User`s guide

22
>> www.celestron.com
>>ĎēĉĎēČęčĊĔėęčĊđĊĘęĎĆđĔđĊ
ǡ
other stars appear to rotate. These points are called the celestial poles
Ǥǡ
in the northern hemisphere all stars move around the north celestial
pole. When the telescope’s polar axis is pointed at the celestial pole, it
is parallel to the Earth’s rotational axis.
Polaris
(North Star)
Fall
Spring
Summer
Winter
čĊĕĔĘĎęĎĔēĔċęčĊĎČĎĕĕĊė
ĈčĆēČĊĘęčėĔĚČčĔĚęęčĊĞĊĆė
ĆēĉęčĊēĎČčęǤ
͞ǧ͝
Ƥ
Ǥ
ǡƤƥǤ
ǡǤ
star, Polaris, is the end star in the handle of the Little Dipper. Since the
Little Dipper (technically called Ursa Minor) is not one of the brightest
ǡƥǤ
ǡ
(the pointer stars). Draw an imaginary line through them toward the
Ǥȋ͞Ǧ͞ȌǤ
Big Dipper changes during the year and throughout the course of the
ȋ͞Ǧ͝ȌǤȋǤǤǡ
ȌǡƥǤǡ
ȋ͞Ǧ͞ȌǤ
not as fortunate as those in the northern hemisphere. The stars around
the south celestial pole are not nearly as bright as those around the
ǤǤ
ȋ͝Ǥ͝Ȍ͝͡
minutes from the pole.
The north celestial pole is the point in the northern hemisphere
around which all stars appear to rotate. The counterpart in the
southern hemisphere is referred to as the south celestial pole.
Declination Drift Method of Polar Alignment
This method of polar alignment allows you to get the most accurate
alignment on the celestial pole and is required if you want to do long
exposure deep-sky astrophotography through the telescope. The
declination drift method requires that you monitor the drift of selected
stars. The drift of each star tells you how far away the polar axis is
pointing from the true celestial pole and in what direction. Although
declination drift is simple and straight-forward, it requires a great deal
ƤǤ
drift method should be done after any one of the previously mentioned
methods has been completed.
To perform the declination drift method you need to choose two
Ǥ
south near the meridian. Both stars should be near the celestial
ȋǤǤǡ͘λȌǤ
one at a time and in declination only. While monitoring a star on the
meridian, any misalignment in the east-west direction is revealed.
While monitoring a star near the east/west horizon, any misalignment
ǦǤ
Ǥ
close alignment, a Barlow lens is also recommended since it increases
ƤǤǡ
Ǥ
hair eyepiece and align the cross hairs so that one is parallel to the
declination axis and the other is parallel to the right ascension axis.
Move your telescope manually in R.A. and DEC to check parallelism.
ǡ
meet. The star should be approximately within 1/2 an hour of the
ƤǤ
ƤǤ
Ȉ ǡǤ
Ȉ ǡǤ

Ǥǡ
eastern horizon. The star should be 20 degrees above the horizon and
ƤǤ
Ȉ ǡǤ
Ȉ ǡǤ
ǡ
Ǥǡ
Ǥǡ
Ǥ
eliminated, the telescope is very accurately aligned. You can now do
prime focus deep-sky astrophotography for long periods.
NOTE: If the eastern horizon is blocked, you may choose a star near
the western horizon, but you must reverse the polar high/low error
directions. Also, if using this method in the southern hemisphere,
the direction of drift is reversed for both R.A. and DEC.
Polaris
(North Star)
Big Dipper
Little Dipper
Cassiopeia
N.C.P.
P
oi
n
t
e
r S
t
a
rs
͞ǧ͞
čĊęĜĔĘęĆėĘĎēęčĊċėĔēęĔċęčĊćĔĜđĔċęčĊĎČĎĕĕĊėĕĔĎēę
ęĔĔđĆėĎĘĜčĎĈčĎĘđĊĘĘęčĆēĔēĊĉĊČėĊĊċėĔĒęčĊęėĚĊȋēĔėęčȌ
ĈĊđĊĘęĎĆđĕĔđĊǤĆĘĘĎĔĕĊĎĆǡęčĊDzdzĘčĆĕĊĉĈĔēĘęĊđđĆęĎĔēǡĎĘĔē
ęčĊĔĕĕĔĘĎęĊĘĎĉĊĔċęčĊĕĔđĊċėĔĒęčĊĎČĎĕĕĊėǤčĊĔėęč
ĊđĊĘęĎĆđĔđĊȋǤǤǤȌĎĘĒĆėĐĊĉćĞęčĊDzήdzĘĎČēǤ