■ introduction ■ Spécification du produit ■ installation ■ fonctionnement ■ Dépannage ■ Référence ■ Contact Introduction DESCRIPTION SOMMAIRE DU PRODUIT : Le " LMKG série 2001 " est un système d'alarme programmable à dispositifs de sécurité multiples, conçu pour tout établissement nécessitant une surveillance constante. Il a été conçu en premier lieu comme matériel pédagogique pouvant servir dans les cours de Projets et de Dépannages. Le système est modulaire et facile à dépanner.
introduction Introduction DESCRIPTION SOMMAIRE DU PRODUIT : Le " LMKG série 2001 " est un système d'alarme programmable à dispositifs de sécurité multiples, conçu pour tout établissement nécessitant une surveillance constante. Il a été conçu en premier lieu comme matériel pédagogique pouvant servir dans les cours de Projets et de Dépannages. Le système est modulaire et facile à dépanner.
Spécifications Spécifications SPÉCIFICATIONS DU PRODUIT Le système est subdiviser en trois parties distinctes : ● ● ● Un système de traitement de l'information. Un système de transmission/réception. Un système de gestion.
Spécifications Spécifications Spécifications de la carte I/O Carte I/O alimentation deux états: capteur de température, capteur de mouvent, capteur infra-rouge, module fibre optique vers micro-contrôleur +15 v, -15 v, +5 v Amplificateur de température gain de 10 avec un offset de 1volt entrée Amplificateur de détecteur de mouvement gain de 18 2 buffers sortie utilisé les portes ET du 7400 numérique: avertisseur sonore, led vert, led rouge, lien f.
Installation Installation MATÉRIEL REQUIS: ● ● ● 1 kit LMKG série 2001 Ordinateur 1 tournevis étoile moyen LISTE DES PIÈCES POUR UN KIT DE LMKG SÉRIE 2001 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 Boîtier 1 Bloc d'alimentation ( +/-5Vdc +/- 12 V dc +/- 30 V dc) 1 Carte bus 1 Carte Contrôleur MC 1 Carte Communication série UART 1 Carte I/Oü 1 Carte interface rs-232 1 Carte win TV 1 Disquette 1 Avertisseur sonore 1 Capteur électromagnétique 1 Capteur de chaleur 1 Détecteur de mouvement 1 Mini-caméraü 1 Fil RCA
Installation Mini-caméra 1. Avant d'installer la carte Win TV mettre le PC hors tension. 2. Toucher le châssis du PC avec la main pour décharger de toute électricité statique, avant de sortir la carte de son emballage. 3. Insérer la carte Win TV dans le connecteur PCI disponible(connecteur bu- master PCI).Il est important que Windows 95/98 soit installé. 4. Pour installer la caméra, il suffit de raccorder la prise RCA(vidéo)de la caméra à la prise RCA de la carte Win TV dans le PC. 5.
Installation(suite) Installation(suite) CARTE BUS ISA À partir de cette carte vous pouvez insérez les cartes à connection ISA Chaque emplacement est bien identifier. Carte I/O Vous insérez la carte I/O Carte micro-contrôleur Vous insérez la carte du micro-contrôleur http://www.angelfire.com/electronic/azmuth1/installation2.
Installation(suite) Carte UART Vous insérez la carte du UART http://www.angelfire.com/electronic/azmuth1/installation2.
Installation Installation Fibre optique Pour alimenter le module de la fibre optique TX/RX, on prend l'alimentation sur le bornier de la carte I/O(5V, mise à la terre) MAX RS-232 On installe le MAX 232 à la sortie du module de la fibre optique (Vin et Vout) et le RS 232 à l'entrée du connecteur DB-9(série) du PC" et les quatre capteurs sont installés sur les borniers de la carte I/O. http://www.angelfire.com/electronic/azmuth1/installation3.
Fonctionnement Fonctionnement global Fonctionnement global: Fonctionnement global Avertisseur sonore : Lorsqu'une alarme est activée, l'avertisseur sonore se met en fonction. Capteur magnétique : Le capteur magnétique gère les allée et venue dans la pièce à protéger. Capteur infra-rouge : Il détecte tout mouvements dans la pièce autour de l'endroit à protéger Capteur de température : Lis la température ambiante de la pièce afin de respecter les normes pré-établies.
http://www.angelfire.com/electronic/azmuth1/capteurvisio.jpg http://www.angelfire.com/electronic/azmuth1/capteurvisio.
Fonctionnement(suite) Fonctionnement (suite) Fonctionnement des programmes Micro- contrôleur et visual basic. Le LMKG alarme série 2001 possède un interface facile d'utilisation crée à l'aide de Visual Basic. Dans ce chapitre une brève explication du fonctionnement des programmes vous aideront à mieux comprendre de quel façon fonctionne le système.
Fonctionnement(suite) http://www.angelfire.com/electronic/azmuth1/foncvb.
http://www.angelfire.com/electronic/azmuth1/dgtranmic.jpg http://www.angelfire.com/electronic/azmuth1/dgtranmic.
http://www.angelfire.com/electronic/azmuth1/dgtranmic.jpg http://www.angelfire.com/electronic/azmuth1/dgtranmic.
http://www.angelfire.com/electronic/azmuth1/dgtranmic.jpg http://www.angelfire.com/electronic/azmuth1/dgtranmic.
http://www.angelfire.com/electronic/azmuth1/dgrecmic.jpg http://www.angelfire.com/electronic/azmuth1/dgrecmic.
http://www.angelfire.com/electronic/azmuth1/dgrecmic.jpg http://www.angelfire.com/electronic/azmuth1/dgrecmic.
Programme de micro 68705-R3 Programme du micro-contrôleur *************************************************** * Projet : SYSTEME D'ALARME * * Titre : Programmme Test pour TEMPERATURE * ** * Fichier : UARTEST2.ASM * * Auteur : MARTIN GAGNON * * Vers Orig : V1.0 * * Date : 01/12/2000 * * Vers Cour : V1.
Programme de micro 68705-R3 ; la Tx du UART ( PA0 ) ; CTRL sur PB1 ;CRL EQU ; Bascule pour charger les ; param de Tx et Rx du UART ; CTRL sur PA1 DDR EQU 1 ; TRE EQU 2 ; RRD EQU 0 Vecteurs EQU $FF8 ; Adr depart des Vecteurs *************************************************** * Debut du Programme * *************************************************** ORG Debut *************************************************** * UART RBR1-8 HIGH IMPEDANCE * *************************************************** DEPART_RESET
Programme de micro 68705-R3 BSET RRD,PORTA ; MET LE UART EN TX ET MET ; EN HAUTE IMPEDANCE LE ; RBR1-8 DEPART BCLR 0,PORTC BSET 1,PORTC BCLR 2,PORTC LDA PORTA AND #%01100000 LSRA LSRA LSRA LSRA LSRA STA CAPTEUR JSR SRLIREVALEUR; lit le Canal 0 JSR SRAFFICHE ; AFFICHE VALEUR LDA Valeur ; CMP #!178 ; ( 3.5V ) BHI MSG1 ; CMP #!76 ; ( 1.
