INSTRUCTION MANUAL
INTRODUCTION........................................................................................................................................................... 4 WARNING ....................................................................................................................................................................... 4 ASSEMBLY............................................................................................................................................................
TELESCOPE BASICS ................................................................................................................................................. 27 Image Orientation ................................................................................................................................................... 27 Focusing..................................................................................................................................................................
Congratulations on your purchase of the Celestron CPC telescope! The CPC GPS ushers in the next generation of computer automated telescopes. The CPC series uses GPS (Global Positioning System) technology to take the guesswork and effort out of aligning and finding celestial objects in the sky. Simple and easy to use, the CPC with its on-board GPS, is up and running after locating just three celestial objects.
7 8 9 6 5 10 4 11 3 12 2 1 13 14 – A B C D E F The CPC comes completely pre-assembled and can be operational in a matter of minutes. The CPC and its accessories are conveniently packaged in one reusable shipping carton while the tripod comes in its own box.
The CPC telescope comes completely pre-assembled and can be operational in a matter of minutes. The CPC and its accessories are conveniently packaged in one reusable shipping carton while the tripod comes in its own box.
Adjusting the Tripod Height The tripod that comes with your CPC telescope is adjustable. There is a bubble level located on the top of the tripod head to assist you in leveling the tripod. To adjust the height at which the tripod stands: Tripod Head Center Support Bracket / Central Column Accessory tray Tension Knob Extension Leg Clamp Figure 3-1 Figure 3-1 1. Loosen the extension clamp on one of the tripod legs (see figure 3-1). 2. Extend the leg to the desired height. 3.
2. Rotate the telescope base on the tripod head until the three feet on the bottom of the base fall into the feet recesses on the top of the tripod head. 3. Thread the three attached mounting bolts from underneath the tripod head into the bottom of the telescope base. Tighten all three bolts. You are now ready to attach the visual accessories onto the telescope optical tube. Adjusting the Clutches The CPC has a dual axis clutch system.
The Eyepiece The eyepiece, is the optical element that magnifies the image focused by the telescope. The eyepiece fits into either the visual back directly or the star diagonal. To install the eyepiece: 1. Loosen the thumbscrew on the star diagonal so it does not obstruct the inner diameter of the eyepiece end of the diagonal. 2. Slide the chrome portion of the eyepiece into the star diagonal. 3. Tighten the thumbscrew to hold the eyepiece in place.
With the bracket firmly attached to the telescope, you are ready to attach the finder to the bracket. 1. Slide the O-Ring over the back of the finderscope and position it on the tube toward the objective end of the finderscope. 2. Slide the eyepiece end of the finderscope into the front ring of the bracket (the front ring is the one without the adjustment screws), then through the back ring.
Powering the CPC The CPC can be powered by the supplied 12v car battery adapter or optional power supply (see Optional Accessories section in the back of this manual). 1. To power the CPC with the car battery adapter, simply plug the round post into the designated 12v power outlet located on the drive base. 2. Turn on the power to the CPC by flipping the switch, located next to the 12v outlet, to the "On" position.
The CPC is controlled by Celestron’s NexStar hand controller designed to give you instant access to all the functions the CPC has to offer. With automatic slewing to over 40,000 objects, and common sense menu descriptions, even a beginner can master its variety of features in just a few observing sessions. Below is a brief description of the individual components of the CPC’s NexStar hand controller: 1. 2. 3. 4.
Named Stars Named Objects Double Stars Variable Stars Asterisms CCD Objects IC Objects Abell Objects Common name listing of the brightest stars in the sky. Alphabetical listing of over 50 of the most popular deep sky objects. Numeric-alphabetical listing of the most visually stunning double, triple and quadruple stars in the sky. Select list of the brightest variable stars with the shortest period of changing magnitude. A unique list of some of the most recognizable star patterns in the sky.
all these calculations and automatically entering the information for you, the user simply needs to aim the telescope to any three bright celestial objects in the sky. Since Sky Align requires no knowledge of the night sky it is not necessary to know the name of the stars that you are aiming. You may even select a planet or the moon. The CPC is then ready to start finding and tracking any of the objects in its 40,000+ object database.
loosening both clutches. However the following alignment stars still need to found and centered using the hand control. • Remember to select alignment stars that are as far apart in the sky as possible. For best results make sure that the third alignment star does not lie in a straight line between the first two stars. This may result in a failed alignment. • Don’t worry about confusing planets for stars when selecting alignment objects.
