INSTRUCTION MANUAL
INTRODUCTION ...........................................................................................................................................................5 WARNING .......................................................................................................................................................................5 QUICK SETUP .........................................................................................................................................................
Version ................................................................................................................................................................26 Get Alt-Az ...........................................................................................................................................................26 Goto Alt-Az.........................................................................................................................................................
APPENDIX E – TIME ZONE MAP............................................................................................................................64 SKY MAPS ....................................................................................................................................................................66 OBSERVATIONAL DATA SHEET ...........................................................................................................................
Congratulations on your purchase of the Celestron NexStar GPS telescope! The NexStar GPS ushers in the next generation of computer automated telescopes. The NexStar GPS series, for the first time ever in a commercial telescope, uses GPS (Global Positioning System) technology to take the guesswork and effort out of aligning and finding celestial objects in the sky. Simple and easy to use, the NexStar with its on-board GPS, is up and running after locating just two alignment stars.
2 1 Carrying Handle Center Leg Brace Tripod Head Tension Knob Leg Extension Clamp Carrying Handle Mounting Bolt Drive Base Positioning Pin With the tripod set up outside, lift the telescope by the carrying handle on each fork arm and carefully lower it onto the tripod head. Make sure that the hole in the bottom of the drive base goes over the positioning pin in the center of the tripod head. Rotate the base until the holes line-up with the mounting holes on the tripod.
6 5 12v DC Power On/Off Switch Once powered on, the NexStar will display NexStar GPS, press ENTER to select GPS alignment. The NexStar will automatically find its North and Level position and retrieve information from the GPS satellites. Plug-in the supplied 12v AC adapter into the outlet on the bottom portion of the drive base. Before powering the NexStar, point the tube down towards the ground and lock both the altitude and azimuth clutches.
6 7 8 5 9 4 3 10 2 1 11 A B C D E 12 Figure 2 – The NexStar GPS 1 Control Panel (see below) 7 Optical Tube 2 Focus Knob 8 Schmidt Corrector Lens 3 Star Diagonal 9 Hand Control 4 Eyepiece 10 Fork Arm 5 Finderscope 11 Carrying Handle 6 Finderscope Adjustment Screw 12 Tripod CONTROL PANEL C Auxiliary Port 2 A PC Interface Port D 12v Output Jack B Auxiliary Port 1 E Auto Guider Port 8
The NexStar comes completely pre-assembled and can be operational in a matter of minutes. The NexStar and its accessories are conveniently packaged in one reusable shipping carton while the tripod comes in its own box.
Tripod Head Central Column Leg Support Bracket Tension Knob Leg Clamp Figure 3-1 Adjusting the Tripod Height The tripod that comes with your NexStar telescope is adjustable. To adjust the height at which the tripod stands: 1. Loosen the extension clamp on one of the tripod legs (see figure 3-1). 2. Extend the leg to the desired height. 3. Tighten the extension clamp to hold the leg in place. 4. Repeat this process for each of the remaining legs.
1. Place the center hole in the bottom of the telescope base over the positioning pin in the center of the tripod plate. 2. Rotate the telescope base until the threaded holes align with the holes in the tripod head. 3. Thread the three mounting bolts from underneath the tripod head into the bottom of the telescope base. Tighten all three bolts. Warning: Never insert bolts with threads longer than 3/8" into the NexStar base. It can cause damage to the internal motors.
Adjusting the Clutches The NexStar GPS has a dual axis clutch system. This allows you to move the telescope manually even when the telescope is not powered on. However, both clutches need to be tightened down for the telescope to be aligned for "goto" use. Any manual movement of the telescope will invalidate your telescope's alignment.
To remove the eyepiece, loosen the thumbscrew on the star diagonal and slide the eyepiece out. Eyepieces are commonly referred to by focal length and barrel diameter. The focal length of each eyepiece is printed on the eyepiece barrel. The longer the focal length (i.e., the larger the number) the lower the eyepiece power or magnification; and the shorter the focal length (i.e., the smaller the number) the higher the magnification. Generally, you will use low-to-moderate power when viewing.
Aligning the Finderscope To make the alignment process a little easier, you should perform this task in the daytime when it is easier to locate objects in the telescope without the finder. To align the finder: 1. Choose a conspicuous object that is in excess of one mile away. This will eliminate any possible parallax effect between the telescope and the finder. 2. Point your telescope at the object you selected and center it in the main optics of the telescope. 3.