Programme de micro 68705-R3 SRLIREVALEUR LDA #$00 ; choisi canal 0 ; et active Conv STA ACR LOOPAN0 BRCLR 7,ACR,LOOPAN0 LDA ARR STA VALEUR ; sauve valeur RTS *************************************************** * Sous Routine: TRANSMETTRE TRAME * ** *************************************************** SRMSG1 LDA #'A' ; BIT DE VERIFICATION JSR SRUARTXCAR ; affiche 1 caractere JSR SRDELAI LDA #'B' ; BIT DE VERIFICATION JSR SRUARTXCAR ; affiche 1 caractere JSR SRDELAI LDA #'C' ; BIT DE VERIFICATION JSR SRUARTX
Programme de micro 68705-R3 *************************************************** * Sous Routine: DELAI ENTRE LES LECTURES * *************************************************** SRDELAI LDA #$FF ; Nombre de fois que la boucle ; interne sera repetee(1 a 255) CompInt LDX #$FF ; Valeur a compter de la boucle interne Compteur DECX ; Decremente la Valeur a Compter interne BNE Compteur; Branche a Compteur si CompInt n'est pas zero DECA ; Enleve 1 a la valeur cible BNE CompInt ; Recommence la boucle interne tant que
Programme de micro 68705-R3 BCLR 0,PORTC BSET 1,PORTC CLR XTemp CLR ATEMP CLR TEMP1 CLR VALEUR CLR CAPTEUR CLR ALARME RTS ***************************************************** * Definition des Vecteurs d'Interruption * ***************************************************** ORG Vecteurs IntTimer FDB DEPART IntExterne FDB DEPART IntLogiciel FDB DEPART Reset FDB DEPART_RESET http://www.angelfire.com/electronic/azmuth1/progmic.
http://www.angelfire.com/electronic/azmuth1/ogvb.jpg http://www.angelfire.com/electronic/azmuth1/ogvb.
http://www.angelfire.com/electronic/azmuth1/ogvb.jpg http://www.angelfire.com/electronic/azmuth1/ogvb.
http://www.angelfire.com/electronic/azmuth1/ogrecvb.jpg http://www.angelfire.com/electronic/azmuth1/ogrecvb.
http://www.angelfire.com/electronic/azmuth1/ogrecvb.jpg http://www.angelfire.com/electronic/azmuth1/ogrecvb.
http://www.angelfire.com/electronic/azmuth1/ogrecvb.jpg http://www.angelfire.com/electronic/azmuth1/ogrecvb.
fonctionnement Procédures de tests procédures de tests Procédure de test : Test du capteur magnétique 1- Alimenter le capteur avec une tension de 5 volts. 2- Installer les sondes d'oscilloscopes. 3- Calibrer les sondes d'oscilloscopes. 4- Mettre sous-tension. Résultats du test # 6 : Test du capteur magnétique 1- Lorsque l'aimant est rapproché du contact, à l'écran de l'oscilloscope, une tension continue de 5 volts est obtenue.
http://www.angelfire.com/electronic/azmuth1/capteurmagnet.jpg http://www.angelfire.com/electronic/azmuth1/capteurmagnet.
Fonctionnement Procédure de tests (suite) suite...procédures de test Procédure de test : Test de l'avertisseur sonore 1- Alimenter le capteur à 5 volts. Résultats du test : Test de l'avertisseur sonore Des qu'il est alimenté, l'avertisseur sonore émet un signal. Avec le multimètre nous avons vérifié combien de courant est consommé (2 milliampères). Avec la programmation, l'avertisseur sonore va fonctionner par intermittence dès qu'un capteur détecte une situation anormale. http://www.angelfire.
fonctionnement Procédures de tests (suite) Procédure de test (suite) : Test du capteur de température 1- Alimenter le capteur tel qu'indiqué dans les fiches techniques pour que celui-ci soit capable d'indiquer des valeurs autant positives que négatives. 2- Calibrer une sonde d'oscilloscope. 3- Brancher la sonde d'oscilloscope à la patte Vout du capteur.
Fonctionnement Procédures de tests (suite) suite...procédures de test Procédure de test : Test du détecteur de passage 1- Alimenter le détecteur à 5V. 2- Vérifier la différence de potentiel qui se crée lorsque le signal lumineux émis par le détecteur est coupé. Résultats du test : Test du détecteur de passage 1- Une fois le détecteur alimenté, une plaque réfléchissante doit être installée pour permettre le retour du signal lumineux vers sa source.
fonctionnement Procédures de tests (suite) suite...procédures de test Procédure de test : Test de l'amplificateur du capteur de température 1- Alimenter le circuit 2- Calibrer les sondes d'oscilloscope 3- Vérifier l'alimentation des composantes. 4- Ajuster le " offset " (PT 2) à 0V. 5- Ajuster le gain à 10. 6- Ajuster le " offset " à 1V.
http://www.angelfire.com/electronic/azmuth1/amplitemp.jpg http://www.angelfire.com/electronic/azmuth1/amplitemp.
fonctionnement Procédures de tests (suite) suite...procédures de test Procédures de test : Les lignes qui suivent explique les caractéristiques des broches utilisées pour le fonctionnement du micro-contrôleur MC-68705R3, du UART HD-6402. Ces explications permettent d'effectuer les tests nécessaires afin de s'assurer que le traitement des données se fera correctement.Il s'agit de mesurer ,à l'aide d'un multimètre ou d'un oscilloscope, la tension sur chacune de ces broches.
http://www.angelfire.com/electronic/azmuth1/68705.jpg http://www.angelfire.com/electronic/azmuth1/68705.
http://www.angelfire.com/electronic/azmuth1/68705.jpg http://www.angelfire.com/electronic/azmuth1/68705.
fonctionnement Procédures de tests suite suite...procédures de test Procédures de test du UART HD-6402 : Vérifier la tension d'entrée sur la broche Vcc (pin.1) du UART. La tension devrait être de +5 volts. La broche GND (pin.3) devrait être à 0 volt. /TBRL (pin.23) : Un niveau bas (0 volt) sur la broche /TBRL transfert l'information provenant des entrées TBR1 (pin.26) à TBR8 (pin.33). Le passage d'un niveau bas vers un niveau haut initialise le registre de transmission du UART. TRE (pin.
http://www.angelfire.com/electronic/azmuth1/Uart.jpg http://www.angelfire.com/electronic/azmuth1/Uart.
http://www.angelfire.com/electronic/azmuth1/Uart.jpg http://www.angelfire.com/electronic/azmuth1/Uart.
Installation Installation MATÉRIEL REQUIS: ● ● ● 1 kit LMKG série 2001 Ordinateur 1 tournevis étoile moyen LISTE DES PIÈCES POUR UN KIT DE LMKG SÉRIE 2001 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 1 Boîtier 1 Bloc d'alimentation ( +/-5Vdc +/- 12 V dc +/- 30 V dc) 1 Carte bus 1 Carte Contrôleur MC 1 Carte Communication série UART 1 Carte I/Oü 1 Carte interface rs-232 1 Carte win TV 1 Disquette 1 Avertisseur sonore 1 Capteur électromagnétique 1 Capteur de chaleur 1 Détecteur de mouvement 1 Mini-caméraü 1 Fil RCA
Installation Mini-caméra 1. Avant d'installer la carte Win TV mettre le PC hors tension. 2. Toucher le châssis du PC avec la main pour décharger de toute électricité statique, avant de sortir la carte de son emballage. 3. Insérer la carte Win TV dans le connecteur PCI disponible(connecteur bu- master PCI).Il est important que Windows 95/98 soit installé. 4. Pour installer la caméra, il suffit de raccorder la prise RCA(vidéo)de la caméra à la prise RCA de la carte Win TV dans le PC. 5.
Référence Référence Voici une liste de référence de divers composantes du projet. le max-232 le UART Les ampli de la cartes I/O Capteur de température Module de transmission et de réception de la fibre optique Micro-contrôleur 68705 R3 Les noirs des circuits La liste des pièces http://www.angelfire.com/electronic/azmuth1/reference.
