = 1 ln ALPHA e =
● Example 3: e
10
= 22026.46579
SHIFT e
x
10 =
● Example 4: 10
1.5
= 31.6227766
SHIFT 10
x
1.5 =
● Example 5: 2
4
=16
2 ^ 4 =
■ Square Roots, Cube Roots, Roots, Squares, Cubes, Reciprocals,
Factorials, Random Numbers,π, and Permutation/ Combination
● Example 1:
95.28719690532
√ 2 + √ 3 × √ 5 =
● Example 2:
3
3
275
= - 1.290024053
SHIFT
3
√ 5 + SHIFT
3
√ ( (-) 27 ) =
● Example 3: (= )=1.988647795
7 SHIFT
x
√ 123 =
● Example 4: 123+30
2
=1023
123 + 30 =
● Example 5: 12
3
=1728
12 =
● Example 6:
( 3 - 4 ) =
● Example 7: 8!= 40320
8 SHIFT X! =
● Example 8: To generate a random number between 0.000 and 0.999
SHIFT Ran# =
(The above value is a sample only. Results differ each time.)
● Example 9: 3π= 9.424777961
3 SHIFT π =
● Example 10: To determine how many different 4-digit values can be produced
using the numbers 1 through 7 Numbers cannot be duplicated within the same
4-digit value (1234 is allowed, but 1123 is not).(840)
7 SHIFT nPr 4 =
● Example 11: To determine how many different 4-member groups can be
organized in a group of 10 individuals(210)
10 nCr 4 =
■ Angle Unit Conversion
● Press SHIFT DRG► to display the following menu.
● Pressing 1 , 2 or 3 converts the displayed value to the corresponding
angle unit.
● Example:To convert 4.25 radians to degrees.
MODE MODE 1 →(D)
4.25 SHIFT DRG► 2 ( R ) =
■ Coordinate Conversion (Pol (x , y) , Rec (r , θ) )
● Calculation results are automatically assigned to variables E and F.
● Example 1: To convert polar coordinates(r = 2,θ=60˚)to rectangular
coordinates(x , y) (Deg).
x =1 SHIFT Rec ( 2 , 60 ) =
y=1.732050808 RCL F
● Press RCL E to display the value of x ,or RCL F to display the value of y .
● Example 2: To convert rectangular coordinates(1, √3)to polar coordinates(r
,θ) (Rad).
r=2 Pol ( 1 , √ 3 ) =
θ=1.047197551 RCL F
● Press RCL E to display the value of r or RCL F to display the value of θ.
■ Engineering Notation Calculations
● Example 1: To convert 56,088 meters to kilometers
56088 = ENG
● Example 2: To convert 0.08125 grams to milligrams
0.08125 = ENG
Statistical Calculations
■ Standard Deviation
● Press MODE 2 to enter the SD Mode for statistical calculations using
standard deviation.
● Always start data input with SHIFT CLR 1 (Scl) = to clear statistical
memory.
● Input data using the key sequence shown below.
‹x - data › DT
● Input data is used to calculate values for n ,∑x ,∑x
2
,
x
, xσn and xσn-1 ,
which you can recall using the key operations noted nearby.
To recall this type of value:
Perform this key operation:
∑x
2
SHIFT S-SUM 1
∑x
SHIFT S-SUM 2
n
SHIFT S-SUM 3
x
SHIFT S-VAR 1
xσn
SHIFT S-VAR 2
xσn-1
SHIFT S-VAR 3
M D
45×2M-
▲
90.
M D
M=
▲
-11.
D
Ans÷23
▲
8.4
D
A÷28
▲
6.9
D
Ran #
▲
0.96
7
1
123
7
123
12
4
1
3
1
1
D
Sin 63˚
52˚41
▲
→
0.897859012
R
Cos (π÷3)
▲
0.5
R
Ans÷π
▲
0.25
D
tan-1 0.741
▲
36.53844577
D
sinh 3.6
▲
18.28545536
D
sinh-1 30
▲
4.094622224
D
log 1.23
▲
0.089905111
D
ln 90
▲
4.49980967
D
ln e
▲
1.
D
e 10
▲
22,026.46579
D
10 1.5
▲
31.6227766
D
2^4
▲
16.
D
√2+√3×√5
▲
5.287196909
D
3
√5+
3
√(-27)
▲
- 1.290024053
D
7
x
√123
▲
1.988647795
D
123+30
2
▲
1,023.
D
12
3
▲
1,728.
D
( 3
-1
- 4
-1
)
-1
▲
12.
D
8!
▲
40,320.
D
3π
▲
9.424777961
4
2
2
3
2
X
3
X
-1
X
-1
X
-1
X
D R G
1 2 3
D
4.25
r
▲
243.5070629
D
7P4
▲
840.
D
10C4
▲
210.
D
Rec(2,60)
▲
1.
D
F=
▲
1.732050808
R
Pol(1,√3)
▲
2.
R
F=
▲
1.047197551
D
56088
▲
56.088
×10
03
D
0.08125
▲
81.25
×10
-03