The NexStar has a removable hand controller built into the side of the fork arm designed to give you instant access to all the functions the NexStar has to offer. With automatic slewing to over 40,000 objects, and common sense menu descriptions, even a beginner can master its variety of features in just a few observing sessions. Below is a brief description of the individual components of the NexStar hand controller: 1. 2. 3.
Planets - All 8 planets in our Solar System plus the Moon. Stars – A compiled list of the brightest stars from the SAO catalog. List – For quick access, all of the best and most popular objects in the NexStar database have been broken down into lists based on their type and/or common name: Named Stars Named Objects Double Stars Variable Stars Asterisms CCD Objects IC Objects Abell Objects Common name listing of the brightest stars in the sky.
GPS Alignment GPS Align must be used with the telescope mounted in altazimuth. With GPS Align mode, the NexStar automatically levels the optical tube, its built-in electronic compass points the telescope in the direction of the northern horizon, while the GPS receiver links with and acquires information from 3 of the orbiting GPS satellites.
6. Observing Tip After the first alignment star has been recorded, the NexStar will automatically slew to a second alignment star and have you repeat the alignment process for that star. When the telescope has been aligned to both stars, the display will read "Alignment Successful" and you are now ready to find your first object. For the best possible pointing accuracy, always center the alignment stars using the up arrow button and the right arrow button.
Trouble Shooting Based on this information, the NexStar will automatically select a bright star that is above the horizon and slew towards it. Once finished slewing, the display will ask you to use the arrow buttons to align the selected star with the cross hairs in the center of the finderscope. If for some reason the chosen star is not visible (perhaps behind a tree or building) you can press UNDO to select and slew to a different star. Once centered in the finder, press ENTER.
EQ North / EQ South Alignment EQ North and EQ South Alignments assist the user in aligning the telescope when polar aligned on an optional equatorial wedge. Just as with the Altazimuth alignments described earlier, the EQ alignments gives you the choice of performing an AutoAlign or a Two-Star alignment.
8. For your second star alignment, do one of the following • Select a bright star or planet from the database and slew to it. If it is visible in the eyepiece, use that object to realign to, replacing the remaining star when asked to choose. • Wait approximately 10 minutes, and go through steps 2-7 above and again use the Sun as the second alignment object. Replace the remaining star when asked to choose.
Tour Mode The NexStar includes a tour feature which automatically allows the user to choose from a list of interesting objects based on the date and time in which you are observing. The automatic tour will display only those objects that are within your set filter limits (see Filter Limits in the Setup Procedures section of the manual). To activate the Tour mode, press the TOUR key (6) on the hand control. The NexStar will display the best objects to observe that are currently in the sky.
Setup Procedures The NexStar contains many user defined setup functions designed to give the user control over the telescope's many advanced features. All of the setup and utility features can be accessed by pressing the MENU key and scrolling through the options: Tracking Mode This allows you to change the way the telescope tracks depending on the type of mount being used to support the telescope.
the time of observing. Since these objects are relative to the location of the telescope, they are only valid for that exact location. To save land objects, once again center the desired object in the eyepiece. Scroll down to the "Save Land Obj" command and press ENTER. The display will ask you to enter a number between 1-200 to identify the object. Press ENTER again to save this object to the database. Enter R.A. - Dec: You can also store a specific set of coordinates for an object just by entering the R.
Filter Limits – When an alignment is complete, the NexStar automatically knows which celestial objects are above the horizon. As a result, when scrolling through the database lists (or selecting the Tour function), the NexStar hand control will display only those objects that are known to be above the horizon when you are observing. You can customize the object database by selecting altitude limits that are appropriate for your location and situation.
Compass – These compass features allow you to automatically move your telescope to the north position and calibrate north for increased accuracy of future alignments. • • Find Celestial North – Automatically finds and moves the telescope to its true north position. Calibrate Compass - After completing a successful GPS Alignment, use the Calibrate Compass feature to compensate for magnetic declination errors and local anomalies.