Two Star Alignment With the two-star alignment method, the CPC requires the user to know the positions of two bright stars in order to accurately align the telescope with the sky and begin finding objects. Here is an overview of the two-star alignment procedure: 1. 2. 3. 4. Helpful Hint 5. Once the CPC is powered on, use the Up and Down scroll keys (10) to select Two-Star Align, and press ENTER.
1. 2. Select Solar System Align from the alignment options. Press ENTER to accept the time/site information displayed on the display, or wait until the telescope has downloaded the information from the GPS satellites. The SELECT OBJECT message will appear in the top row of the display. Use the Up and Down scroll keys (10) to select the daytime object (planet, moon or sun) you wish to align. Press ENTER. CPC then asks you to center in the eyepiece the alignment object you selected.
EQ Two-Star Align The EQ Two-Star Align follows most of the same steps as the Alt-Az Two-Star Align. This alignment method does not require the user to align the altitude index markers or point towards the Meridian, but it does require the user to locate and align the telescope on two bright stars. When selecting alignment stars it is best to choose stars that, a) have a large separation in azimuth and b) both are either positive or negative in declination.
CCD Objects. Selecting any one of these catalogs will display a numeric-alphabetical listing of the objects under that list. Pressing the Up and Down keys (10) allows you to scroll through the catalog to the desired object. When scrolling through a long list of objects, holding down either the Up or Down key will allow you to scroll through the catalog at a rapid speed. Pressing any of the other catalog keys (M, CALD, NGC, or STAR) will display a blinking cursor below the name of the catalog chosen.
Constellation Tour In addition to the Tour Mode, the CPC telescope has a Constellation Tour that allows the user to take a tour of all the best objects within a particular constellation. Selecting Constellation from the LIST menu will display all the constellation names that are above the user defined horizon (filter limits). Once a constellation is selected, you can choose from any of the database object catalogs to produce a list of all the available objects in that constellation.
a flat surface or tripod without the use of an equatorial wedge. The telescope must be aligned with two stars before it can track in altazimuth (Alt-Az). Tracking Rate EQ North Used to track the sky when the telescope is polar aligned using an equatorial wedge in the Northern Hemisphere. EQ South Used to track the sky when the telescope is polar aligned using an equatorial wedge in the Southern Hemisphere.
Enter R.A. - Dec: You can also store a specific set of coordinates for an object just by entering the R.A. and declination for that object. Scroll to the "Enter RA-DEC " command and press ENTER. The display will then ask you to enter first the R.A. and then the declination of the desired object. GoTo Object: To go to any of the user defined objects stored in the database, scroll down to either GoTo Sky Obj or Goto Land Obj and enter the number of the object you wish to select and press ENTER.
Scope Setup Features Setup Time-Site - Allows the user to customize the CPC display by changing time and location parameters (such as time zone and daylight savings). Anti-backlash – All mechanical gears have a certain amount of backlash or play between the gears. This play is evident by how long it takes for a star to move in the eyepiece when the hand control arrow buttons are pressed (especially when changing directions).
Observing Tip! If you want to explore the entire object database, set the maximum altitude limit to 90º and the minimum limit to –90º. This will display every object in the database lists regardless of whether it is visible in the sky from your location. Direction Buttons –The direction a star moves in the eyepiece varies depending on the accessories being used. This can create confusion when guiding on a star using an off-axis guider versus a straight through guide scope.
Get Alt-Az - Displays the relative altitude and azimuth for the current position of the telescope. Goto Alt-Az - Allows you to enter a specific altitude and azimuth position and slew to it. Helpful Hint Hibernate - Hibernate allows the CPC to be completely powered down and still retain its alignment when turned back on. This not only saves power, but is ideal for those that have their telescopes permanently mounted or leave their telescope in one location for long periods of time.
