ZU fx-991ZA PLUS Isiqondiso kumsebenzisi Iwebhsayithi yakwa CASIO yezemfundo umhlaba wonke http://edu.casio.
Okuqukethwe Ulwazi olubalulekile................................................................. 2 Amasampula okusetshenziswa kwesibali..............................2 Ukuqala ukusebenzisa isibali ................................................. 2 Amanyathelo okuvikela ingozi ............................................... 2 Indlela yokuphatha ephephile ................................................ 2 Ukususa ikhava yangaphandle .............................................. 3 Ukukhanyisa nokucima.......
Ulwazi olubalulekile • Imiboniso nemifanekiso (njengezimpawu zezinkinobho) ekhonjisiwe kulesisiqondiso kumsebenzisi ngeyokufanekisa kuphela, ingahluka kancane kulezozinto ezimele. • Okuqukethwe kulelibhukwana kungashintsha ngaphandle kokunikeza isaziso. • Inkampani yakwa CASIO Computer Co., Ltd. ayizukuba nasibophezelo kunanoma ngubani mayelana nokuthengwa kumbe ukusetshenziswa kwalomkhiqizo nazozonke izinto ezihambisana nawo. Ngaphezukwalokho, I CASIO Computer Co., Ltd.
• Ungalisebenzisi ibhetri le Oxyride* noma ngabe yiluphi uhlobo lwebhetri ene nickel kulomkhiqizo. Ukungahambelani kwalamabhetri kanye nalomkhiqizo kungadala ukuthi amabhetri ahlale isikhathi esincane futhi nalomkhiqizo ube nezinkinga ekusebenzeni kahle. • Gwema ukusebenzisa nokugcina lomkhiqizo endaweni enamazinga okushisa nokubanda aphansi kakhulu noma phezulu kakhulu, nasezindaweni ezinomswakama kanye nezintuli eziningi.
Iziphawulo zezinkinobho Ukucindezela inkinobho u 1 noma u S kulandelwa Ifanshini enye inkinobho yesibili, yenza umsebenzi omunye wenkinobho sin–1 D yesibili. Umsebenzi omunye wenkinobho yesibili ukhonjiswa ngombhalo, obhalwa ngaphezu kwenkinobho. Okulandelayo kukhombisa ukuthi imibala ehlukene ngaphezu kwenkinobho isho ukuthini: Ifanshini s esenkinobhweni Uma umbhalo womaka Kusho lokhu: wenkinobho unalombala: Ophuzu Cindezela u 1 bese ucindezela inkinobho yokufinyelela kwinsizakusebenza efanele.
Kufakwe isimo sika ALPHA ngokucindezela inkinobho u S. Isimo sika ALPHA kuzophumeka kusona futhi nalenkomba izonyamalala uma ucindezela inkinobho. M Kunenani eligcinwe kwisikhumbuzi esizimeleyo. STO Isibali silindele igama loguquguqukayo ukuze sinike lowo oguquguqukayo inani. Lenkomba ivela ngemuva kokucindezela lokhu 1t(STO). RCL Isibali silindele igama loguquguqukayo ukuze sikhumbule inani loguquguqukayo. Lenkomba ivela ngemuva kokucindezela lokhu u t. STAT Isibali sisesimweni esingu STAT.
Ukubalula isimo sokubala Uma ufuna ukwenza loluhlobo lokubala: Cindezela lezinkinobho kanje: Ukubala okwejwayelekile N1(COMP) Ukubala okuphicayo N2(CMPLX) Ukubala okuphathelene nestathistiksi kanye nobudlelwano phakathi kwama variyebhuli (oguquguqukayo). N3(STAT) Izibalo ezimbandakanya izinhlelo zezinombolo ezibaluliwe (ziqumbili, okthali, desimali, hekzadesimali) N4(BASE-N) Ukuxazulula i-ikhweyishini. N5(EQN) Izibalo zematrix.
