J E S G I Sw K Ch Ck fx-5800P Tillägg 付録 Supplement Suplemento Ergänzung Supplemento http://edu.casio.jp/ http://world.casio.
#01 3-5 µµ –4.49044799×10–26 J T –1 3-6 F 96485.3383 C mol –1 1-3 me 9.1093826×10–31 kg 3-7 e 1.60217653×10–19 C 1.8835314×10–28 kg 3-8 NA 6.0221415×1023 mol –1 4-1 k 4-2 Vm 22.413996×10–3 m3 mol –1 1-7 µ N 5.05078343×10–27 J T –1 4-3 R 1-8 µ B 927.400949×10–26 J 4-4 C0 299792458 m s–1 2-1 H 1.05457168×10–34 J s 4-5 C1 3.74177138×10–16 W m2 2-2 α 7.297352568×10–3 4-6 C2 1.4387752×10–2 m K 2-3 re 2.817940325×10–15 m 4-7 σ 2-4 λc 4-8 ε0 8.
#02 n.Σxiyi – Σxi.Σyi n.Σxi2 – (Σxi)2 a= Σyi – a.Σxi b= n n.Σxiyi – Σxi.Σyi 2 . {n Σxi – (Σxi)2}{n.Σyi2 – (Σyi)2} r= y–b a n = ax + b m= #03 Sx2y.Sxx – Sxy.Sxx2 a= Sxx.Sx2x2 – (Sxx2)2 Sxy.Sx2x2 – Sx2y.Sxx2 b= Sxx.Sx2x2 – (Sxx2)2 Σyi – a Σxi2 – b Σxi c= n n n ( ) ( ) Sxx = Σxi – 2 (Σxi)2 Sxy = Σxiyi – n (Σxi .Σyi) n – b + b2 – 4a(c – y) 2a – b – b2 – 4a(c – y) m2 = 2a n = a x2 + bx + c (Σxi.Σxi2) n (Σx 2)2 Sx2x2 = Σxi4 – ni (Σxi2.
#05 (Σ a = exp lnyi – b.Σxi n ) n.Σxilnyi – Σxi.Σlnyi b= n.Σxi2 – (Σxi)2 n.Σxilnyi – Σxi.Σlnyi r= 2 . {n Σxi – (Σxi)2}{n.Σ( lnyi)2 – (Σlnyi)2} lny – lna m= n = aebx #06 b (Σ ny –n n .Σx ) ( n.Σnx.Σnyx ––ΣΣx x.Σ ny ) l a = exp l b i il b = exp r= m= #07 2 i) l 2 i lnb ( Σ ny –n .Σ nx ) l a = exp r= i ( i n.Σ xilnyi – Σ xi.Σlnyi 2 . {n Σ xi – (Σ xi)2}{n.Σ(lnyi)2 – (Σlnyi)2} lny – lna n = abx b= i i i b l i n.Σlnxilnyi – Σlnxi.Σlnyi n.Σ(lnxi)2 – (Σlnxi)2 n.
#08 Σyi – b.Σxi–1 a= n Sxy b= Sxx Sxy r= Sxx.Syy Sxx = Σ (xi–1)2 – Syy = Σyi – 2 (Σxi–1)2 (Σyi)2 n Sxy = Σ(xi –1)yi – m= n Σxi–1.
7 RT υ = 3M (M, T > 0) y [(xp, yp)→(Xp, Yp)] (xp, yp) Y Xp = (xp–x0)cosα + (yp–y0)sinα α Yp = (yp–y0)cosα – (xp–x0)sinα x y0) ( 0, (0, 0) 8 [ γP + 2υg 2 P2 = P1 + γ [ γP + 2υg 2 9 υ2 = 10 + Z = Const. ( ] υ12 – υ22 + Z – Z 1 2 2g + Z = Const. ] ) 2 (υ , P, γ , Z > 0) ] + Z = Const.