CPC Ready MENU TRACKING MODE ALT-AZ EQ NORTH EQ SOUTH OFF RATE SIDEREAL SOLAR LUNAR VIEW TIME-SITE SCOPE SETUP SETUP TIME-SITE ANTI-BACKLASH SLEW LIMITS FILTER LIMITS DIRECTION BUTTONS GOTO APPROACH AUTOGUIDE RATE CORDWRAP UTILITIES GPS ON/OFF WEDGE ALIGN PEC LIGHT CONTROL FACTORY SETTING VERSION GET ALT-AZ GOTO ALT-AZ HIBERNATE SUN MENU SCROLLING TEXT USER OBJECTS GOTO SKY OBJ SAVE SKY OBJ SAVE DB OBJ ENTER RA & DEC SAVE LAND OBJ GOTO LAND OBJ GET RA-DEC GOTO RA-DEC INDENTIFY SELECT CATALOG PRECISE GOTO A
A telescope is an instrument that collects and focuses light. The nature of the optical design determines how the light is focused. Some telescopes, known as refractors, use lenses. Other telescopes, known as reflectors, use mirrors. The Schmidt-Cassegrain optical system (or Schmidt-Cass for short) uses a combination of mirrors and lenses and is referred to as a compound or catadioptric telescope.
the primary mirror only slightly. Therefore, it will take many turns (about 30) to go from close focus (approximately 60 feet) to infinity. For astronomical viewing, out of focus star images are very diffuse, making them difficult to see. If you turn the focus knob too quickly, you can go right through focus without seeing the image. To avoid this problem, your first astronomical target should be a bright object (like the Moon or a planet) so that the image is visible even when out of focus.
• • • Never look across or over objects that are producing heat waves. This includes asphalt parking lots on hot summer days or building rooftops. Hazy skies, fog, and mist can also make it difficult to focus when viewing terrestrially. The amount of detail seen under these conditions is greatly reduced. Also, when photographing under these conditions, the processed film may come out a little grainier than normal with lower contrast and underexposed.
Up to this point, this manual covered the assembly and basic operation of your CPC telescope. However, to understand your telescope more thoroughly, you need to know a little about the night sky. This section deals with observational astronomy in general and includes information on the night sky and polar alignment. The Celestial Coordinate System To help find objects in the sky, astronomers use a celestial coordinate system that is similar to our geographical coordinate system here on Earth.
Motion of the Stars The daily motion of the Sun across the sky is familiar to even the most casual observer. This daily trek is not the Sun moving as early astronomers thought, but the result of the Earth's rotation. The Earth's rotation also causes the stars to do the same, scribing out a large circle as the Earth completes one rotation. The size of the circular path a star follows depends on where it is in the sky.
Polar Alignment (with optional Wedge) Even though the CPC can precisely track a celestial object while in the Alt-Az position, it is still necessary to align the polar axis of the telescope (the fork arm) to the Earth's axis of rotation in order to do long exposure astrophotography. To do an accurate polar alignment, the CPC requires an optional equatorial wedge between the telescope and the tripod.
changes during the year and throughout the course of the night (see Figure 6-5). When the Big Dipper is low in the sky (i.e., near the horizon), it may be difficult to locate. During these times, look for Cassiopeia (see Figure 6-6). Observers in the southern hemisphere are not as fortunate as those in the northern hemisphere. The stars around the south celestial pole are not nearly as bright as those around the north. The closest star that is relatively bright is Sigma Octantis.
Make the appropriate adjustments to the polar axis to eliminate any drift. Once you have eliminated all the drift, move to the star near the eastern horizon. The star should be 20 degrees above the horizon and within five degrees of the celestial equator. • If the star drifts south, the polar axis is too low. • If the star drifts north, the polar axis is too high. Again, make the appropriate adjustments to the polar axis to eliminate any drift.
With your telescope set up, you are ready to use it for observing. This section covers visual observing hints for both solar system and deep sky objects as well as general observing conditions which will affect your ability to observe. Observing the Moon Often, it is tempting to look at the Moon when it is full. At this time, the face we see is fully illuminated and its light can be overpowering. In addition, little or no contrast can be seen during this phase.