Qaphela: Kulelibhukwana, uphawu v eduze kwesampula yokubala, lukhombisa amadigrizi, kanti uphawu u V lukhombisa amaradiyeni. 6Fix 7Sci 8Norm Ubalula inani yamadijithi angavela ebusweni besibali uma sekuphuma umphumela wokubala. Fix: Inani olibalulayo (kusuka ku 0 kuya ku 9) lilawula inombolo yamadijithi emva kukakhefu weqhezu lokubalwa ngokweshumi emiphumeleni yokubala ezovela ebusweni besibali. Imiphumela yokubaliwe iyasondezelwa kuleyodijithi ebaluliwe ngaphambi kokuba ivezwe. Isibonelo: b 100 ÷ 7 = 14.
Ukufaka izimeli namanani Imithetho yokufaka imininingwane eyisisekelo Izibalo zingabhalwa kwisibali ngendlela efanayo naleyo ezibhalwa ngayo ephepheni. Uma ucindezela u = isibali sihlola ngokushesha okubaluleke ukuba sikwenze kuqala, sikwenze ngokulandelana kokubaluleka bese sikhipha umphumela ebusweni baso. 4 × sin30 × (30 + 10 × 3) = 120 4 *s 30 )*( 30 + 10 * 3 )= 2 * *1 Math *3 *1 Imininingwane yabakaki bokuvala iyadingeka ku sin, sinh, namanye ama fanshini anama anabakaki.
sin(30) × 4 :B 5 ' 4 c 5 dddds 30 ) Math Math = Qaphela: • Uma isibalo siba side kunobuso besibali ngesikhathi kusafakwa imininingwane yesibalo, isibuko sizozihambela ngokwaso siye ngakwesokudla bese kuvela inkomba u ]. Ngesikhathi kwenzeka lokhu, ungabuyela ngakwesobunxele ngokusebenzisa u d no e ukuhambisa inkomba. • Uma kukhethwe umboniso oveza imininingwane emqgeni owodwa, ukucindezela f kwenza inkomba ijombele ekuqaleni kwesibalo, kanti ukucindezela u c kuyenza ijombele ekugcinen I kwesibalo.
Okwesishiyagalolunye: Umphumela wokuphindaphinda, wechashazi (·) Okweshumi: Ukuphindaphinda (×), ukuhlukanisa (÷) Okweshumi nanye: Ukuhlanganisa, ukususa (+, –) Okweshumi nambili: AND (and) enelojiki Okweshumi nantathu: OR, XOR, XNOR (or, xor, xnor) abanelojiki Ukufaka Ngombukiso Wemvelo Ukukhetha umboniso wemvelo kwenza ukuthi ukwazi ukufaka futhi ubonise amaqhezu nezinye izinhlobo zamafanshini (log, x2, x3, x^, ), #, ", x−1, 10^, e^, ∫, d/dx, Σ, Abs) zinjengoba zibhaliwe encwadini yakho.
agumenti, yiyoyonke into kuze kuyofika kwi parenthesisi yokuqala evulekile ngakwesokudla, uma ikhona, noma yonke into kuze kuyofika kwi function yokuqala, uma uya ngakwesokudla (sin(30), log2(4), njalo njalo). Lokhu kungasetshenziswa nama fanshini alandelayo: ' , & , 7 , 17(F), 1&(8), 16("), 1l($), 1i(%), !, 6, 1!(#), 1w(Abs). Ukushintsha isimo sokufaka (Umboniso Ongumugqa kuphela) Ungakhetha u insert noma u overwrite njengesimo sokufaka, kodwa kuphela uma kukhethwe umboniso ongumugqa.
1 – 4 = 1 = 0.2 5 5 1-4'5= b 1{5 f 0.2 Kubalulekile: • Kuyoncika ohlotsheni lomphumela wokubaliwe oliveziwe, kodwa uma ucindezela inkinobho u f uhlelo lokushintsha lungathatha isikhathi ukwenzeka. • Kweminye imiphumela yokubaliwe, ukucindezela inkinobho u f akuzukusishintsha isimo senani eliveziwe.
