User guide
NumPy User Guide, Release 1.9.0
4.2 How numpy handles numerical exceptions
The default is to ’warn’ for invalid, divide, and overflow and ’ignore’ for underflow. But this can
be changed, and it can be set individually for different kinds of exceptions. The different behaviors are:
• ‘ignore’ : Take no action when the exception occurs.
• ‘warn’ : Print a RuntimeWarning (via the Python warnings module).
• ‘raise’ : Raise a FloatingPointError.
• ‘call’ : Call a function specified using the seterrcall function.
• ‘print’ : Print a warning directly to stdout.
• ‘log’ : Record error in a Log object specified by seterrcall.
These behaviors can be set for all kinds of errors or specific ones:
• all : apply to all numeric exceptions
• invalid : when NaNs are generated
• divide : divide by zero (for integers as well!)
• overflow : floating point overflows
• underflow : floating point underflows
Note that integer divide-by-zero is handled by the same machinery. These behaviors are set on a per-thread basis.
4.3 Examples
>>> oldsettings = np.seterr(all=’warn’)
>>> np.zeros(5,dtype=np.float32)/0.
invalid value encountered in divide
>>> j = np.seterr(under=’ignore’)
>>> np.array([1.e-100])
**
10
>>> j = np.seterr(invalid=’raise’)
>>> np.sqrt(np.array([-1.]))
FloatingPointError: invalid value encountered in sqrt
>>> def errorhandler(errstr, errflag):
... print "saw stupid error!"
>>> np.seterrcall(errorhandler)
<function err_handler at 0x...>
>>> j = np.seterr(all=’call’)
>>> np.zeros(5, dtype=np.int32)/0
FloatingPointError: invalid value encountered in divide
saw stupid error!
>>> j = np.seterr(
**
oldsettings) # restore previous
... # error-handling settings
4.4 Interfacing to C
Only a survey of the choices. Little detail on how each works.
1. Bare metal, wrap your own C-code manually.
• Plusses:
48 Chapter 4. Miscellaneous