Observing the Sun Although overlooked by many amateur astronomers, solar observation is both rewarding and fun. However, because the Sun is so bright, special precautions must be taken when observing our star so as not to damage your eyes or your telescope. Never project an image of the Sun through the telescope. Because of the folded optical design, tremendous heat buildup will result inside the optical tube. This can damage the telescope and/or any accessories attached to the telescope.
Seeing Seeing conditions refers to the stability of the atmosphere and directly affects the amount of fine detail seen in extended objects. The air in our atmosphere acts as a lens which bends and distorts incoming light rays. The amount of bending depends on air density. Varying temperature layers have different densities and, therefore, bend light differently. Light rays from the same object arrive slightly displaced creating an imperfect or smeared image.
After looking at the night sky for a while you may want to try photographing it. Several forms of celestial photography are possible with your telescope, including short exposure prime focus, eyepiece projection, long exposure deep sky, terrestrial and even CCD imaging. Each of these is discussed in moderate detail with enough information to get you started. Topics include the accessories required and some simple techniques.
6. Advance the film and repeat the process. Lunar Phase Crescent Quarter Full ISO 50 1/2 1/15 1/30 ISO 100 1/4 1/30 1/60 ISO 200 1/8 1/60 1/125 ISO 400 1/15 1/125 1/250 Table 8-1 Above is a listing of recommended exposure times when photographing the Moon at the prime focus of your CPC telescope. The exposure times listed in table 8-1 should be used as a starting point. Always make exposures that are longer and shorter than the recommended time. Also, take a few photos at each shutter speed.
Advance the film and you are ready for your next exposure. Don't forget to take photos of varying duration and keep accurate records of what you have done. Record the date, telescope, exposure duration, eyepiece, f/ratio, film, and some comments on the seeing conditions. The following table lists exposures for eyepiece projection with a 10mm eyepiece. All exposure times are listed in seconds or fractions of a second.
12. Close the camera's shutter. Periodic Error Correction (PEC) PEC for short, is a system that improves the tracking accuracy of the drive by reducing the number of user corrections needed to keep a guide star centered in the eyepiece. PEC is designed to improve photographic quality by reducing the amplitude of the worm errors. Using the PEC function is a three-step process. First, the CPC needs to know the current position of its worm gear so that it has a reference when playing back the recorded error.
• • • • • • Konica 3200 (color print) Fujichrome 1600D (color slide) 3M 1000 (color slide) Scotchchrome 400 T-Max 3200 (black and white print) T-Max 400 (black and white print) As you perfect your technique, try specialized films, that is films that are designed or specially treated for celestial photography.
Lunar or small planetary nebulae-f/10 imaging is more challenging for long exposure, deep-sky imaging. Guiding needs to be very accurate and the exposure times need to be much longer, about 25 times longer than f/2. There are only a select few objects that work well at f/10. The moon images fine because it is so bright, but planets are still a bit small and should be shot at f/20. The Ring nebula is a good candidate because it is small and bright.
While your CPC telescope requires little maintenance, there are a few things to remember that will ensure your telescope performs at its best. Care and Cleaning of the Optics Occasionally, dust and/or moisture may build up on the corrector plate of your telescope. Special care should be taken when cleaning any instrument so as not to damage the optics. If dust has built up on the corrector plate, remove it with a brush (made of camel’s hair) or a can of pressurized air.
Figure 9-2 -- Even though the star pattern appears the same on both sides of focus, they are asymmetric. The dark obstruction is skewed off to the left side of the diffraction pattern indicating poor collimation. To accomplish this, you need to tighten the secondary collimation screw(s) that move the star across the field toward the direction of the skewed light. These screws are located on the secondary mirror holder (see figure 9-1).
You will find that additional accessories enhance your viewing pleasure and expand the usefulness of your telescope. For ease of reference, all the accessories are listed in alphabetical order. Barlow Lens - A Barlow lens is a negative lens that increases the focal length of a telescope. Used with any eyepiece, it doubles the magnification of that eyepiece. Celestron offers two Barlow lens in the 1-1/4" size for the CPC.