T1 – T2 T1 ( T1 G 0) 14 η= 15 F = mrω 2 (m, r, ω > 0) 16 2 F=m υ r 17 υ= 18 S0 = π rR (r,R> 0) 19 V = 1 π r2h (r, h > 0) 20 S0 = 2 π rh (r, h > 0) 21 V = π r 2h 22 T = 2ωπ (r, m, υ > 0) T ( T, σ > 0 ) σ 3 (r, h > 0) ( ω G 0) 23 T = 2υπ r 24 T = 1f 25 S = π r 2 (r > 0) 26 R=ρ R S 27 [ A υ ρ = A υ ρ = Const. ] 1 υ2 = 28 1 ( υ G 0) ( f > 0) 1 (S,R, ρ > 0) 2 A1υ 1 ρ1 A2 ρ 2 2 2 (A2, ρ 2 > 0) [ A υ ρ = A υ ρ = Const.
29 30 R4R5 + R5R6 + R6R4 R5 R4R5 + R5R6 + R6R4 R2 = R6 R4R5 + R5R6 + R6R4 R3 = R4 R1 = R4 = (R4, R5, R6 > 0) R1R2 R2R3 R 3R 1 , R5 = , R6 = R1 + R2 + R3 R1 + R2 + R3 R1 + R2 + R3 (R1, R2, R3 > 0) 31 X [(XA, YA), Rec(R, α )→(Xp, Yp)] (Xp, Yp) XP = Rcos α + XA YP = Rsin α + YA α R (XA, YA) 32 33 a = b + c – 2bc cos A → a = b + c – 2bc cos A b2 = c2 + a2 – 2ca cos B (b, c > 0, 0˚ < A < 180˚) c2 = a2 + b2 – 2ab cos C Qq F= 1 (r > 0) 4 π ε 0 r2 2 2 2 2 34 S = 13 + 23 + ······ + n3 = 35 A
37 X Pol(XB – XA, YB – YA) (XB, YB) α (XA, YA) ( ) υ–u υ G υ 0, f0 > 0, υ – υ 0 > 0 38 υ f = f0 υ –– υu 0 39 S = υ 0 t + 1 gt 2 40 Up = 1 kx 2 41 W = 1 CV 2 42 Q2 W= 1 2 C 43 W = 1 QV 44 W = 1 ED 2 45 W = 1 ε E 2 ( ε , E > 0) 46 E= 47 f= 48 S = π ab 2 2 (t > 0) (k, x > 0) 2 (C > 0) 2 2 Q 4 π ε0r2 1 2 π LC (E, D > 0) ( = 9 × 10 9 Q ) r2 ( r > 0) (L, C > 0) (a, b > 0) b a 49 R H = U + PV (U, P, V> 0) – –
50 y = λ e– λ x x > 0 51 P x = ( 1 – P )x P 52 S= y=0 x<0 ( λ > 0) ( ) x = 0, 1, 2······ 0
0) (n, T, P > 0) (P, V, n > 0) (P, V, T > 0) sin ic = n1 (1 < n12 ) W = 1 L I2 (L , I > 0) 2 ( a+b>c >0 b+c>a >0 c+a>b >0 (0 < k < N, 0 < n < N ) (n, T, V > 0) 12 62 (r G 1) – – )
63 64 x = nX3 – mX1 + Y1 – Y3 n–m y = m (x – X 1) + Y 1 ( (X4, Y4) ) m = Y2 – Y1 X2 – X1 Y n = 4 – Y3 X4 – X3 (X1, Y1) (x, y) nX3 – mX1 + Y1 – Y3 n–m y = m (x – X 1) + Y 1 x= ( m = Y2 – Y1 X2 – X1 n = tan α X ) (X1, Y1) (x, y) (X3, Y3) P = RI2 (R > 0) 66 P= V R (R > 0) 67 Uk = 1 mυ2 68 X = 2π f L – 69 Z = R2 + (2 π f L )2 (= R2 + ω 2 L2 ) 71 72 2 (m, υ > 0) 2 Z= Z= 1 1 ( =ω L – = XL – XC ) ωC 2π f C 1 ( R) ( f C R ( fL 1 F = mH 2 2 + α (X2, Y2) 65 70 (X3, Y3) (