NexStar GPS MENU TRACKING MODE ALT-AZ EQ NORTH EQ SOUTH OFF RATE SIDEREAL SOLAR LUNAR VIEW TIME-SITE SCOPE SETUP SETUP TIME-SITE ANTI-BACKLASH SLEW LIMITS FILTER LIMITS DIRECTION BUTTONS GOTO APPROACH AUTOGUIDE RATE CORDWRAP UTILITIES GPS ON/OFF COMPASS ALT SENSOR WEDGE ALIGN PEC LIGHT CONTROL FACTORY SETTING VERSION GET ALT-AZ GOTO ALT-AZ HIBERNATE USER OBJECTS GOTO SKY OBJ SAVE SKY OBJ ENTER RA & DEC SAVE LAND OBJ GOTO LAND OBJ GET RA-DEC GOTO RA-DEC ALIGNMENT LIST GPS ALIGNMENT SEARCHING..
A telescope is an instrument that collects and focuses light. The nature of the optical design determines how the light is focused. Some telescopes, known as refractors, use lenses. Other telescopes, known as reflectors, use mirrors. The Schmidt-Cassegrain optical system (or Schmidt-Cass for short) uses a combination of mirrors and lenses and is referred to as a compound or catadioptric telescope.
Focusing The NexStar's focusing mechanism controls the primary mirror which is mounted on a ring that slides back and forth on the primary baffle tube. The focusing knob, which moves the primary mirror, is on the rear cell of the telescope just below the star diagonal and eyepiece. Turn the focusing knob until the image is sharp. If the knob will not turn, it has reached the end of its travel on the focusing mechanism. Turn the knob in the opposite direction until the image is sharp.
thousand yards. The apparent field of each eyepiece that Celestron manufactures is found in the Celestron Accessory Catalog (#93685). General Observing Hints When working with any optical instrument, there are a few things to remember to ensure you get the best possible image. • • • • Never look through window glass. Glass found in household windows is optically imperfect, and as a result, may vary in thickness from one part of a window to the next.
Up to this point, this manual covered the assembly and basic operation of your NexStar telescope. However, to understand your telescope more thoroughly, you need to know a little about the night sky. This section deals with observational astronomy in general and includes information on the night sky and polar alignment. The Celestial Coordinate System To help find objects in the sky, astronomers use a celestial coordinate system that is similar to our geographical coordinate system here on Earth.
Motion of the Stars The daily motion of the Sun across the sky is familiar to even the most casual observer. This daily trek is not the Sun moving as early astronomers thought, but the result of the Earth's rotation. The Earth's rotation also causes the stars to do the same, scribing out a large circle as the Earth completes one rotation. The size of the circular path a star follows depends on where it is in the sky.
Polar Alignment (with optional Wedge) Even though the NexStar can precisely track a celestial object while in the Alt-Az position, it is still necessary to align the polar axis of the telescope (the fork arm) to the Earth's axis of rotation in order to do long exposure astrophotography. To do an accurate polar alignment, the NexStar requires an optional equatorial wedge between the telescope and the tripod.
Little Dipper. They point to Polaris (see Figure 6-6). The position of the Big Dipper changes during the year and throughout the course of the night (see Figure 6-5). When the Big Dipper is low in the sky (i.e., near the horizon), it may be difficult to locate. During these times, look for Cassiopeia (see Figure 6-6). Observers in the southern hemisphere are not as fortunate as those in the northern hemisphere. The stars around the south celestial pole are not nearly as bright as those around the north.
• If the star drifts south, the polar axis is too far east. • If the star drifts north, the polar axis is too far west. Make the appropriate adjustments to the polar axis to eliminate any drift. Once you have eliminated all the drift, move to the star near the eastern horizon. The star should be 20 degrees above the horizon and within five degrees of the celestial equator. • If the star drifts south, the polar axis is too low. • If the star drifts north, the polar axis is too high.
With your telescope set up, you are ready to use it for observing. This section covers visual observing hints for both solar system and deep sky objects as well as general observing conditions which will affect your ability to observe. Observing the Moon Often, it is tempting to look at the Moon when it is full. At this time, the face we see is fully illuminated and its light can be overpowering. In addition, little or no contrast can be seen during this phase.