Moon Filter (#94119-A) - Celestron’s Moon Filter is an economical eyepiece filter for reducing the brightness of the moon and improving contrast, so greater detail can be observed on the lunar surface. The clear aperture is 21mm and the transmission is about 18%. PowerTank (#18774) – 12v 7Amp hour rechargeable power supply. Comes with two 12v output cigarette outlets, built-in red flash light , Halogen emergency spotlight. 120v AC adapter and cigarette lighter adapter included.
0 Appendix A - Technical Specifications Optical Specification Design Aperture Focal Length F/ratio of the Optical System Primary Mirror: Material Coatings Central Obstruction Corrector Plate: Material Coatings Highest Useful Magnification Lowest Useful Magnification (7mm exit pupil) Magnification: Standard Eyepiece (40mm Pl) Resolution: Rayleigh Criterion Dawes Limit Light Gathering Power Near Focus w/ standard eyepiece or camera Field of View: Standard Eyepiece : 35mm Camera Linear Field of View (at 100
Appendix B - Glossary of Terms AAbsolute magnitude Airy disk Alt-Azimuth Mounting Altitude Aperture Apparent Magnitude Arcminute Arcsecond Asterism Asteroid Astrology Astronomical unit (AU) Aurora Azimuth BBinary Stars CCelestial Equator Celestial pole Celestial Sphere Collimation DDeclination (DEC) EEcliptic Equatorial mount FFocal length The apparent magnitude that a star would have if it were observed from a standard distance of 10 parsecs, or 32.6 light-years.
JJovian Planets KKuiper Belt LLight-Year (LY) MMagnitude Meridian Messier NNebula North Celestial Pole Nova OOpen Cluster PParallax Parfocal Parsec Point Source RReflector Resolution Right Ascension: (RA) SSchmidt Telescope Sidereal Rate Any of the four gas giant planets that are at a greater distance form the sun than the terrestrial planets. A region beyond the orbit of Neptune extending to about 1000 AU which is a source of many short period comets.
telescope at this rate. The rate is 15 arc seconds per second or 15 degrees per hour. TTerminator UUniverse VVariable Star WWaning Moon The boundary line between the light and dark portion of the moon or a planet. The totality of astronomical things, events, relations and energies capable of being described objectively. A star whose brightness varies over time due to either inherent properties of the star or something eclipsing or obscuring the brightness of the star.
APPENDIX C LONGITUDES AND LATITUDES LONGITUDE degrees min ALABAMA Anniston Auburn Birmingham Centreville Dothan Fort Rucker Gadsden Huntsville Maxwell AFB Mobile Mobile Aeros Montgomery Muscle Shoal Selma Troy Tuscaloosa ALASKA Anchorage Barrow Fairbanks Haines Hrbor Homer Juneau Ketchikan Kodiak Nome Sitka Sitkinak Skagway Valdez ARIZONA Davis-M AFB Deer Valley Douglas Falcon Fld Flagstaff Fort Huachuc Gila Bend Goodyear GrandCanyon Kingman Luke Page Payson Phoenix Prescott Safford Awrs Scottsdale Show Low
Melbourne Miami Naples Nasa Shuttle Orlando Panama City Patrick AFB Pensacola Ruskin Saint Peters Sanford Sarasota Tallahassee Tampa Intl Titusville Tyndall AFB Vero Beach West Palm Beach Whiting Fld GEORGIA Albany Alma Athens Atlanta Augusta/Bush Brunswick Columbus Dobbins AFB Fort Benning Ft Stewart Hunter Aaf La Grange Macon/Lewis Moody AFB Robins AFB Rome/Russell Valdosta Waycross HAWAII Barbers Pt Barking San Fr Frigate Hilo Honolulu Int Kahului Maui Kaneohe Mca Kilauea Pt Lanai-Lanai Lihue-Kauai Maui