Khulisa u 2 500 ngo 15%. (2875) 2500 + 2500 * 15 1((%)= 2875 Yehlisa u 3 500 ngo 25%. (2625) 3500 - 3500 * 25 1((%)= 2625 Izibalo zamaDigri, IMizuzu neMizuzwana (Sexagesimal) Ukuhlanganisa nokususa phakathi kwamanani angama sexagesimali, noma ukuphindaphinda, noma ukuhlukanisa phakathi kwenani eliyi sexagesimali nenani eliyiqhezu lokweshumi izokwenza umphumela ukuba uvezwe uyinani eliyisexagesimali. Uyakwazi futhi ukushintsha phakathi sexagesimali neqhezu lokweshumi.
Umlando Wokubala Kwi Modi engu COMP, CMPLX, noma BASE-N, uyakwazi ukwehla wenyuka ubheka okuqukethwe umlando wokubaliwe usebenzisa f no c. 1+1= 2+2= 3+3= (Uphindela emuva) f (Uphindela emuva futhi) f 1+1=2 2+2=4 3+3=6 2 4 6 4 2 Qaphela: Umlando wokubala uyacisheka njalo uma ucindezela u O, noma ushintshela kwimodi yokubala eyahlukile, noma ushintsha isimo sombukiso, noma wenza noma iyiphi inqubo yokusetha isibali.
Thola uhlu lokulandelana kusuka ku T1 kuya ku T5, lwalokhu kulandelana kukaFibonacci Tk+2 = Tk+1 + Tk. Qaphela nokho ukuthi u T1 = 1 no T2 = 1.
0 1t(STO)l(M) Ukucisha okuqukethwe ngu M Ukwengeza umphumela ka 10 × 5 ku M (Uqhubeka) Ukususa umphumela ka 10 + 5 ku M (Uqhubeka) 0 10 * 5 l 50 10 + 5 1l(M–) 15 tl(M) 35 Ukukhumbula okuqukethwe ngu M (Uqhubeka) Qaphela: Oguquguqukayo u M usetshenziswa kwimemory ezimele. Ukucisha okuqukethwe kuwowonke amamemori I-Ans memori, imemori ezimele, kanye nokuqukethwe oguquguqukayo kuyagcinwa noma ngabe ucindezela u A, ushintsha imodi yokubala, noma ucisha isibali.
Qaphela: • Angeke ukwazi ukufekthorayiza ngezinombolo ezingahlukaniseki ngokuphelele ngesikhathi kusavezwe umphumela wokubala oyinani eliyi qhezu lokubalwa ngokweshumi, iqhezu, noma inani elinophawu lokususa. Ukuzama ukwenza lokho iphutha lezibalo (Math ERROR). • Angeke ukwazi ukufekthorayiza ngezinombolo ezingahlukaniseki ngokuphelele ngesikhathi kuvezwe umphumela wokubala osebenzisa u Pol noma u Rec.
ukubekezela, okuba ngu 1 × 10–10 uma kungafakwanga lutho ku tol. Bheka futhi “Okumele ukuqaphele eziBalweni ze-Intagreshini neDifarentiyeshini” ukuthola olunye ulwazi. Bheka u 9 . 8: Ifanshini esebenza uma unikeze uhla oluthize f(x), ikunikeze b umphumela wokuhlanganisa Σ ( f (x)) = f(a) + f(a+1) + f(a+2) + ...+ x=a b f(b). Kufakwa kanje kwisiboniso semvelo Σ ( f (x)) , kanti kwisiboniso x=a esiwumugqa kufakwa kanje Σ( f(x), a, b).