19-4323; Rev 9; 4/00 +5V-Powered, Multichannel RS-232 Drivers/Receivers ____________________________Features Superior to Bipolar ♦ Operate from Single +5V Power Supply (+5V and +12V—MAX231/MAX239) ♦ Low-Power Receive Mode in Shutdown (MAX223/MAX242) ♦ Meet All EIA/TIA-232E and V.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243 20-Pin Plastic DIP (derate 8.00mW/°C above +70°C) ..440mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ...696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW 20-Pin SSOP (derate 8.00mW/°C above +70°C) ..........640mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C)...
+5V-Powered, Multichannel RS-232 Drivers/Receivers (VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to TMAX‚ unless otherwise noted.) PARAMETER CONDITIONS TTL/CMOS Output Leakage Current SHDN = VCC or EN = VCC (SHDN = 0V for MAX222), 0V ≤ VOUT ≤ VCC EN Input Threshold Low MAX242 EN Input Threshold High MAX242 2.0 Operating Supply Voltage Shutdown Supply Current 3kΩ load both inputs MAX222/242 MAX220 UNITS ±0.05 ±10 µA 1.4 0.8 V 1.
__________________________________________Typical Operating Characteristics MAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243 4 VCC = ±5V NO LOAD ON TRANSMITTER OUTPUTS (EXCEPT MAX220, MAX233A) 2 0 0.1µF V- LOADED, NO LOAD ON V+ -2 1µF 0.1µF -4 ALL CAPS 1µF 9 VCC = +5.25V 8 ALL CAPS 0.
+5V-Powered, Multichannel RS-232 Drivers/Receivers 20-Pin Wide SO (derate 10 00mW/°C above +70°C).......800mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 44-Pin Plastic FP (derate 11.11mW/°C above +70°C) .....889mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C) ..........727mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C) ........800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C) ........889mW 24-Pin Narrow CERDIP (derate 12.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued) (MAX223/230/232/234/236/237/238/240/241, VCC = +5V ±10; MAX233/MAX235, VCC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239, VCC = 5V ±10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.
+5V-Powered, Multichannel RS-232 Drivers/Receivers TRANSMITTER OUTPUT VOLTAGE (VOH) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES 2 TRANSMITTERS LOADED 7.2 6.5 4.5 160kbits/sec 80kbits/sec 20kbits/sec 6.6 TA = +25°C VCC = +5V 3 TRANSMITTERS LOADED RL = 3kΩ C1–C4 = 1µF 6.4 6.2 6.0 0 1000 1500 7.0 3 TRANSMITTERS LOADED 4 TRANSMITTERS LOADED 6.0 5.0 4.0 0 2500 2000 500 1000 1500 2000 2500 LOAD CAPACITANCE (pF) TRANSMITTER OUTPUT VOLTAGE (VOL) vs. VCC TRANSMITTER OUTPUT VOLTAGE (VOL) vs.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249 Supply Voltage (VCC) ...............................................-0.3V to +6V Input Voltages TIN‚ ENA, ENB, ENR, ENT, ENRA, ENRB, ENTA, ENTB..................................-0.3V to (VCC + 0.3V) RIN .....................................................................................±25V TOUT (Note 3).....................................................................±15V ROUT ...............
+5V-Powered, Multichannel RS-232 Drivers/Receivers (MAX225, VCC = 5.0V ±5%; MAX244–MAX249, VCC = +5.0V ±10%, external capacitors C1–C4 = 1µF; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS POWER SUPPLY AND CONTROL LOGIC Operating Supply Voltage No load VCC Supply Current (normal operation) Shutdown Supply Current 3kΩ loads on all outputs MAX225 4.75 5.25 MAX244–MAX249 4.5 5.
__________________________________________Typical Operating Characteristics MAX225/MAX244–MAX249 8 V+ AND V- LOADED EXTERNAL POWER SUPPLY 1µF CAPACITORS 12 10 40kb/s DATA RATE 8 TRANSMITTERS LOADED WITH 3kΩ 8 6 4 VCC = 5V EXTERNAL CHARGE PUMP 1µF CAPACITORS 8 TRANSMITTERS DRIVING 5kΩ AND 2000pF AT 20kbits/sec 2 0 -2 EITHER V+ OR V- LOADED 2 3 LOAD CAPACITANCE (nF) 4 5 40kb/sec 7.0 60kb/sec 6.0 V+ AND V- LOADED 100kb/sec 200kb/sec 5.5 -8 1 20kb/sec 7.5 6.5 V+ LOADED -10 0 8.
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +3V 0V* +3V 50% 50% 50% 50% INPUT INPUT 0V VCC OUTPUT V+ 0V V- OUTPUT GND tPLHR tPLHS tPHLR tPHLS tPHLT tPLHT *EXCEPT FOR R2 ON THE MAX243 WHERE -3V IS USED. Figure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay Timing EN RX OUT RX IN 1k RX VCC - 2V SHDN +3V 0V a) TEST CIRCUIT 150pF EN INPUT OUTPUT DISABLE TIME (tDT) +3V V+ 0V +5V EN OUTPUT ENABLE TIME (tER) 0V -5V +3.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers Table 1a. MAX245 Control Pin Configurations ENT ENR 0 0 Normal Operation All Active All Active 0 1 Normal Operation All Active All 3-State 1 0 Shutdown All 3-State All Low-Power Receive Mode 1 1 Shutdown All 3-State All 3-State OPERATION STATUS TRANSMITTERS RECEIVERS Table 1b.
+5V-Powered, Multichannel RS-232 Drivers/Receivers TRANSMITTERS ENTA ENTB ENRA ENRB OPERATION STATUS RECEIVERS MAX247 TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB5 MAX248 TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB4 MAX249 TA1–TA3 TB1–TB3 RA1–RA5 RB1–RB5 0 0 0 0 Normal Operation All Active All Active All Active All Active 0 0 0 1 Normal Operation All Active All Active All Active All 3-State, except RB5 stays active on MAX247 0 0 1 0 Normal Operation All Active All Active All 3-State All Act
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers _______________Detailed Description The MAX220–MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 drivers, RS-232 receivers, and receiver and transmitter enable control inputs. Dual Charge-Pump Voltage Converter The MAX220–MAX249 have two internal charge-pumps that convert +5V to ±10V (unloaded) for RS-232 driver operation.
+5V-Powered, Multichannel RS-232 Drivers/Receivers The receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear output transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers Tables 1a–1d define the control states. The MAX244 has no control pins and is not included in these tables. The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA) causes the four A-side receivers and drivers to go into a three-state mode.
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V INPUT C3 TOP VIEW C5 C1+ 1 1 16 VCC C1 V+ 2 15 GND C1- 3 14 T1OUT C2+ 4 C2- 5 MAX220 MAX232 MAX232A V- 6 C2 12 R1OUT 9 11 T1IN -10V C4 T1OUT 14 RS-232 OUTPUTS 400k T2OUT 7 10 T2IN R2OUT 12 R1OUT CAPACITANCE (µF) C1 C2 C3 C4 4.7 4.7 10 10 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 0.
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V INPUT TOP VIEW 1.0µF 12 11 VCC +5V TO +10V VOLTAGE DOUBLER C1+ 1.0µF 14 C115 C2+ 1.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V INPUT TOP VIEW 1.0µF 1.0µF 20 T4OUT 1 T1OUT 2 19 T5IN T2OUT 3 18 N.C. T2IN 4 1.
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V INPUT 1.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V INPUT TOP VIEW 1.