73 T = 1 mυ2 = 1 q2 B2 2 R m 74 F = iBRsin θ (R> 0, 0˚< θ < 90˚) 75 R1 = Z0 1– 2 2 Z1 ,R = Z0 2 L min = 20 log 76 [ M = DZ 1 = 1 77 ( ) Z0 –1 Z1 Z0 [d B] R2 (Z0 > Z1 > 0) ] (P > 0) π [ M = DZ 1 = 1 D1Z2 Z1 D2 = 79 R1 (D, Z > 0) M= D Z [ M = DZ11 = DZ22 = πP ] M= P 78 Z1 Z 1– 1 Z0 Z0 + Z1 D2 = P π Z2 (m > 0, B > 0, R > 0) [ M = DZ 1 D2 = P π Z2 ] (D1, Z1, Z2 > 0) = 1 D = PZ D2 = P π Z2 (P, Z > 0) π 80 y= 1 e– 2π σ 81 YR = 82 S = ab sin α ] (x –µ)
83 C= 84 d= εS (S, d > 0) d ax1 + by1 + c a2 + b2 P(x1, y1) (a, b G 0) d ax1 + by1 + c = 0 85 R= (x2 – x1)2 + (y2 – y1)2 y y2 y1 (x 86 –µ Px = µ e x! 87 Up = mgh 88 cos ϕ = R = P EI Z 89 Ap [dB] = 10 10 90 V = 1 Ah (A, h > 0) 91 a +b = c x 3 2 2 = 0, 1, 2······ 0< µ (m, h > 0) ( ) R log ( P ) [d B] P ) R x2 x1 > 0) ( 2 1 (P2 / P1 > 0) 2 c b a – 12 –
92 S= (X1 – X2) (Y3 – Y1) + (X1 – X3) (Y4 – Y2) + (X1 – X4) (Y1 – Y3) 2 Y (X4, Y4) (X1, Y1) (X3, Y3) (X2, Y2) X 93 VR = V· e 94 Z = R2 + 95 v – t CR 1 (2 π f C )2 ( R2 + 12 2 ω C = ) [Xn = XA +Rn cos α n, Yn = YA +Rnsinα n ] α n = α 0 + θn – 180: Xn = XA +Rn cos α n (R, f, C > 0) X Yn = YA +Rnsin α n α0 θ1 (X1, Y1) α1 R (XA, YA) 96 n = sin i sin r (i , r > 0) i r Hr = (n + r – 1) ! r ! (n – 1) ! 97 n 98 n 99 R = uR v 100 ∏r = nr E = 1 Iω 2 2 ( 0
101 102 v ZR = R, ZX = 2 π f L – 1 2π f C (R, f, L, C, Z > 0) IA = 2sin–1 l 2R 2 π R2IA S= – R sinIA CL IA 2 360 CL = π × R × IA R 180 103 S = 1 rR (r,R> 0) 2 104 τ = P A S l R r (A, P > 0) 105 τ = Gγ (G, γ > 0) 106 F = – mg sin θ (m > 0) F θ θ mg 107 F=– mg R x (m ) R> 0 >0 O F H 108 x = r sin θ ( r > 0) 109 x = r sin ω t ( r > 0) – 14 – x mg
110 T = 2π R 111 [ sina A = 2R g (R> 0) (R ) 0˚ < A < 180˚ >0 ] a = 2Rsin A A R 0 a 112 [ sina A = 2R a R= 2sin A 113 114 v ] (0˚< A < 180˚, a > 0 ) a b c = = = 2R sin A sin B sin C ( 0˚< A, B, C < 180˚ a, b, c, R > 0 I TL = R tan 2A TL π CL = 180 · R· IA SL = R ( ) 1 cos IA 2 ( r > 0) 116 S = 4π r2 ( r > 0) 117 3 V= 4 πr 118 T = 2π m k 3 L ) I = 4 πPr 2 L C –1 115 IA S R ( r > 0) (m > 0, k > 0) – 15 –
119 S = 12 + 22 + ······ + n2 = 1 n (n + 1)(2 n + 1) 120 S = KRcos2α + C cos α 6 (K 0 < α < 90˚ ,R, C > 0 h = 1 KRsin 2 α + C sin α 2 121 S = 1 (a + b) h 122 λ= 123 S = 1 bc sin A 124 S= (a, b, h > 0) 2 σ E ) (E, σ ,R> 0) R (0˚ < A < 180˚) 2 (X1 – X2) (Y3 – Y1) + (X1 – X3) (Y1 – Y2) Y 2 (X1, Y1) (X3, Y3) (X2, Y2) 1 125 y = b–a a 0) [(XA, YA) to (XC, YC) → (x, y), R] x= (XC, YC) 1 X –Y +Y mXA + m C A C m+ 1 m y = Y A + m
CASIO COMPUTER CO., LTD.