Qaphela: Ukusebensisa amafanshini kunganciphisa ukushesha kokubala, okungalibazisa ukuvezwa komphumela. Ungenzi lutho olunye ngesikhathi usalinde umphumela wesibalo ukuba uvele. Ukuphazamisa ukubala okuqhubekayo ngaphambi kokuba umphumela wako uvele, cindezela u A. Okumele ukuqaphele eziBalweni ze-Intagreshini neDifarentiyeshini • Izibalo ze-intagreshini kanye nedifarentiyeshini zingenziwa kuphela kwi Modi engu COMP (,1). • Lokhu okulandelayo akusebenziseki ku f(x): Pol, Rec.
f (x) ∫ a 0 x1 x2 x3 x4 b x b f(x)dx = a + ∫ b x4 ∫ x1 a f(x)dx + ∫ x2 x1 f(x)dx + ..... f(x)dx Izibonelo bv s 30 )= sin 0.5 = 30° bv 1s(sin ) 0.5 )= 1 sin 30°= 0.5 −1 2 sinh 1 = 1.175201194 0.5 30 −1 wb(sinh) 1 )= 1.
9 Ukuthola i-dirivathivu ecashazini u x = π/2 lefanshini u y = sin(x) V B 17(F)sS)(X)) e'15(π)e 2 = b 17(F)sS)(X)) 1)(,)15(π)' 2 )= 0 0 5 10 Σ (x + 1) = 20 x =1 B b 1&(8)S)(X)+ 1 e 1 e 5 = 1&(8)S)(X)+ 1 1)(,) 1 1)(,) 5 )= 20 20 11 Ukushintsha ukuvumelana okusanxande (' 2,' 2 ) kube okuvumelana okuyiphola. v B 1+(Pol)! 2 e1)(,)! 2 e)= r=2, =45 b 1+(Pol)! 2 )1)(,)! 2 ))= r= 2 = 45 Ukushintsha ukuvumelana okuyiphola (' 2 , 45°) kube okuvumelana okusanxande.
17 Ukwenza lezibalo ezilandelayo ngesikhathi kukhethwe u Fix 3 wamadijithi azovezwa ebusweni: 10 ÷ 3 × 3 no Rnd(10 ÷ 3) × 3 b 1N(SETUP)6(Fix)3 10 / 3 * 3 = 10(Rnd) 10 / 3 )* 3 = 10.000 9.999 Izibalo zezinombolo eziphicayo (CMPLX) Ukwenza izibalo zezinombolo eziphicayo, kuqala cindezela u N2(CMPLX) ukufaka imodi ka CMPLX. Ungasebenzisa noma ukuvumelana okusanxande (a+bi) noma okusaphola (r∠ ) ukufaka izinombolo eziphicayo.
Ukusebenzisa umyalo ukubalula isimo somphumela wesibalo Omunye wemiyalo emibili ekhethekile ('r∠ noma 'a+bi) angafakwa ekugcineni kwesibalo ukubalula isimo okuzovezwa ngaso imiphumela yezibalo. Umyalo lona uyayiqgiba indlela obekusethwe ngayo isibali, sisethelwa izinombolo eziphicayo.
Ukugcina u A + Bi bese uthola u ' 3 + i, 1 + ' 3 i usebenzisa ukuvumelana okuyiphola (r∠ ) v N2(CMPLX) S-(A)+Se(B)W(i) 12(CMPLX)3('r∠ ) CMPLX Math s! 3 )= 1 = s (Noma =) 1 =! 3 )= Ukuphuma ku CALC: A Qaphela: Ngalesisikhathi kusukela ucindezela u s kuze kube uyaphuma ku CALC ngokucindezela u A, kumele usebenziseindlela yokufaka imininingwane yomboniso osamugqa. Ukusebenzisa uxazulula (SOLVE) Uxazulula usebenzisa umthetho ka Newton ukusondezela isixazululo sesibalo esilingana nesinye.
Math 0 = 1 =- 2 = Inani lika X lamanje Math Faka inani lokuqala lika X (Lapha faka 1): 1= Ubuso obuveza isixazululo Ukuphuma ku SOLVE: A Qaphela: Ngalesisikhathi kusukela ucindezela u 1s(SOLVE) kuze kube uyaphuma ku SOLVE ngokucindezela u A, kufanele usebenzise inqubo yokufaka imininingwane yomboniso osamugqa. Kubalulekile: • Kungenzeka u SOLVE angakwazi ukuthola izixazululo, kuncike ekutheni ufake bani njengenani lokuqala lika X (oguquguqukayo wesixazululo).