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 TOP VIEW +5V INPUT 1.0µF 9 10 1.0µF 12 13 1.0µF 1.0µF VCC +5V TO +10V VOLTAGE DOUBLER C1+ C1- V+ C2+ V- +10V TO -10V VOLTAGE INVERTER 14 C2- 11 15 1.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers TOP VIEW +5V INPUT 1.0µF 10 1.0µF 12 13 1.0µF 14 C1C2+ C2- 24 T4OUT T1OUT 2 23 R2IN T2OUT 3 22 R2OUT R1IN 4 R1OUT 5 MAX237 20 T5OUT T2IN 6 19 T4IN T1IN 7 18 T3IN GND 8 17 R3OUT VCC 9 16 R3IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ 400k TTL/CMOS INPUTS T2OUT T2 +5V 3 400k 18 T3IN T3OUT 1 T3 +5V 1.
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 TOP VIEW +5V INPUT 1.0µF 1.0µF 9 10 1.0µF 12 13 1.0µF 14 C1+ C1- C2- 22 R3OUT R2OUT 4 T1IN 5 20 T4OUT R1OUT 6 19 T3IN R1IN 7 18 T2IN GND 8 17 R4OUT VCC 9 16 R4IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ 21 T4IN 6 R1OUT T1OUT 2 400k T2OUT 1 400k 19 T3IN RS-232 OUTPUTS T3OUT 24 T3 +5V 15 1.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers TOP VIEW 7.5V TO 13.2V INPUT +5V INPUT 1.0µF 4 6 1.0µF 7 5 VCC C1+ V+ C1- +5V 24 T1IN R1IN 2 23 T2IN GND 3 22 R2OUT VCC 4 V+ 5 TTL/CMOS INPUTS C+ 6 19 T1OUT C- 7 18 R3IN V- 8 17 R3OUT R5IN 9 16 T3IN R5OUT 10 15 N.C. R4OUT 11 14 EN 16 T3IN 1 R1OUT T2OUT T2 +5V 20 T2OUT T1OUT 19 400k 23 T2IN 21 R2IN MAX239 1.
+5V-Powered, Multichannel RS-232 Drivers/Receivers 1.0µF 25 19 VCC +5V TO +10V VOLTAGE DOUBLER C1+ 1.0µF 27 C128 C2+ 1.0µF 29 C2- 400k N.C. R2IN N.C. T2OUT T1OUT T3OUT T4OUT R3IN R3OUT T5IN N.C. 11 10 9 8 7 6 5 4 3 2 1 N.C. N.C. C1+ V+ C1C2+ C2 VN.C. N.C. N.C. T2OUT 37 T3IN T3OUT 6 T3 +5V 2 T5IN 16 R1OUT RS-232 OUTPUTS 400k 38 T4IN +5V 8 400k T4OUT 5 T4 400k T5OUT T5 41 R1IN 17 R1 5k 13 R2OUT R2IN 10 R2 23 24 25 26 27 28 29 30 31 32 33 MAX240 T1OUT 7 T2 +5V N.C.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ALL CAPACITORS = 0.1µF 0.1µF +5V INPUT TOP VIEW 0.1µF 1 C1+ 1 16 VCC V+ 2 15 GND C1- 3 14 T1OUT C2+ 4 MAX243 C2- 5 0.1µF 3 C14 C2+ 0.1µF 5 C2- 11 T1IN T2OUT 7 10 T2IN 9 V+ +10V TO -10V VOLTAGE INVERTER V- 2 +10V 6 -10V 0.
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V TOP VIEW 1µF 1µF 20 VCC +5V TO +10V VOLTAGE DOUBLER RB5IN TB4OUT TB3OUT TB2OUT TB1OUT TA1OUT TA2OUT TA4OUT TA3OUT RA4IN RA5IN 21 1µF 1µF 6 5 4 3 2 1 44 43 42 41 40 C1+ 23 C124 C2+ 25 C2- 22 V+ 26 V- 1µF +10V TO -10V VOLTAGE INVERTER 2 TA1OUT +5V +5V TB1OUT 44 400k RA3IN 7 39 RB4IN RA2IN 8 38 RB3IN RA1IN 9 37 RB2IN RA1OUT 10 36 RB1IN RA2OUT 11 35 RB1OUT RA3OUT 12 MAX244 34 RB2OUT 33 RB3OUT RA
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1µF 40 VCC ENR 40 1 VCC TA1IN 2 39 ENT TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RA5OUT 6 35 TB4IN RA4OUT 7 34 RB5OUT MAX245 RA3OUT 8 33 RB4OUT RA2OUT 9 32 RB3OUT RA1OUT 10 31 RB2OUT RA1IN 11 30 RB1OUT RA2IN 12 29 RB1IN RA3IN 13 28 RB2IN RA4IN 14 27 RB3IN RA5IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT GND 19
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V TOP VIEW 1µF ENA 1 40 VCC TA1IN 2 39 ENB TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RA5OUT 6 35 TB4IN RA4OUT 7 34 RB5OUT RA3OUT 8 33 RB4OUT MAX246 RA2OUT 9 32 RB3OUT RA1OUT 10 31 RB2OUT RA1IN 11 30 RB1OUT RA2IN 12 29 RB1IN RA3IN 13 28 RB2IN RA4IN 14 27 RB3IN RA5IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT 19 22 TB3OUT
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1µF 40 VCC +5V +5V 1 ENTA ENTA 40 1 VCC TA1IN 2 39 ENTB TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RB5OUT 6 35 TB4IN RA4OUT 7 34 RB4OUT RA3OUT 8 33 RB3OUT RA2OUT 9 32 RB2OUT RA1OUT 10 31 RB1OUT ENRA 11 30 ENRB MAX247 RA1IN 12 29 RB1IN RA2IN 13 28 RB2IN RA3IN 14 27 RB3IN RA4IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT T
+5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 TOP VIEW +5V 1µF 1µF 20 4 3 2 1 44 43 42 41 40 1µF RB4IN TA4OUT TB1OUT TB3OUT TA1OUT TB2OUT TA2OUT 5 TA4OUT 6 TA3OUT RA3IN RA4IN 21 1µF C1+ 23 C124 C2+ 25 C2- VCC +5V TO +10V VOLTAGE DOUBLER V+ V- +5V 1 TA1OUT 39 RB3IN RA1IN 8 38 RB2IN ENRA 9 37 RB1IN RA1OUT 10 36 ENRB RA2OUT 11 35 RB1OUT MAX248 RA3OUT 12 RA4OUT 13 33 RB3OUT TA1IN 14 32 RB4OUT 34 RB2OUT TA2IN 15 31 TB1IN TA3IN 16 30 TB2IN
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1µF 1µF 20 2 1 44 43 42 41 40 1µF RB4IN TB3OUT 3 RB5IN TB2OUT TB1OUT 4 TA1OUT 5 TA3OUT RA5IN 6 TA2OUT RA3IN RA4IN 21 1µF VCC +5V TO +10V VOLTAGE DOUBLER C1+ 23 C124 C2+ 25 C2- V+ V- +5V 1 TA1OUT 39 RB3IN RA1IN 8 38 RB2IN ENRA 9 37 RB1IN RA1OUT 10 36 ENRB RA2OUT 11 35 RB1OUT RA3OUT 12 RA4OUT 13 33 RB3OUT RA5OUT 14 32 RB4OUT TA1IN 15 31 RB5OUT TA2IN 16 30 TB1IN 34 RB2OUT 29 TB
+5V-Powered, Multichannel RS-232 Drivers/Receivers PIN-PACKAGE MAX232AC/D 0°C to +70°C MAX222CPN PART TEMP.
MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ___________________________________________Ordering Information (continued) PIN-PACKAGE MAX243CPE 0°C to +70°C 16 Plastic DIP MAX238EWG PART -40°C to +85°C TEMP.
HD-6402 CMOS Universal Asynchronous Receiver Transmitter (UART) March 1997 Features Description • 8.0MHz Operating Frequency (HD-6402B) The HD-6402 is a CMOS UART for interfacing computers or microprocessors to an asynchronous serial data channel. The receiver converts serial start, data, parity and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity and stop bits. The data word length can be 5, 6, 7 or 8 bits. Parity may be odd or even.
HD-6402 Functional Diagram (32) TBR8 (24) TRE (33) (30) (31) (28) (29) (26) (27) TBR1 TRANSMITTER BUFFER REGISTER (22) TBRE † PARITY LOGIC STOP (23) TBRL TRANSMITTER REGISTER TRANSMITTER TIMING AND CONTROL (40) TRC START MULTIPLEXER (25) TRO (38) CLS1 (37) CLS2 (34) CRL (21) MR (36) SBS (16) SFD (39) EPE (35) PI CONTROL REGISTER (20) RRI (17) RRC MULTIPLEXER RECEIVER TIMING AND CONTROL (18) DRR STOP LOGIC (19) DR † START LOGIC RECEIVER REGISTER PARITY LOGIC RECEIVER BUFFER REGIS
HD-6402 Pin Description PIN TYPE SYMBOL PIN TYPE SYMBOL DESCRIPTION O TBRE A high level on TRANSMITTER BUFFER REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data. 23 I TBRL A low level on TRANSMITTER BUFFER REGISTER LOAD transfers data from inputs TBR1TBR8 into the transmitter buffer register. A low to high transition on TBRL initiates data transfer to the transmitter register.
HD-6402 Transmitter Operation The transmitter section accepts parallel data, formats the data and transmits the data in serial form on the Transmitter Register Output (TRO) terminal (See serial data format). Data is loaded from the inputs TBR1-TBR8 into the Transmitter Buffer Register by applying a logic low on the Transmitter Buffer Register Load (TBRL) input (A). Valid data must be present at least tset prior to and thold following the rising edge of TBRL.
HD-6402 Start Bit Detection The receiver uses a 16X clock timing. The start bit could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion (A). The center of the start bit is defined as clock count 7 1/2. If the receiver clock is a symmetrical square wave, the center of the start bit will be located within ±1/2 clock cycle, ±1/32 bit or 3.125% giving a receiver margin of 46.875%.
HD-6402 Absolute Maximum Ratings Thermal Information Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +8.0V Input, Output or I/O Voltage Applied. . . . . GND -0.5V to VCC +0.5V Storage Temperature Range . . . . . . . . . . . . . . . . . -65oC to +150oC Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC Lead Temperature (Soldering 10s) . . . . . . . . . . . . . . . . . . . . +300oC ESD Classification . . . . . . . . . . . . . . .
HD-6402 Switching Waveforms CLS1, CLS2, SBS, PI, EPE TBR1 - TBR8 VALID DATA SFD RRD VALID DATA TBRL STATUS OR RBR1 - RBR8 CRL (4) tSET tPW (2) tHOLD (5) (4) tSET tHOLD (5) tEN (6) tPW (2) FIGURE 6. DATA INPUT CYCLE FIGURE 7. CONTROL REGISTER LOAD CYCLE FIGURE 8. STATUS FLAG OUTPUT ENABLE TIME OR DATA OUTPUT ENABLE TIME A.C. Testing Input, Output Waveform INPUT OUTPUT VIH + 20% VIH VOH 1.5V 1.5V VIL - 50% VIL VOL FIGURE 9. NOTE: A.C.
Order this document by MC4741C/D The MC4741C is a true quad MC1741. Integrated on a single monolithic chip are four independent, low power operational amplifiers which have been designed to provide operating characteristics identical to those of the industry standard MC1741, and can be applied with no change in circuit performance. The MC4741C can be used in applications where amplifier matching or high packing density is important.
MC4741C MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.
MC4741C ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristic Symbol Min Typ Max Unit Input Offset Voltage (RS ≤ 10 k) VIO – 2.0 6.0 mV Input Offset Current IIO – 20 200 nA Input Bias Current IIB – 80 500 nA Input Resistance ri 0.3 2.0 – MΩ Input Capacitance Ci – 1.
MC4741C Figure 1. Power Bandwidth (Large Signal Swing versus Frequency) Figure 2. Open Loop Frequency Response 120 24 100 A VOL, VOLTAGE GAIN (dB) VO, OUTPUT VOLTAGE (Vpp ) 28 20 16 12 Voltage Follower THD < 5% 8.0 4.0 0 10 100 1.0 k f, FREQUENCY (Hz) 10 k 80 60 40 20 0 –20 1.0 100 k 15 14 13 12 11 10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 ±15 V Supplies ±12 V ±9.0 V ±6.0 V 100 200 500 700 1.0 k 2.0 k 5.0 k 7.0 k 10 k –15 –14 –13 –12 –11 –10 –9.0 –8.0 –7.0 –6.0 –5.0 –4.0 –3.0 –2.0 –1.
MC4741C Figure 7. Bi–Quad Filter C1 Vin 100 k C R2 – R1 = QR C 1/4 – MC4741C 100 k 1/4 1/4 + MC4741C Vref R1 R2 + Bandpass Output Vref R3 – R = 160 kΩ C = 0.001 µF R1 = 1.6 MΩ R2 = 1.6 MΩ R3 = 1.6 MΩ C1 Notch Output MC4741C + Where: TBP = center frequency gain TN = passband notch gain 1 Vref = V 2 CC Vref 1/4 fo = 1.0 kHz Q = 10 TBP = 1 TN = 1 R2 = R1 TBP R3 = TNR2 C1 = 10 C – MC4741C + For: 1 fo = 2πRC R R Vref Figure 8.
MC4741C OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F DIM A B C D F G H J K L M N L C J N H G D SEATING PLANE K M D SUFFIX PLASTIC PACKAGE CASE 751A–03 ISSUE F (SO–14) –A– 14 1 P 7 PL 0.25 (0.
LM35 Precision Centigrade Temperature Sensors General Description The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in ˚ Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling.
LM35 Connection Diagrams TO-46 Metal Can Package* SO-8 Small Outline Molded Package DS005516-1 DS005516-21 *Case is connected to negative pin (GND) N.C. = No Connection Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DH See NS Package Number H03H Top View Order Number LM35DM See NS Package Number M08A TO-92 Plastic Package TO-220 Plastic Package* DS005516-2 Order Number LM35CZ, LM35CAZ or LM35DZ See NS Package Number Z03A DS005516-24 *Tab is connected to the negative pin (GND).
TO-92 and TO-220 Package, (Soldering, 10 seconds) 260˚C SO Package (Note 12) Vapor Phase (60 seconds) 215˚C Infrared (15 seconds) 220˚C ESD Susceptibility (Note 11) 2500V Specified Operating Temperature Range: TMIN to T MAX (Note 2) LM35, LM35A −55˚C to +150˚C LM35C, LM35CA −40˚C to +110˚C LM35D 0˚C to +100˚C If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.