Observing the Sun Although overlooked by many amateur astronomers, solar observation is both rewarding and fun. However, because the Sun is so bright, special precautions must be taken when observing our star so as not to damage your eyes or your telescope. Never project an image of the Sun through the telescope. Because of the folded optical design, tremendous heat buildup will result inside the optical tube. This can damage the telescope and/or any accessories attached to the telescope.
polluted areas by blocking unwanted light while transmitting light from certain deep sky objects. You can, on the other hand, observe planets and stars from light polluted areas or when the Moon is out. Seeing Seeing conditions refers to the stability of the atmosphere and directly affects the amount of fine detail seen in extended objects. The air in our atmosphere acts as a lens which bends and distorts incoming light rays. The amount of bending depends on air density.
After looking at the night sky for a while you may want to try photographing it. Several forms of celestial photography are possible with your telescope, including short exposure prime focus, eyepiece projection, long exposure deep sky, terrestrial and even CCD imaging. Each of these is discussed in moderate detail with enough information to get you started. Topics include the accessories required and some simple techniques.
2. Center the Moon in the field of your NexStar telescope. 3. Focus the telescope by turning the focus knob until the image is sharp. 4. Set the shutter speed to the appropriate setting (see table below). 5. Trip the shutter using a cable release. 6. Advance the film and repeat the process.
2. Turn the focus knob until the image is as sharp as possible. 3. Place the black card over the front of the telescope. 4. Release the shutter using a cable release. 5. Wait for the vibration caused by releasing the shutter to diminish. Also, wait for a moment of good seeing. 6. Remove the black card from in front of the telescope for the duration of the exposure (see accompanying table). 7. Replace the black card over the front of the telescope. 8. Close the camera's shutter.
1. Polar align the telescope using an optional equatorial wedge. To polar align the NexStar you must select EQ North Align (or EO South Align) from the alignment options. For more information on polar aligning, see the Polar Alignment section earlier in the manual. 2. Remove all visual accessories. 3. Thread the Radial Guider onto your telescope. 4. Thread the T-Ring onto the Radial Guider. 5. Mount your camera body onto the T-Ring the same as you would any other lens. 6.
Note: When recording PEC only the photo guide rates (rates 1 and 2) will be operational. This eliminates the possibility of moving the telescope suddenly while recording. 5. Helpful Hint To begin recording the drive's periodic error, press the MENU button and select PEC from the Utilities menu. Use the Up/Down scroll buttons to display the Record option and press ENTER. You will have 5 seconds before the system starts to record.
Metering The NexStar has a fixed aperture and, as a result, fixed f/ratios. To properly expose your subjects photographically, you need to set your shutter speed accordingly. Most 35mm SLR cameras offer through-the-lens metering which lets you know if your picture is under or overexposed. Adjustments for proper exposures are made by changing the shutter speed. Consult your camera manual for specific information on metering and changing shutter speeds.
Secondary Mirror Secondary Mirror Retaining Ring Corrector Plate Secondary Mirror Mount Handle Figure 8-2 - The Fastar Compatible Optical System The above figure shows how the secondary mirror is removed when using the optional CCD camera at f/2 and the Fastar Lens Assembly. Warning: The secondary mirror should never be removed unless installing the optional Fastar Lens Assembly.
exposure time needed about 25 times shorter than at f/10, the field of view 5 times larger and the object size 1/5 compared to that of f/10. (see Table below) Focal Length & Speed ST 237 F.O.V.* Telescope Model NexStar 8 GPS Standard Cassegrain f/10 With Reducer/Corrector f/6.3 With Fastar Lens Accessory f/2 80" (2032mm) 50.4" (1280mm) 16" (406.4mm) NexStar 11 GPS 110" (2800mm) 69.5" (1764mm) 23.1 (587mm) NexStar 8 GPS 8 x 6.1 (arc min) 12.6 x 9.
Figure 8-5 M27 -- The Dumbbell Nebula 4 exposures of 30 seconds each! Figure 8-6 M51 -- The Whirlpool Nebula 9 exposures of 60 seconds each. Auto Guiding The NexStar GPS has a designated auto guiding port for use with a CCD autoguider. The diagram below may be useful when connecting the CCD camera cable to the NexStar and calibrating the autoguider. Note that the four outputs are active-low, with internal pull-ups and are capable of sinking 25 mA DC. Figure 8-7 – Pin out diagram for Autoguider port.
While your NexStar telescope requires little maintenance, there are a few things to remember that will ensure your telescope performs at its best. Care and Cleaning of the Optics Occasionally, dust and/or moisture may build up on the corrector plate of your telescope. Special care should be taken when cleaning any instrument so as not to damage the optics. If dust has built up on the corrector plate, remove it with a brush (made of camel’s hair) or a can of pressurized air.