Math 1s(SOLVE) Math 3= Math Faka inani lokuqala lika X (Lapha faka 1): 1 = Math = 7 == Math = 13 == Izibalo zeStathistiksi (STAT) Ukuqala isibalo sestathistiksi, yenza lokhu okusemqoka N3(STAT) ukufaka imodi u STAT, bese usebenzisa iskrini esizovela ukukhetha uhlobo lwesibalo ofuna ukulenza.
Ukufaka Imininingwane Sebenzisa okokuhlela u Stat ukufaka imininingwane. Yenza lokhu okulandelayo, okusemqoka, ukuveza okokuhlela uStat: 11(STAT/DIST)2(Data). Okokuhlela uStat kukunikeza imigqa engama 40 ukuze ufake imininingwane, lapho kukhona uhlu luka X kuphela, noma kukhona uhlu luka X no Y. Angama 20 lapho kukhona uhlu luka X noluka FREQ, noma imigqa engama 26 lapho kukhona uhlu luka X, Y, no FREQ. Qaphela: Sebenzisa uhlu luka FREQ (ukuphindaphinda) ukufaka inani lemininingwane yezinto ezifanayo.
ezinoguquguqukayo oyedwa, abaguquguqukayo abaphawulwe nge-asteriski (*) bakhona.
3 Ukubala ama khoreleshini kho-efishiyenti e rigreshini engumungqa kanye neyenombolo eyisibambiso yemininingwane yabaguquguqukayo abangababili kanye nokuthola irigreshini fomula yekhorileshini enamandla kakhulu: (x, y) = (20, 3150), (110, 7310), (200, 8800), (290, 9310).
P, Q, R: Lamafanshini athatha i-agumenti t bese ethola okungenzeka kwokwabiwa okwejwayelekile okwamukelekile, njengoba kukhonjisiwe ngezansi. Q (t) P (t) 0 t 0 t R (t) 0 t 't: Lefanshini ilandela i-agumenti u X, bese ithola ivariyethi eyenziwe yaba ejwayelekile .
l(BIN) 11 + 1 = Ukuqhubeka kokungenhla, shintshela ku hekzadesimali modi bese ubala u 1F16 + 116 A6(HEX) 1 t(F)+ 1 = Ukuqhubeka kokungenhla, shintshela ku okthali modi bese ubala u 78 + 18 Ai(OCT) 7 + 1 = Qaphela: • Sebenzisa lezizinkinobho ezilandelayo ukufaka izinhlamvu A kuya ku F kumanani ayihekzadesimali: -(A), $(B), w(C), s(D), c(E), t(F). • Kwi Modi enesisekelo sokubala esingu n, amanani okufakiwe okuyiqhezu (desimali) kanye nomphindaphindi awavumelekile. Uma umphumela unengxenye eyiqhezu, iyalahlwa.
13(BASE)c3(b) 10 + 13(BASE)c4(o) 10 = 36 Ukushintshela umphumela wesibalo kolunye uhlobo lwenani Ungasebenzisa nanoma yimuphi kulaba abalandelayo ukushintsha umphumela oveziwe, ube olunye uhlobo lwenani: x(DEC) (desimali), 6(HEX) (hekzadesimali), l(BIN) (ziqumbili), i(OCT) (okthali). Ukubala u 1510 × 3710 kwidesimali modi, bese umphumela uwushintshela kwi hekzadesimali modi, imodi yoziqumbili, kanye ne okthali modi.
Ukubalwa kwezibalo ezilingana nezinye (EQN) Ungasebenzisa lenqubo elandelayo kwi -EQN modi ukuxazulula izibalo eziwumugqa, ezilingana nezinye ngasikhathi sinye, ezinabaguquguqukayo ababili noma abathathu, izibalo ezilingana nezinye ezikhwadrathikhi, kanye nezibalo ezilingana nezinye ezikhubhikhi. 1. Cindezela N5(EQN) ukufaka i-EQN Modi 2. Kwimenu ezovela, khetha uhlobo lwesibalo esilingana nesinye.
