User Manual
Table Of Contents
- Contents
- Getting Acquainted — Read This First!
- Chapter 1 Basic Operation
- Chapter 2 Manual Calculations
- 1. Basic Calculations
- 2. Special Functions
- 3. Specifying the Angle Unit and Display Format
- 4. Function Calculations
- 5. Numerical Calculations
- 6. Complex Number Calculations
- 7. Binary, Octal, Decimal, and Hexadecimal Calculations with Integers
- 8. Matrix Calculations
- 9. Vector Calculations
- 10. Metric Conversion Calculations
- Chapter 3 List Function
- Chapter 4 Equation Calculations
- Chapter 5 Graphing
- 1. Sample Graphs
- 2. Controlling What Appears on a Graph Screen
- 3. Drawing a Graph
- 4. Storing a Graph in Picture Memory
- 5. Drawing Two Graphs on the Same Screen
- 6. Manual Graphing
- 7. Using Tables
- 8. Dynamic Graphing
- 9. Graphing a Recursion Formula
- 10. Graphing a Conic Section
- 11. Changing the Appearance of a Graph
- 12. Function Analysis
- Chapter 6 Statistical Graphs and Calculations
- 1. Before Performing Statistical Calculations
- 2. Calculating and Graphing Single-Variable Statistical Data
- 3. Calculating and Graphing Paired-Variable Statistical Data
- 4. Performing Statistical Calculations
- 5. Tests
- 6. Confidence Interval
- 7. Distribution
- 8. Input and Output Terms of Tests, Confidence Interval, and Distribution
- 9. Statistic Formula
- Chapter 7 Financial Calculation (TVM)
- Chapter 8 Programming
- Chapter 9 Spreadsheet
- Chapter 10 eActivity
- Chapter 11 Memory Manager
- Chapter 12 System Manager
- Chapter 13 Data Communication
- Chapter 14 PYTHON (fx-9860GIII, fx-9750GIII only)
- Chapter 15 Distribution (fx-9860GIII, fx-9750GIII only)
- Appendix
- Examination Modes (fx-9860GIII, fx-9750GIII only)
- E-CON3 Application (English) (fx-9860GIII, fx-9750GIII)
- 1 E-CON3 Overview
- 2 Using the Setup Wizard
- 3 Using Advanced Setup
- 4 Using a Custom Probe
- 5 Using the MULTIMETER Mode
- 6 Using Setup Memory
- 7 Using Program Converter
- 8 Starting a Sampling Operation
- 9 Using Sample Data Memory
- 10 Using the Graph Analysis Tools to Graph Data
- 11 Graph Analysis Tool Graph Screen Operations
- 12 Calling E-CON3 Functions from an eActivity
6-57
Distribution
Inverse Cumulative Distribution
Normal
Distribution
p = p(x)dx
Upper
–∞
∫
p = p(x)dx
Lower
∞
∫
p = p(x)dx
Upper
Lower
∫
tail = Left tail = Right tail = Central
Student-
t
Distribution
p = p(x)dx
Lower
∞
∫
χ
2
Distribution
F Distribution
k Distribution (Discrete)
Distribution Probability
Binomial Distribution
p(x) =
nCxp
x
(1–p)
n – x
(x = 0, 1, ·······, n)
n : number of trials
Poisson Distribution
(x = 0, 1, 2, ···)
p(x) =
x!
e
–
μ
μ
×
x
μ
: mean (
μ
> 0)
Geometric Distribution
p(x)
= p(1– p)
x – 1
(x = 1, 2, 3, ···)
Hypergeometric
Distribution
p(x) =
MCx × N – MCn – x
N
Cn
n : Number of trials from population (0 n integer)
M : Number of successes in population (0 M integer)
N : Population size ( n N , M N integer)
Distribution
Cumulative Distribution
Inverse Cumulative Distribution
Binomial Distribution
p =
Σ
p(x)
x=0
X
p H
Σ
p(x)
x=0
X
Poisson Distribution
Geometric Distribution
p =
Σ
p(x)
x=1
X
p H
Σ
p(x)
x=1
X
Hypergeometric
Distribution
p =
Σ
p(x)
x=0
X
p H
Σ
p(x)
x=0
X