Figure 9-2 -- Even though the star pattern appears the same on both sides of focus, they are asymmetric. The dark obstruction is skewed off to the left side of the diffraction pattern indicating poor collimation. To accomplish this, you need to tighten the secondary collimation screw(s) that move the star across the field toward the direction of the skewed light. These screws are located in the secondary mirror holder (see figure 8-1).
You will find that additional accessories enhance your viewing pleasure and expand the usefulness of your telescope. For ease of reference, all the accessories are listed in alphabetical order. Adapter, Car Battery (#18769) - Celestron offers the Car Battery Adapter that allows you to run the NexStar drive off an external power source. The adapter attaches to the cigarette lighter of your car, truck, van, or motorcycle.
• Lanthanum Eyepieces (LV Series) - Lanthanum is a unique rare earth glass used in one of the field lenses of this new eyepiece. The Lanthanum glass reduces aberrations to a minimum. All are fully multicoated and have an astounding 20mm of eye relief — perfect for eyeglass wearers! In the 1-1/4" barrel diameter, they are available in the following focal lengths: 2.5mm, 4mm, 5mm, 6mm, 9mm, 10mm, 12mm and 15mm. Celestron also offers the LV Zoom eyepiece (#3777) with a focal length of 8mm to 24mm.
Radial Guider (#94176) - The Celestron Radial Guider® is specifically designed for use in prime focus, deep sky astrophotography and takes the place of the T-Adapter. This device allows you to photograph and guide simultaneously through the optical tube assembly of your telescope. This type of guiding produces the best results since what you see through the guiding eyepiece is exactly reproduced on the processed film.
Appendix A - Technical Specifications Optical Specification NexStar 8 GPS Design Aperture Focal Length F/ratio of the Optical System Primary Mirror: Material Coatings Schmidt-Cassegrain Catadioptric 8" (203.
Appendix B - Glossary of Terms AAbsolute magnitude Airy disk Alt-Azimuth Mounting Altitude Aperture Apparent Magnitude Arcminute Arcsecond Asterism Asteroid Astrology Astronomical unit (AU) Aurora Azimuth BBinary Stars CCelestial Equator Celestial pole Celestial Sphere Collimation DDeclination (DEC) EEcliptic Equatorial mount FFocal length The apparent magnitude that a star would have if it were observed from a standard distance of 10 parsecs, or 32.6 light-years. The absolute magnitude of the Sun is 4.
JJovian Planets KKuiper Belt LLight-Year (LY) MMagnitude Meridian Messier NNebula North Celestial Pole Nova OOpen Cluster PParallax Parfocal Parsec Point Source RReflector Resolution Right Ascension: (RA) SSchmidt Telescope Sidereal Rate Any of the four gas giant planets that are at a greater distance form the sun than the terrestrial planets. A region beyond the orbit of Neptune extending to about 1000 AU which is a source of many short period comets.
telescope at this rate. The rate is 15 arc seconds per second or 15 degrees per hour. TTerminator UUniverse VVariable Star WWaning Moon The boundary line between the light and dark portion of the moon or a planet. The totality of astronomical things, events, relations and energies capable of being described objectively. A star whose brightness varies over time due to either inherent properties of the star or something eclipsing or obscuring the brightness of the star.