Ukushintsha ukuhlelwa kohlobo lwesibalo esilingana nesinye kwangalesosikhathi Cindezela u N5(EQN), bese ukhetha uhlobo lwesibalo esilingana nesinye kwimenu evelayo. Ukushintsha uhlobo lwesibalo esilingana nesinye kwenza ukuthi amanani awowonke amakho-efishiyenti ekho-efishiyenti editha ashintshe abe iqanda.
Izibalo zeMetriksi (MATRIX) Sebenzisa iMetriksi Modi ukwenza izibalo ezimbandakanya amametriksi afika emigqeni emi 3 namakholamu ama 3. Ukwenza isibalo sematrixi, uqala ngokunikeza imininingwane kwabaguquguqukayo abayisipesheli bemetriksi (MatA, MatB, MatC), ebese usebenzisa abaguquguqukayo esibalweni njengoba kukhonjisiwe esibonelweni ngezansi. 2 –1 2 1 1 Ukunikeza 1 1 ku MatA no –1 2 ku MatB, bese wenza lezibalo ezilandelayo: 2 1 × 1 1 2 –1 (MatA×MatB), –1 2 2 1 + 2 –1 (MatA+MatB) 1 1 –1 2 1.
Oguquguqukayo ka MatAns angasetshenziswa ezibalweni njengoba kuchazwe ngezansi. • Ukufaka oguquguqukayo ka MatAns esibalweni, yenza lokhu okulandelayo: 14(MATRIX)6(MatAns). • Ukucindezela nanoma iyiphi yalezizinkinobho ngesikhathi iskrini sika MatAns siveziwe kuzozishintshela ngokwako kuye kwiskrini sokubala: +, -, *, /, E, w, 1w(x3). Iskrini sokubala sizoveza oguquguqukayo weMatAns elandelwa insizakubala noma ifanshini yenkinobho oyicindezelile.
3 3×MatA (Ukuphindaphinda kwemetriksi scala) A 3 *MatA= 4 Thola idetheminenti ka MatA (det(MatA)) A14(MATRIX)7(det) MatA)= 1 5 Thola itranspozishini ka MatC (Trn(MatC)) A14(MATRIX)8(Trn) MatC)= 6 Thola imetrixi ehlanekezeliwe ka MatA (MatA–1). Qaphela: Angeke ukwazi ukusebenzisa u 6 kulokhu. Sebenzisa lenkinobho E ukufaka u “ –1”. AMatAE= 7 Thola inani langempela lalelo nalelo lungu lika MatB (Abs(MatB)).
Ukwakha iThebula Lezinombolo lisuselwa kumafanshini amabili (TABLE) U TABLE wakha itafula lezinombolo elisusela kwifanshini eyodwa kumbe amabili. Ungasebenzisa I fanshin f(x) noma amafanshini amabili u f(x) no g(x). Bheka isihlokwana “Ukulungisa, ucuphe isethaphu yesibali” ukuthola eminye imininingwane. Thatha lezinyathelo ezilandelayo ukwakha itafula lezinombolo: 1. Cindezela u N7(TABLE) ukufaka u TABLE Modi. 2.
1N(SETUP)c5(TABLE)2(f(x),g(x)) S)(X)x+ 1 ' 2 Math Math = • Ukucindezela u = ngaphandle kokufaka lutho lwa g(x) kuzokwakha itafula lezinombolo kusetshenziswa u f(x) kuphela. Math S)(X)x- 1 ' 2 Math =-1 =1 =0.5 = Qaphela: • Inombolo ephezulu yemigqa kwi tafula lezinombolo elakhekile incika ku setup menu ukusetha itafula. Uhlelo luka “f(x)” lusebenzisa kufinyelele emigqeni engama 30, kanti oluka “f(x),g(x)” lusebenzisa kufinyelele emigqeni engama 20.