Wurtsmith Ypsilanti MINNESOTA Albert Lea Alexandria Bemidji Muni Brainerd-Crw Detroit Laks Duluth Ely Fairmont Fergus Falls Grand Rapids Hibbing Intl Falls Litchfield Mankato Marshall Arpt Minneapolis Park Rapids Pequot Lake Rochester Saint Paul St Cloud Thief River Tofte Warroad Worthington MISSISSIPPI Columbus AFB Golden Trian Greenville Greenwood Gulfport Hattiesburg Jackson Keesler AFB Laurel Mccomb Meridian NAS Meridian/Key Natchez Oxford Tupelo MISSOURI Columbia Cape Girardeau Ft Leonard Jefferson Cit
LONGITUDE degrees OKLAHOMA Altus AFB 99 Ardmore 97 Bartlesville 96 Clinton 99 Enid 97 Fort Sill 98 Gage 99 Hobart 99 Lawton 98 Mcalester 95 Norman 97 Oklahoma 97 Page 94 Ponca City 97 Stillwater 97 Tinker AFB 97 Tulsa 95 Vance AFB 97 OREGON Astoria 123 Aurora 122 Baker 117 Brookings 124 Burns Arpt 118 Cape Blanco 124 Cascade 121 Corvallis 123 Eugene 123 Hillsboro 122 Klamath Fall 121 La Grande 118 Lake View 120 Meacham 118 Medford 122 Newport 124 North Bend 124 Ontario 117 Pendleton 118 Portland 122 Redmond
LONGITUDE LATITUDE degrees min degrees Walla Walla 118 16.8 46 Wenatchee 120 1.2 47 Whidbey Is 122 39 48 Yakima 120 31.8 46 WEST VIRGINIA Beckley 81 7.2 37 Bluefield 81 13.2 37 Charleston 81 3.6 38 Clarksburg 80 13.8 39 Elkins 79 51 38 Huntington 82 33 38 Lewisburg 80 2.4 37 Martinsburg 77 58.8 39 Morgantown 79 55.2 39 Parkersburg 81 25.8 39 Wheeling 80 39 40 Wh Sulphur 80 1.2 37 LONGITUDE degrees min min 6 24 21 34.
Appendix D - RS-232 Connection Using the included NexRemote software you can control your CPC telescope with a computer via the RS-232 port located on the computerized hand control and using the RS-232 cable (#93920). For information about using NexRemote to control your telescope, refer to the instruction sheet that came with the NexRemote CD and the help files located on the disk. In addition to NexRemote, the CPC can be controlled using other popular astronomy software programs.
APPENDIX E – MAPS OF TIME ZONES 58
Observational Data Sheet Yearly Meteor Showers Shower Quadrantids Lyrids pi-Puppids eta-Aquarids June Bootids July Phoenicids Southern delta-Aquarids Perseids alpha-Aurigids Draconids Orionids Leonids alpha-Monocerotids Phoenicids Puppid-Velids Geminids Ursids Date Jan 01-Jan 05 Apr 16-Apr 25 Apr 15-Apr 28 Apr 19-May 28 Jun 26-Jul 02 Jul 10-Jul 16 Jul 12-Aug 19 Jul 17-Aug 24 Aug 25-Sep 05 Oct 06-Oct 10 Oct 02-Nov 07 Nov 14-Nov 21 Nov 15-Nov 25 Nov 28-Dec 09 Dec 01-Dec 15 Dec 07-Dec 17 Dec 17-Dec 26 Peak
CELESTRON TWO YEAR WARRANTY A. Celestron warrants this telescope to be free from defects in materials and workmanship for two years. Celestron will repair or replace such product or part thereof which, upon inspection by Celestron, is found to be defective in materials or workmanship. As a condition to the obligation of Celestron to repair or replace such product, the product must be returned to Celestron together with proof-of-purchase satisfactory to Celestron. B.
Celestron 2835 Columbia Street Torrance, CA 90503 Tel. (310) 328-9560 Fax. (310) 212-5835 Web site at http//www.celestron.com Copyright 2005 Celestron All rights reserved. (Products or instructions may change without notice or obligation.) Item # 11073-INST $10.