Instruction manual
11
Figure 2-22 and Figure 2-23
fff
-
14
A
A
d
d
j
j
u
u
s
s
t
t
i
i
n
n
g
g
t
t
h
h
e
e
E
E
q
q
u
u
a
a
t
t
o
o
r
r
i
i
a
a
l
l
M
M
o
o
u
u
n
n
t
t
In order for a motor drive to track accurately, the telescope’s axis of rotation must be parallel to the Earth’s axis of
rotation, a process known as polar alignment. Polar alignment is achieved NOT by moving the telescope in R.A. or
Dec., but by adjusting the mount vertically, which is called altitude. This section simply covers the correct
movement of the telescope during the polar alignment process. The actual process of polar alignment, that is
making the telescope’s axis of rotation parallel to the Earth’s, is described later in this manual in the section on
“Polar Alignment.”
A
A
d
d
j
j
u
u
s
s
t
t
i
i
n
n
g
g
t
t
h
h
e
e
M
M
o
o
u
u
n
n
t
t
i
i
n
n
A
A
l
l
t
t
i
i
t
t
u
u
d
d
e
e
• To increase the latitude of the polar axis, tighten the rear latitude adjustment screw and loosen the front latitude
adjustment screw (if necessary)—see Figure 2-24.
• To decrease the latitude of the polar axis, tighten the front (under the counterweight bar) latitude adjustment screw
and loosen the rear latitude adjustment screw (if necessary).
The latitude adjustment on the AstroMaster mount has a range from approximately 20° to 60°.
It is best to always make final adjustments in altitude by moving the mount against gravity (i.e. using the rear
latitude adjustment screw to raise the mount). To do this you should loosen both latitude
adjustment screws and manually push the front of the mount down as far as it will go. Then
tighten the rear adjustment screw to raise the mount to the desired latitude.
Figure 2-24
Latitude Adjustment Screw
Latitude Adjustment Screw