User's Manual
Table Of Contents
- toc
- Additional Technical Information
- Device Description
- Therapies
- Leads
- PRM System
- Related Information
- Indications and Usage
- Contraindications
- WARNINGS
- General
- Labeling knowledge . Read this manual thoroughly before implanta
- For single patient use only . Do not reuse, reprocess, or rester
- Backup defibrillation protection . Always have external defibril
- Resuscitation availability . Ensure that an external defibrillat
- Separate pulse generator . Do not use this pulse generator with
- Handling
- Programming and Device Operations
- Post-Implant
- Protected environments . Advise patients to seek medical guidanc
- Magnetic Resonance Imaging (MRI) exposure . Do not expose a pati
- Diathermy . Do not subject a patient with an implanted pulse gen
- Ensure PTM is enabled . If desired, ensure that Patient Triggere
- Magnet Response set to Inhibit Therapy . Once the Patient Trigge
- General
- PRECAUTIONS
- Clinical Considerations
- Sterilization and Storage
- If package is damaged . The blister trays and contents are steri
- If device is dropped . Do not implant a device which has been dr
- Storage temperature and equilibration . Recommended storage temp
- Device storage . Store the pulse generator in a clean area away
- Use by date . Implant the pulse generator and/or lead before or
- Implantation
- Expected benefits . Determine whether the expected device benefi
- Evaluate patient for surgery . There may be additional factors r
- Lead compatibility . Prior to implantation, confirm the lead-to-
- Telemetry wand . Make sure a sterile telemetry wand is available
- Line-powered equipment . Exercise extreme caution if testing lea
- Replacement device . Implanting a replacement device in a subcut
- Do not bend the lead near the lead-header interface . Insert the
- Absence of a lead . The absence of a lead or plug in a lead port
- Electrode connections . Do not insert a lead into the pulse gene
- Defibrillation lead impedance . If total shocking lead impedance
- Shunting energy . Do not allow any object that is electrically c
- Do not suture directly over lead . Do not suture directly over t
- Device Programming
- Device communication . Use only the designated PRM and software
- STAT PACE settings . When a pulse generator is programmed to STA
- Pacing and sensing margins . Consider lead maturation in your ch
- Proper programming of the shock vector . If the Shock Vector is
- Programming for supraventricular tachyarrhythmias (SVTs) . Deter
- Adaptive-rate pacing . Rate Adaptive Pacing should be used with
- Ventricular refractory periods (VRPs) in adaptive-rate pacing .
- Shock waveform polarity . For IS-1/DF-1 leads, never change the
- Tachy Mode to Off . To prevent inappropriate shocks, ensure that
- Atrial oversensing . Take care to ensure that artifacts from the
- ATR entry count . Exercise care when programming the Entry Count
- ATR exit count . Exercise care when programming the Exit Count t
- Proper programming without an atrial lead . If an atrial lead is
- Sensing adjustment . Following any sensing range adjustment or a
- Patients hear tones coming from their devices . Patients should
- Patient use of patient triggered monitor . Determine if the pati
- Patient initiate stored EGM . Consider having the patient initia
- Environmental and Medical Therapy Hazards
- Hospital and Medical Environments
- Mechanical ventilators . During mechanical ventilation, respirat
- Conducted electrical current . Any medical equipment, treatment,
- Internal defibrillation . Do not use internal defibrillation pad
- External defibrillation . It can take up to 15 seconds for sensi
- Lithotripsy . Extracorporeal shock wave lithotripsy (ESWL) may c
- Ultrasound energy . Therapeutic ultrasound (e.g., lithotripsy) e
- Electrical interference . Electrical interference or “noise” fro
- Radio frequency (RF) interference . RF signals from devices that
- Central line guidewire insertion . Use caution when inserting gu
- Home and Occupational Environments
- Follow-up Testing
- Explant and Disposal
- Supplemental Precautionary Information