LM35 Electrical Characteristics (Notes 1, 6) LM35 Parameter Conditions Design Limit Limit (Note 4) (Note 5) Typical Accuracy, T A =+25˚C LM35, LM35C T A =−10˚C (Note 7) T A =TMAX ± 0.4 ± 0.5 ± 0.8 ± 0.8 T A =TMIN Accuracy, LM35D (Note 7) LM35C, LM35D Tested ± 1.0 ± 1.5 ± 1.5 T A =+25˚C TA =TMAX TA =TMIN Nonlinearity T MIN≤TA≤TMAX ± 0.3 T MIN≤TA≤TMAX +10.0 ± 0.5 Typical ± 0.4 ± 0.5 ± 0.8 ± 0.8 ± 0.6 ± 0.9 ± 0.9 ± 0.2 Tested Design Units Limit Limit (Max.
LM35 Typical Performance Characteristics Thermal Resistance Junction to Air Thermal Response in Still Air Thermal Time Constant DS005516-26 DS005516-25 Thermal Response in Stirred Oil Bath DS005516-27 Minimum Supply Voltage vs. Temperature Quiescent Current vs. Temperature (In Circuit of Figure 1.) DS005516-29 DS005516-28 DS005516-30 Quiescent Current vs. Temperature (In Circuit of Figure 2.) Accuracy vs. Temperature (Guaranteed) Accuracy vs.
LM35 Typical Performance Characteristics (Continued) Noise Voltage Start-Up Response DS005516-34 DS005516-35 The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course, in that case the V− terminal of the circuit will be grounded to that metal. Alternatively, the LM35 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank.
LM35 Typical Applications DS005516-19 FIGURE 3. LM35 with Decoupling from Capacitive Load DS005516-6 FIGURE 6. Two-Wire Remote Temperature Sensor (Output Referred to Ground) DS005516-20 FIGURE 4. LM35 with R-C Damper CAPACITIVE LOADS Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions.
LM35 Typical Applications (Continued) DS005516-11 FIGURE 11. Centigrade Thermometer (Analog Meter) DS005516-10 FIGURE 10. Fahrenheit Thermometer DS005516-12 FIGURE 12. Fahrenheit ThermometerExpanded Scale Thermometer (50˚ to 80˚ Fahrenheit, for Example Shown) DS005516-13 FIGURE 13. Temperature To Digital Converter (Serial Output) (+128˚C Full Scale) DS005516-14 FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATE™ Outputs for Standard Data Bus to µP Interface) (128˚C Full Scale) www.
LM35 Typical Applications (Continued) DS005516-16 * =1% or 2% film resistor Trim RB for VB =3.075V Trim RC for VC =1.955V Trim RA for VA =0.075V + 100mV/˚C x Tambient Example, VA =2.275V at 22˚C FIGURE 15. Bar-Graph Temperature Display (Dot Mode) DS005516-15 FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output (2˚C to +150˚C; 20 Hz to 1500 Hz) 9 www.national.
LM35 Block Diagram DS005516-23 www.national.
LM35 Physical Dimensions inches (millimeters) unless otherwise noted TO-46 Metal Can Package (H) Order Number LM35H, LM35AH, LM35CH, LM35CAH, or LM35DH NS Package Number H03H SO-8 Molded Small Outline Package (M) Order Number LM35DM NS Package Number M08A 11 www.national.
LM35 Physical Dimensions inches (millimeters) unless otherwise noted (Continued) Power Package TO-220 (T) Order Number LM35DT NS Package Number TA03F TO-92 Plastic Package (Z) Order Number LM35CZ, LM35CAZ or LM35DZ NS Package Number Z03A www.national.
LM35 Precision Centigrade Temperature Sensors Notes LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: 1.
H Low Cost, Miniature Fiber Optic Components with ST®, SMA, SC and FC Ports Technical Data HFBR-0400 Series Features Applications • Meets IEEE 802.3 Ethernet and 802.5 Token Ring Standards • Low Cost Transmitters and Receivers • Choice of ST®, SMA, SC or FC Ports • 820 nm Wavelength Technology • Signal Rates up to 175 Megabaud • Link Distances Up to 4 km • Specified with 50/125 µm, 62.5/125 µm, 100/140 µm, and 200 µm HCS® Fiber • Repeatable ST Connections within 0.
2 HFBR-0400 Series Part Number Guide HFBR X4XXaa 1 = Transmitter 2 = Receiver Option T (Threaded Port Option) Option C (Conductive Port Receiver Option) Option M (Metal Port Option) Option K (Kinked Lead Option) TA = Square pinout/straight lead TB = Square pinout/bent leads HA = Diamond pinout/straight leads HB = Diamond pinout/bent leads 4 = 820 nm Transmitter and Receiver Products 0 = SMA, Housed 1 = ST, Housed 2 = FC, Housed E = SC, Housed 3 = SMA Port, 90 deg. Bent Leads 4 = ST Port, 90 deg.
3 HFBR-0400 Series Evaluation Kits HFBR-0410 ST Evaluation Kit Contains the following : • One HFBR-1412 transmitter • One HFBR-2412 five megabaud TTL receiver • Three meters of ST connectored 62.5/125 (µm fiber optic cable with low cost plastic ferrules. • Related literature HFBR-0414 ST Evaluation Kit Includes additional components to interface to the transmitter and receiver as well as the PCB to reduce design time.
4 Mechanical Dimensions HFBR-0400 SMA Series 12.7 (0.50) HFBR-X40X Rx/Tx COUNTRY OF ORIGIN hp YYWW HFBR-X40X 1/4 - 36 UNS 2A THREAD 22.2 (0.87) 6.35 (0.25) 12.7 (0.50) 6.4 DIA (0.25) 3.81 (0.15) 3.6 (0.14) 1.27 (0.05) 5 6 4 2.54 (0.10) 8 2 7 3 PINS 2,3,6,7 0.46 DIA. (0.018) 1 2.54 (0.10) PINS 1,4,5,8 0.51 X 0.38 (0.020 X 0.015) PIN NO. 1 INDICATOR PART MARKING YY WW HFBR-X43X 13.0 (0.51) 2.5 DIA PIN (0.10) CIRCLE 4.8 TYP (0.19) 7.1 DIA (0.28) 2.3 TYP (0.09) 8.6 DIA (0.
Mechanical Dimensions HFBR-0400 ST Series 12.7 (0.50) HFBR-X41X Rx/Tx COUNTRY OF ORIGIN hp YYWW HFBR-X41X 5 27.2 (1.07) 8.2 (0.32) 6.35 (0.25) 12.7 (0.50) 7.0 DIA (0.28) 3.81 (0.15) 5.1 (0.20) 1.27 (0.05) 4 5 3 6 2.54 (0.10) 2.54 (0.10) 1 PINS 2,3,6,7 0.46 DIA (0.018) 8 2 7 PINS 1,4,5,8 0.51 X 0.38 (0.020 X 0.015) 3.6 (0.14) PIN NO. 1 INDICATOR HFBR-X44X 18.6 (0.73) 4.9 TYP (0.19) 2.5 DIA PIN (0.10) CIRCLE 8.2 (0.32) 7.1 DIA (0.28) 2.4 TYP (0.09) 1 4 2 3 X-YWW 8.6 DIA (0.
6 Mechanical Dimensions HFBR-0400T Threaded ST Series 12.7 (0.50) Rx/Tx COUNTRY OF ORIGIN hp YYWW HFBR-X41XT 5.1 (0.20) HFBR-X41XT 6.35 (0.25) 8.4 (0.33) 27.2 (1.07) 7.6 (0.30) 12.7 (0.50) 7.1 (0.28) DIA 3.6 (0.14) 5.1 (0.20) 3/8 - 32 UNEF - 2A 3.81 (0.15) 1.27 (0.05) 2 7 8 2.54 (0.10) 6 5 4 PINS 2,3,6,7 0.46 DIA (0.018) 3 PINS 1,4,5,8 0.51 X 0.38 (0.020 X 0.015) 1 2.54 DIA. (0.10) PIN NO. 1 INDICATOR 5.1 (0.20) HFBR-X44XT 18.5 (0.73) PART MARKING 4.9 TYP (0.19) 8.6 DIA (0.
