User's Manual
Table Of Contents
- toc
- Additional Technical Information
- Device Description
- Therapies
- Leads
- PRM System
- Related Information
- Indications and Usage
- Contraindications
- WARNINGS
- General
- Labeling knowledge . Read this manual thoroughly before implanta
- For single patient use only . Do not reuse, reprocess, or rester
- Backup defibrillation protection . Always have external defibril
- Resuscitation availability . Ensure that an external defibrillat
- Separate pulse generator . Do not use this pulse generator with
- Handling
- Programming and Device Operations
- Post-Implant
- Protected environments . Advise patients to seek medical guidanc
- Magnetic Resonance Imaging (MRI) exposure . Do not expose a pati
- Diathermy . Do not subject a patient with an implanted pulse gen
- Ensure PTM is enabled . If desired, ensure that Patient Triggere
- Magnet Response set to Inhibit Therapy . Once the Patient Trigge
- General
- PRECAUTIONS
- Clinical Considerations
- Sterilization and Storage
- If package is damaged . The blister trays and contents are steri
- If device is dropped . Do not implant a device which has been dr
- Storage temperature and equilibration . Recommended storage temp
- Device storage . Store the pulse generator in a clean area away
- Use by date . Implant the pulse generator and/or lead before or
- Implantation
- Expected benefits . Determine whether the expected device benefi
- Evaluate patient for surgery . There may be additional factors r
- Lead compatibility . Prior to implantation, confirm the lead-to-
- Telemetry wand . Make sure a sterile telemetry wand is available
- Line-powered equipment . Exercise extreme caution if testing lea
- Replacement device . Implanting a replacement device in a subcut
- Do not bend the lead near the lead-header interface . Insert the
- Absence of a lead . The absence of a lead or plug in a lead port
- Electrode connections . Do not insert a lead into the pulse gene
- Defibrillation lead impedance . If total shocking lead impedance
- Shunting energy . Do not allow any object that is electrically c
- Do not suture directly over lead . Do not suture directly over t
- Device Programming
- Device communication . Use only the designated PRM and software
- STAT PACE settings . When a pulse generator is programmed to STA
- Pacing and sensing margins . Consider lead maturation in your ch
- Proper programming of the shock vector . If the Shock Vector is
- Programming for supraventricular tachyarrhythmias (SVTs) . Deter
- Adaptive-rate pacing . Rate Adaptive Pacing should be used with
- Ventricular refractory periods (VRPs) in adaptive-rate pacing .
- Shock waveform polarity . For IS-1/DF-1 leads, never change the
- Tachy Mode to Off . To prevent inappropriate shocks, ensure that
- Atrial oversensing . Take care to ensure that artifacts from the
- ATR entry count . Exercise care when programming the Entry Count
- ATR exit count . Exercise care when programming the Exit Count t
- Proper programming without an atrial lead . If an atrial lead is
- Sensing adjustment . Following any sensing range adjustment or a
- Patients hear tones coming from their devices . Patients should
- Patient use of patient triggered monitor . Determine if the pati
- Patient initiate stored EGM . Consider having the patient initia
- Environmental and Medical Therapy Hazards
- Hospital and Medical Environments
- Mechanical ventilators . During mechanical ventilation, respirat
- Conducted electrical current . Any medical equipment, treatment,
- Internal defibrillation . Do not use internal defibrillation pad
- External defibrillation . It can take up to 15 seconds for sensi
- Lithotripsy . Extracorporeal shock wave lithotripsy (ESWL) may c
- Ultrasound energy . Therapeutic ultrasound (e.g., lithotripsy) e
- Electrical interference . Electrical interference or “noise” fro
- Radio frequency (RF) interference . RF signals from devices that
- Central line guidewire insertion . Use caution when inserting gu
- Home and Occupational Environments
- Follow-up Testing
- Explant and Disposal
- Supplemental Precautionary Information
- Potential Adverse Events
- Mechanical Specifications
- Table 2. Mechanical Specifications - DYNAGEN Extended Longevity
- Table 3. Mechanical Specifications - DYNAGEN MINI ICDs
- Table 4. Mechanical Specifications - INOGEN Extended Longevity (