6. Cindezela u A ukudlulela kwisibonisi sokubala, bese ubala (VctA +VctB): 15(VECTOR)3(VctA)+15(VECTOR)4(VctB)=. • Lokhu kuzoveza isiboniso sokubala siks VctAns kanye nemiphumela. VCT VCT “Ans” umele “VctAns”. → Qaphela: “VctAns” umele “Vector Answer Memory”. Bheka “Imemori Yezimpendulo zamaVektha” ukutholwa ulwazi oluthe xaxa. Imemori Yezimpendulo zamaVektha Njalo nje uma isibalo esenziwe kwiVektha modi siyivektha, isibonisi seVctAns sizovela kanye nomphumela.
• Uma ufuna ukukopisha okuqukethwe ku VctAns, yenza lokhu ukuveza isibonisi sika VctAns: A15(VECTOR)6(VctAns)=. 2. Cindezela u 1t(STO), bese wenze okukodwa kwalokhu okulandelayo ukubalula lapho kukopishelwa khona: - (VctA), $ (VctB), noma w(VctC). • Lokhu kuzoveza iVektha Editha kanye nokuqukethwe lapho kukopishelwa khona. Izibonela zezibalo zama Vektha Lezizibonelo ezilandelayo zisebenzisa u VctA = (1, 2) no VctB = (3, 4) kusuka ku 1 , no VctC = (2, –1, 2) kusuka ku 2 .
(1w(Abs)VctA)1w(Abs) VctB))= VCT FIX VCT FIX 1c(cos–1)G)= Izibalo zokwaba (DIST) Ungasebenzisa inqubo engezansi ukwenza izinhlobo eziyisikhombisa ezahlukene zezibalo zokwahlukanisa. 1. Cindezela Nc1(DIST) ukufaka I DIST Modi. 2. Kwimenu evelayo, khetha uhlobo lwesibalo sokwaba.
bokungenzeka (0 Area 1), List: isampula lohla lwemininingwane, N: Inombolo yemizamo, p: impumelelo yokungenzeka (0 p 1) Isibonisi Sohla (Binomial PD, Binomial CD, Poisson PD, Poisson CD) Nge Binomial PD, Binomial CD, Poisson PD ne Poisson CD, sebenzisa isibonisi sohla ukufaka imininingwane eysampula. Ungafaka kuye kuma 25 amasampula emininingwane oguquguqukayo ngamunye. Imiphumela nayo ivezwa kwisibonisi sohla.
Ukubala ibinomiyali probhabhilithi yemininingwane eyisampula {10, 11, 12, 13, 14} uma N=15 no p=0.6 Nc1(DIST)4(Binomial PD) Iveza isibonisi sohla 1(List) • Ukubalula imininingwane usebenzisa isimo sampharametha, cindezela 2(Var). 10 = 11 = 12 = 13 = 14 = = 15 = 0.6 = ecccc Imiphumela: x = Okungenzeka okuyibhayinomiyali kwe 10 ⱌ 0.18594 x = Okungenzeka okuyibhayinomiyali kwe 11 ⱌ 0.12678 x = Okungenzeka okuyibhayinomiyali kwe 12 ⱌ 0.063388 x = Okungenzeka okuyibhayinomiyali kwe 13 ⱌ 0.
Abangaguquki besayensi Isibali sakho siza nabangama 40 abangaguquki besayensi abakhelwe ngaphakathi, abangasetshenziswa kunannoma iyiphi imodi ngaphandle kwa BASE-N. Ngamunye ongaguquki wesayensi uvezwa njengophawu olwahlukile (njengo π), olungasetshenziswa ngaphakathi ezibalweni. Ukufaka ongaguquki wesayensi esibalweni, cindezela 17(CONST) bese ufaka inombolo enamadijithi amabili ehambisana nalowo ongaguqukiyo omfunayo.
21: ( ) umzuzu wobuzibuthe kwi muyoni 22: (F) okungaguquki kuka Faraday 23: (e) ishaji engumsuka 24: (NA) okungaguquki kuka Avogadro 25: (k) okungaguquki kuka Boltzmann 26: (Vm) umthamo wemola yagesi ofanele (273.