- Potential Adverse Events
- Mechanical Specifications
- Table 2. Mechanical Specifications - DYNAGEN Extended Longevity
- Table 3. Mechanical Specifications - DYNAGEN MINI ICDs
- Table 4. Mechanical Specifications - INOGEN Extended Longevity (
- Table 5. Mechanical Specifications - INOGEN MINI ICDs
- Table 6. Mechanical Specifications - ORIGEN Extended Longevity (
- Table 7. Mechanical Specifications - ORIGEN MINI ICDs
- Items Included in Package
- Symbols on Packaging
- Characteristics as Shipped
- X-Ray Identifier
- Federal Communications Commission (FCC)
- Pulse Generator Longevity
- Warranty Information
- Product Reliability
- Patient Counseling Information
- Lead Connections
- CAUTION: Prior to implantation, confirm the lead-to-pulse genera
- Figure 2. Lead connections and setscrew locations, RA: IS-1, RV:
- Figure 3. Lead connections and setscrew locations, RV: DF4-LLHH
- Figure 4. Lead connections and setscrew locations, RA: IS-1, RV:
- Figure 5. Lead connections and setscrew locations, RV: IS-1/DF-1
- Implanting the Pulse Generator
- CAUTION: The absence of a lead or plug in a lead port may affect
- CAUTION: Do not suture directly over the lead body, as this may
- WARNING: For leads that require the use of a Connector Tool, use
- Table 12. Lead measurements
- WARNING: For leads that require the use of a Connector Tool, use
- WARNING: Do not contact any other portion of the DF4–LLHH or DF4
- CAUTION: For IS-1/DF-1 leads, never change the shock waveform po
- CAUTION: Do not insert a lead into the pulse generator connector
- Figure 6. Inserting the torque wrench
- CAUTION: Insert the lead terminal straight into the lead port. D
- CAUTION: The absence of a lead or plug in a lead port may affect
- CAUTION: To prevent inappropriate shocks, ensure that the pulse
- CAUTION: Take care to ensure that artifacts from the ventricles
- CAUTION: If total shocking lead impedance during implant is less
- CAUTION: To prevent inappropriate shocks, ensure that the pulse
- WARNING: Always have external defibrillation equipment available
- Induce the Patient’s Arrhythmia
- Perform the Induction
- Determine DFT
- Bidirectional Torque Wrench
- Loosening Stuck Setscrews
- Follow Up Testing
- For additional technical reference guides, go to
- Additional Technical Information

CAUTION: Take care to ensure that artifacts from the ventricles are not present on the atrial channel, or
atrial oversensing may result. If ventricular artifacts are present in the atrial channel, the atrial lead may
need to be repositioned to minimize its interaction.
3. Evaluate all lead impedances.
CAUTION: If total shocking lead impedance during implant is less than 20 , verify the proximal coil is not
in contact w ith the pulse generator surface. A measurement of less than 20 is an indication of a short
somewhere in the system. If repeated measurements show the total shocking lead impedance is less than
20 , the lead and/or pulse generator may need to be replaced.
The High Impedance Limit is nominally set to 2000 , and is programmable between 2000 and 3000 in
250 increments. The Low Impedance Limit is nominally set to 200 , and is programmable between 200
and 500 in 50 increments. Consider the following factors when choosing a value f or the High and Low
Impedance Limits:
• For chronic leads, historical im pedance measurements for the lead, as well as other electrical
performance indicators such as stability over time
• For newly implanted leads, t he starting measured impedance value
NOTE: Depending on lead maturation effects, during follow-up testing the physician may choose to reprogram
the High or Low Impedance Limits.
• Pacing dependence of the patient
• Recommended impedance range for the lead(s) being used, if available
The Shock Low Impedance Limit is fixed at 20 . The Shock High Impedance Limit is nominally set to 125
, and is programmable between 125 and 200 in 25 increments. Consider the following factors when
choosing a value for the High Impedance Limits:
• For chronic leads, historical im pedance measurements for the lead, as well as other electrical
performance indicators such as stability over time
58