- Table 5. Mechanical Specifications - INOGEN MINI ICDs
- Table 6. Mechanical Specifications - ORIGEN Extended Longevity (
- Table 7. Mechanical Specifications - ORIGEN MINI ICDs
- Items Included in Package
- Symbols on Packaging
- Characteristics as Shipped
- X-Ray Identifier
- Federal Communications Commission (FCC)
- Pulse Generator Longevity
- Warranty Information
- Product Reliability
- Patient Counseling Information
- Lead Connections
- CAUTION: Prior to implantation, confirm the lead-to-pulse genera
- Figure 2. Lead connections and setscrew locations, RA: IS-1, RV:
- Figure 3. Lead connections and setscrew locations, RV: DF4-LLHH
- Figure 4. Lead connections and setscrew locations, RA: IS-1, RV:
- Figure 5. Lead connections and setscrew locations, RV: IS-1/DF-1
- Implanting the Pulse Generator
- CAUTION: The absence of a lead or plug in a lead port may affect
- CAUTION: Do not suture directly over the lead body, as this may
- WARNING: For leads that require the use of a Connector Tool, use
- Table 12. Lead measurements
- WARNING: For leads that require the use of a Connector Tool, use
- WARNING: Do not contact any other portion of the DF4–LLHH or DF4
- CAUTION: For IS-1/DF-1 leads, never change the shock waveform po
- CAUTION: Do not insert a lead into the pulse generator connector
- Figure 6. Inserting the torque wrench
- CAUTION: Insert the lead terminal straight into the lead port. D
- CAUTION: The absence of a lead or plug in a lead port may affect
- CAUTION: To prevent inappropriate shocks, ensure that the pulse
- CAUTION: Take care to ensure that artifacts from the ventricles
- CAUTION: If total shocking lead impedance during implant is less
- CAUTION: To prevent inappropriate shocks, ensure that the pulse
- WARNING: Always have external defibrillation equipment available
- Induce the Patient’s Arrhythmia
- Perform the Induction
- Determine DFT
- Bidirectional Torque Wrench
- Loosening Stuck Setscrews
- Follow Up Testing
- For additional technical reference guides, go to
- Additional Technical Information

• Ventricular refractory periods (VRPs) in adaptive-rate pacing. Adaptive-rate pacing is not limited by
refractory periods. A long refractory period programmed in combination with a high M SR can result in
asynchronous pacing during refractory periods since the combination can cause a very small sensing
window or none at all. Use Dynamic AV Delay or Dynamic PVARP to optimize sensing windows. If you
are entering a fixed AV Delay, consider the sensing outcomes.
• Shock waveform polarity. For IS-1/DF-1 leads, never change the shock waveform polarity by physically
switching the lead anodes and cathodes in the pulse generator header—use the programmable Polarity
feature. Device damage or nonconversion of the arrhythmia post-operatively may result if the polarity
is switched physically.
• Tachy Mode to Off. To prevent inappropriate shocks, ensure that the pulse generator’s Tachy Mode is
programmed to Off when not in use and before handling the device. For tachyarrhythmia detection and
therapy, verify that the Tachy Mode is programmed to Monitor + Therapy.
• Atrial oversensing. Take care to ensure that artifacts from the ventricles are not present on the atrial
channel, or atrial oversensing may result. If ventricular artifacts are present in the atrial channel, the
atrial lead may need to be repositioned to minimize its interaction.
• ATR entry count. Exercise care when programming the Entry Count to low values in conjunction with
a short ATR Duration. This combination allows mode switching with very few fast atrial beats. F or
example, if the Entry Count was programmed to 2 and the ATR Duration to 0, ATR mode switching c ould
occur on 2 fast atrial intervals. In these instances, a short series of premature atrial events could cause
the device to mode switch.
• ATR exit coun t. Exercise care when programming the Exit Count to low values. For example, if the
Exit Count was programmed to 2, a few c ycles of atrial undersensing could cause termination of mode
switching.
• Proper program mi ng without an atrial lead. If an atrial lead is not implanted (port is plugged instead),
or an atrial lead is abandoned but remains connected to the header, device programming should be
consistent with the number and type of leads actually in use.
11