7 Mechanical Dimensions HFBR-0400FC Series 12.7 (0.50) Rx/Tx COUNTRY OF ORIGIN hp YYWW HFBR-X42X M8 x 0.75 6G THREAD (METRIC) 19.6 (0.77) 12.7 (0.50) 7.9 (0.31) 5.1 (0.20) 3.81 (0.15) 3.6 (0.14) 2.5 (0.10) 5 7 8 6 2 1 3 4 2.5 (0.10) PIN NO. 1 INDICATOR HFBR-X4EX Rx/Tx COUNTRY OF ORIGIN hp YYWW HFBR-X4EX Mechanical Dimensions HFBR-0400 SC Series 28.65 (1.128) 10.0 (0.394) 15.95 (0.628) 12.7 (0.500) 10.2 (0.
8 LED OR DETECTOR IC LENS–SPHERE (ON TRANSMITTERS ONLY) HOUSING LENS–WINDOW CONNECTOR PORT HEADER EPOXY BACKFILL PORT GROUNDING PATH INSERT Figure 1. HFBR-0400 ST Series Cross-Sectional View. Panel Mount Hardware HFBR-4401: for SMA Ports HFBR-4411: for ST Ports PART NUMBER 3/8 – 32 UNEF2B THREAD 7,87 (0.310) 12.70 DIA (0.50) 1.65 (0.065) HEX-NUT DATE CODE 0.2 IN. Rx/Tx COUNTRY OF ORIGIN hp YYWW HFBR-X40X 1/4 – 36 UNEF – 2B THREAD 1.65 (0.065) HEX-NUT 3/8 - 32 UNEF - 2A THREADING 7.
9 Options In addition to the various port styles available for the HFBR0400 series products, there are also several extra options that can be ordered. To order an option, simply place the corresponding option number at the end of the part number. For instance, a metal-port option SMA receiver would be HFBR-2406M. You can add any number of options in series at the end of a part number. Please contact your local sales office for further information or browse HP’s fiber optics home page at http:// www.hp.
10 Typical Link Data HFBR-0400 Series Description The following technical data is taken from 4 popular links using the HFBR-0400 series: the 5 MBd link, Ethernet 20 MBd link, Token Ring 32 MBd link, and the 155 MBd link. The data given corresponds to transceiver solutions combining the HFBR-0400 series components and various recommended transceiver design circuits using off-the-shelf electrical components.
11 5 MBd Logic Link Design If resistor R1 in Figure 2 is 70.4 Ω, a forward current IF of 48 mA is applied to the HFBR14X4 LED transmitter. With IF = 48 mA the HFBR-14X4/24X2 logic link is guaranteed to work with 62.5/125 µm fiber optic cable over the entire range of 0 to 1750 meters at a data rate of dc to 5 MBd, with arbitrary data format and pulse width distortion typically less than 25%.
Figure 3. HFBR-1414/HFBR-2412 Link Design Limits with 62.5/125 µm Cable. Figure 4. HFBR-14X2/HFBR-24X2 Link Design Limits with 100/140 µm Cable. 70 65 55 tPLH (TYP) @ 25°C 60 55 50 45 40 tPHL (TYP) @ 25°C 35 30 50 tD – NRZ DISTORTION – ns tPHL OR tPHL PROPOGATION DELAY –ns 75 45 40 35 30 25 25 20 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 P R – RECEIVER POWER – dBm Figure 6. Propagation Delay through System with One Meter of Cable.
13 Ethernet 20 MBd Link (HFBR-14X4/24X6) (refer to Application Note 1038 for details) Typical Link Performance Parameter Receiver Sensitivity Symbol Link Jitter Transmitter Jitter Optical Power LED rise time LED fall time Mean difference Bit Error Rate Output Eye Opening Data Format 50% Duty Factor PT tr tf | t r - t f| BER Typ.[1,2] -34.4 7.56 7.03 0.763 -15.2 1.30 3.08 1.77 10 -10 36.
14 155 MBd Link (HFBR-14X4/24X6) (refer to Application Bulletin 78 for details) Typical Link Performance Parameter Symbol Typ. [1,2] Optical Power Budget OPB 50 7.9 with 50/125 µm fiber Optical Power Budget OPB 62 11.7 with 62.5/125 µm fiber Optical Power Budget OPB 100 11.7 with 100/140 µm fiber Optical Power Budget OPB 200 16.0 with 200 µm HCSfFiber Data Format 20% to 1 80% Duty Factor System Pulse Width |t PL H - t PHL | Distortion Bit Error Rate BER Units Max. Units Conditions 13.9 dB NA = 0.2 17.
15 HFBR-14X2/14X4 LowCost High-Speed Transmitters Description The HFBR-14XX fiber optic transmitter contains an 820 nm AlGaAs emitter capable of efficiently launching optical power into four different optical fiber sizes: 50/125 µm, 62.5/125 µm, 100/140 µm, and 200 µm HCS®. This allows the designer flexibility in choosing the fiber size. The HFBR-14XX is designed to operate with the HewlettPackard HFBR-24XX fiber optic receivers.
16 Electrical/Optical Specifications -40°C to +85°C unless otherwise specified. Parameter Forward Voltage Symbol VF Forward Voltage Temperature Coefficient ∆VF /∆T Reverse Input Voltage Peak Emission Wavelength Diode Capacitance Optical Power Temperature Coefficient VBR λP CT ∆PT /∆T Thermal Resistance 14X2 Numerical Aperture 14X4 Numerical Aperture 14X2 Optical Port Diameter 14X4 Optical Port Diameter θJA NA NA D D Min. 1.48 1.8 792 Typ. [2] Max. Units 1.70 2.09 V 1.84 - 0.22 mV/°C - 0.18 3.
17 HFBR-14X4 Output Power Measured Out of 1 Meter of Cable Parameter 50/125 µm Fiber Cable NA = 0.2 Symbol PT50 62.5/125 µm Fiber Cable NA = 0.275 PT62 100/140 µm Fiber Cable NA = 0.3 PT100 200 µm HCS Fiber Cable NA = 0.37 PT200 Min. -18.8 -19.8 -17.3 -18.9 -15.0 -16.0 -13.5 -15.1 -9.5 -10.5 -8.0 -9.6 -5.2 -6.2 -3.7 -5.3 Typ.[2] -15.8 -13.8 -12.0 -10.0 -6.5 -4.5 -3.7 -1.7 Max. -13.8 -12.8 -11.4 -10.8 -10.0 -9.0 -7.6 -7.0 -4.5 -3.5 -2.1 -1.5 +0.8 +1.8 +3.2 +3.
18 Recommended Drive Circuits The circuit used to supply current to the LED transmitter can significantly influence the optical switching characteristics of the LED. The optical rise/fall times and propagation delays can be improved by using the appropriate circuit techniques. The LED drive circuit shown in Figure 11 uses frequency compensation to reduce the typical rise/fall times of the LED and a small pre-bias voltage to minimize propagation delay differences that cause pulse-width distortion.