Ukushintsha u 100g abe ngama ounce b A 100 18(CONV)22(g'oz)= Ukushintsha –31°C abe ama Fahrenheit b A- 31 18(CONV)38(°C'°F)= Lokhu okulandelayo kubonisa izinombolo ezinamadijithi amabili zaleyo naleyo khomandi yokushintsha kwemetrikhi.
Izibalo zamafanshini, Uhlu lokufakiwe, nokuCophelela Ifanshini sinx cosx Uhlu olufakwayo DEG 0 |x| 9 × 109 RAD 0 |x| 157079632.7 GRA 0 |x| 1 × 1010 DEG 0 |x| 9 × 109 RAD 0 |x| 157079632.7 GRA 0 |x| 1 × 1010 Kuyafana naku sinx, ngaphandle uma |x| = (2n–1) × 90. DEG tanx sin–1x cos–1x RAD Kuyafana naku sinx, ngaphandle uma |x| = (2n–1) × π/2. GRA Kuyafana naku sinx, ngaphandle uma, ngaphandle uma |x| = (2n–1) × 100.
°’ ” |a|, b, c 1 × 10100 ; 0 b, c Inani lemizuzwana linephutha elingu ±1 kwidijithi yesibili emva kwecashazi leqhezu lokweshumi.
Uma ufaka u 14 ÷ 0 × 2 = ngephutha esikhundleni sika14 ÷ 10 × 2 = B Math 14 / 0 * 2 = Math e (noma d) Math d1= Ukucisha umyalezo obika iphutha Ngesikhathi omyalezo obika iphutha usaveziwe, cindezela u A ukubuyela kwiskrini sokubala. Qaphela ukuthi lokhu kucisha futhi isibalo leso esinephutha. Imiyalezo yephutha Iphutha lezibalo (Math ERROR) Imbangela: • Umphumela omaphakathi kumbe owokugcina esibalweni osenzayo udlula uhla lokubala oluwamukelekile.
Isinyathelo: • Cacisa ubungako bematriksi noma ivektha bese wenza isibalo futhi. • Bhekisisa ubungako obubaluliwe kuma matriksi noma kumavektha ukubona ukuthi buyahambisana yini nesibalo. Iphutha loguquguqukayo (Variable ERROR) (SOLVE kuphela) Imbangela: • Awuzange umcacise oguquguqukayo wesixazululo, futhi akekho oguquguqukayo u X esibalweni sakho esilingana nesinye osifakile. • Oguquguqukayo wesixazululo ombalulile akayona ingxenye yesibalo esilingana nesinye osifakile.
4. Inishiyalayiza wonke amamodi namasethingi ngokwenza lokhu okulandelayo: 19(CLR)1(Setup)=(Yes). Ukushintsha iBhetri Ibhetri eliphansi likhonjiswa umbukiso ofiphele, noma ngabe ukwahlukana sekulungisiwe, noma ukwahluleka kwemifanekiso ukuvela esibukweni ngokushesha emva kokuba uvule isibali. Uma lokhu kwenzeka, shintsha ibhetri ufake elisha. Kubalulekile: Ukukhipha ibhetri kuzocisha konke okuqukethwe kwimemori yesibali. 1. Cindezela lokhu 1A(OFF) ukucisha isibali.
k Yini umehluko phakathi kwe Ans memori, PreAns memori, imemori ezimele, nememori eguquguqukayo? Ngayinye yalezinhlobo zamamemori isebenza “njengesitsha” esigcina inani elilodwa. Ans Memori: Igcina umphumela wesibalo esenziwe kamuva. Sebenzisa lememori ukusebenzisa umphumela wesibalo esidlule kwesilandelayo. PreAns Memori: Igcina umphumela wesibalo esenziwe ngaphambi kwesokugcina. I PreAns Memori ingasetshenziswa kuphela kwi COMP Modi.
Manufacturer: CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan Responsible within the European Union: CASIO EUROPE GmbH Casio-Platz 1 22848 Norderstedt, Germany Lomaka usebenza emazweni aseyurophu kuphela.
CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan SA1406-A © 2014 CASIO COMPUTER CO., LTD.