2.0 3.0 1.8 1.6 2.0 1.4 1.2 1.4 1.0 0.8 1.0 0 0.8 -1.0 0.6 -2.0 -3.0 -4.0 -5.0 -7.0 0.4 0.2 0 0 10 20 30 40 50 60 70 80 90 100 IF – FORWARD CURRENT – mA Figure 9. Forward Voltage and Current Characteristics. Figure 10. Normalized Transmitter Output vs. Forward Current. Figure 11. Recommended Drive Circuit. Figure 12. Test Circuit for Measuring tr, t f.
20 HFBR-24X2 Low-Cost 5MBd Receiver Description The HFBR-24X2 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR14XX fiber optic transmitter and 50/125 µm, 62.5/125 µm, 100/ 140 µm, and 200 µm HCS® fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size ≤0.100 µm.
21 Electrical/Optical Characteristics -40°C to + 85°C unless otherwise specified Fiber sizes with core diameter ≤100 µm and NA ≤0.35, 4.75 V ≤VCC ≤5.25 V Typ. [3] 5 Max. 250 Units µA VOL 0.4 0.5 V High Level Supply Current ICCH 3.5 6.3 mA Low Level Supply Current ICCL 6.2 10 mA Equivalent N.A. Optical Port Diameter NA D 0.50 400 Parameter High Level Output Current Symbol IOH Low Level Output Voltage Min. Conditions VO = 18 PR < -40 dBm IO = 8 mA PR > -24 dBm VCC = 5.
22 HFBR-24X6 Low-Cost 125 MHz Receiver Description The HFBR-24X6 fiber optic receiver is designed to operate with the Hewlett-Packard HFBR14XX fiber optic transmitters and 50/125 µm, 62.5/125 µm, 100/ 140 µm and 200 µm HCS® fiber optic cable. Consistent coupling into the receiver is assured by the lensed optical system (Figure 1). Response does not vary with fiber size for core diameters of 100 µm or less.
23 Absolute Maximum Ratings Parameter Storage Temperature Operating Temperature Lead Soldering Cycle Symbol TS TA Min. -55 - 40 Max. +85 +85 +260 10 6.0 25 VCC Temp. Time Supply Voltage Output Current Signal Pin Voltage VCC IO VSIG - 0.5 - 0.5 Units °C °C °C s V mA V Reference Note 1 Electrical/Optical Characteristics -40°C to +85°C; 4.75 V ≤Supply Voltage ≤5.25 V, R LOAD = 511 Ω, Fiber sizes with core diameter ≤100 µm, and N.A. ≤-0.
24 Dynamic Characteristics -40°C to +85°C; 4.75 V ≤Supply Voltage ≤5.25 V; RLOAD = 511 Ω, CLOAD = 5 pF unless otherwise specified Parameter Rise/Fall Time 10% to 90% Pulse Width Distortion Symbol tr, tf Min. Typ. [2] 3.3 PWD Units ns Conditions PR = 100 µW peak Reference Figure 15 2.5 ns PR = 150 µW peak 2 % 125 0.41 MHz Hz • s PR = 5 µW peak, tr = 1.5 ns -3 dB Electrical Note 8, Figure 14 Note 9 0.4 Overshoot Bandwidth (Electrical) Bandwidth - Rise Time Product Max. 6.
25 3.0 125 100 75 50 25 0 2.5 2.0 1.5 1.0 0.5 0 0 50 100 150 200 250 300 FREQUENCY – MHZ Figure 13. Typical Spectral Noise Distortion vs. Peak Input Power. 1.25 NORMALIZED RESPONSE 6.0 tr, tf – RESPONSE TIME – ns SPECTRAL NOISE DENSITY – nV/ HZ PWD – PULSE WIDTH DISTORTION – ns 150 1.00 0.75 0.50 0.25 0 400 480 560 640 720 800 880 960 1040 λ – WAVELENGTH – nm Figure 16. Receiver Spectral Response Normalized to 820 nm.
H For technical assistance or the location of your nearest Hewlett-Packard sales office, distributor or representative call: Americas/Canada: 1-800-235-0312 or 408-654-8675 Far East/Australasia: (65) 290-6305 Japan: (81 3) 3331-6111 Europe: Call your local HP sales office listed in your telephone directory. Ask for a Components representative. Data subject to change. Copyright © 1996 Hewlett-Packard Co. Obsoletes 5962-6181E, 5962-6111E, 5962-8095E, 5091-9103E Printed in U.S.A.
DISPOSITION LISTE DE LA PLAQUE DES PIÈCES Item Nb 1 4 Valeur CONN ISA Attribue 72 pins 2 BORNIER 10 - 1 BUS ISA ID CON1, CON2, CON3, CON4 CON5
DISPOSITION DE LA PLAQUE DE COMMUNICATION UART LISTE DES PIÈCES Item 1 2 3 Nb 1 1 3 Valeur 15nF 0.1uF 15uF Attribue POLAR0.6 POLAR0.6 POLAR0.6 4 5 2 6 33pF LED2 RAD0.2 Rouge 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 1 1 1 1 8 8 1 1 1 1 1 1 1 1 1 1 3 CONN CONN 10k 51 10M dipswitch dipswitch 10k 330 74LS04 HD6402 7474 74393 74LS123 4.9152MHZ Socket 40 Socket 16 Socket 14 IDC20 SIP2 AXIAL0.4 AXIAL0.4 AXIAL0.
DISPOSITION DE LA PLAQUE MICROCONTRÔLEUR LISTE DES PIÈCES Item 1 2 3 4 5 6 7 Nb 1 2 1 2 1 1 4 Valeur 25pF 15uF LED1 CONN CONN 330 10k Attribue POLAR25 POLAR 25 v Rouge JMP4 JMP2 SIP10 8 9 10 1 1 1 aucun flash 11 1 switch MC68705R3 Cristal 3.
CAHIER TECHNIQUE SCHÉMA DE LA PLAQUE BUS ISA PROFESSEUR : ERIC VANDAL SCHÉMA DE LA PLAQUE BUS ISA PAGE 1 SUR 2
CAHIER TECHNIQUE SCHÉMA PLAQUE DE LA DE COMMUNICATION UART 1 R2 10k Vcc 2Q 7 1 1 1 2 3 4 5 6 7 8 9 10 D3 2 1 2 1 2 1 2 1 D4 D2 D1 1B23/PA2 J5 P. Test Horloge 12 GND 1 6 2RC D5 8 2 2C D6 1 2 2Q 5 9 2A Sip6 330 +C 1 21 1RC 11 2CLR 10 2B 1 1A4/INT DR 19 PE 13 FE 14 OE 15 TRE 24 TBRE 22 U6 1 1A 74ls123 1Q 13 2 1B 1Q 4 R3 51 Vcc1 +V 5V 1 D18 0.
Contact Contact Projet réalisé par : Natasha Maillé Martin Gagnon Kevin Kennedy Michaël Lemieux Étudiants en Génie électrique, Option télécommunication 3e année, finissant. But : Rassembler et maîtriser la majorité des connaissances acquises au cours du DEC. Développer chez l'étudiant sa capacité à travailler en équipe. Respecter des délais déjà fixés par l'enseignant et l'étudiant. Rédiger un rapport complet en format internet. Objectif général : Réaliser un système de télécommunication complet.
Contact Élaborer un plan général du système et en décrire son fonctionnement global. Faire de la recherche afin de trouver la documentation nécessaire à l'élaboration du projet. Faire le montage des modules utilisés sur une plaque d'expérimentation et en étudier le fonctionnement. Procéder à la construction de chaque module sur carte ISA. Faire l'essai, la vérification et le dépannage de chaque modules ISA. Développer une méthode de fonctionnement programmable sur un micro-contrôleur.