APPENDIX C LONGITUDES AND LATITUDES LONGITUDE degrees min ALABAMA Anniston Auburn Birmingham Centreville Dothan Fort Rucker Gadsden Huntsville Maxwell AFB Mobile Mobile Aeros Montgomery Muscle Shoal Selma Troy Tuscaloosa ALASKA Anchorage Barrow Fairbanks Haines Hrbor Homer Juneau Ketchikan Kodiak Nome Sitka Sitkinak Skagway Valdez ARIZONA Davis-M AFB Deer Valley Douglas Falcon Fld Flagstaff Fort Huachuc Gila Bend Goodyear GrandCanyon Kingman Luke Page Payson Phoenix Prescott Safford Awrs Scottsdale Show Low
Melbourne Miami Naples Nasa Shuttle Orlando Panama City Patrick AFB Pensacola Ruskin Saint Peters Sanford Sarasota Tallahassee Tampa Intl Titusville Tyndall AFB Vero Beach West Palm Beach Whiting Fld GEORGIA Albany Alma Athens Atlanta Augusta/Bush Brunswick Columbus Dobbins AFB Fort Benning Ft Stewart Hunter Aaf La Grange Macon/Lewis Moody AFB Robins AFB Rome/Russell Valdosta Waycross HAWAII Barbers Pt Barking San Fr Frigate Hilo Honolulu Int Kahului Maui Kaneohe Mca Kilauea Pt Lanai-Lanai Lihue-Kauai Maui
Wurtsmith Ypsilanti MINNESOTA Albert Lea Alexandria Bemidji Muni Brainerd-Crw Detroit Laks Duluth Ely Fairmont Fergus Falls Grand Rapids Hibbing Intl Falls Litchfield Mankato Marshall Arpt Minneapolis Park Rapids Pequot Lake Rochester Saint Paul St Cloud Thief River Tofte Warroad Worthington MISSISSIPPI Columbus AFB Golden Trian Greenville Greenwood Gulfport Hattiesburg Jackson Keesler AFB Laurel Mccomb Meridian NAS Meridian/Key Natchez Oxford Tupelo MISSOURI Columbia Cape Girardeau Ft Leonard Jefferson Cit
LONGITUDE degrees OKLAHOMA Altus AFB 99 Ardmore 97 Bartlesville 96 Clinton 99 Enid 97 Fort Sill 98 Gage 99 Hobart 99 Lawton 98 Mcalester 95 Norman 97 Oklahoma 97 Page 94 Ponca City 97 Stillwater 97 Tinker AFB 97 Tulsa 95 Vance AFB 97 OREGON Astoria 123 Aurora 122 Baker 117 Brookings 124 Burns Arpt 118 Cape Blanco 124 Cascade 121 Corvallis 123 Eugene 123 Hillsboro 122 Klamath Fall 121 La Grande 118 Lake View 120 Meacham 118 Medford 122 Newport 124 North Bend 124 Ontario 117 Pendleton 118 Portland 122 Redmond
LONGITUDE LATITUDE degrees min degrees Walla Walla 118 16.8 46 Wenatchee 120 1.2 47 Whidbey Is 122 39 48 Yakima 120 31.8 46 WEST VIRGINIA Beckley 81 7.2 37 Bluefield 81 13.2 37 Charleston 81 3.6 38 Clarksburg 80 13.8 39 Elkins 79 51 38 Huntington 82 33 38 Lewisburg 80 2.4 37 Martinsburg 77 58.8 39 Morgantown 79 55.2 39 Parkersburg 81 25.8 39 Wheeling 80 39 40 Wh Sulphur 80 1.2 37 LONGITUDE degrees min min 6 24 21 34.
Appendix D - RS-232 Connection You can control your NexStar telescope with a computer via the RS-232 port on the computerized hand control and using an optional RS-232 cable (#93920). Once connected, the NexStar can be controlled using popular astronomy software programs. Communication Protocol: NexStar-i communicates at 9600 bits/sec, No parity and a stop bit. All angles are communicated with 16 bit angle and communicated using ASCII hexadecimal.
Additional RS232 Commands Send Any Track Rate Through RS232 To The Hand Control 1. 2. 3. 4. Multiply the desired tracking rate (arcseconds/second) by 4. Example: if the desired trackrate is 150 arcseconds/second, then TRACKRATE = 600 Separate TRACKRATE into two bytes, such that (TRACKRATE = TrackRateHigh*256 + rackRateLow). Example: TrackRateHigh = 2 TrackRateLow = 88 To send a tracking rate, send the following 8 bytes: a. Positive Azm tracking: 80, 3, 16, 6, TrackRateHigh, TrackRateLow, 0, 0 b.
APPENDIX E – MAPS OF TIME ZONES 64
Observational Data Sheet Yearly Meteor Showers Shower Quadrantids Lyrids pi-Puppids eta-Aquarids June Bootids July Phoenicids Southern delta-Aquarids Perseids alpha-Aurigids Draconids Orionids Leonids alpha-Monocerotids Phoenicids Puppid-Velids Geminids Ursids Date Jan 01-Jan 05 Apr 16-Apr 25 Apr 15-Apr 28 Apr 19-May 28 Jun 26-Jul 02 Jul 10-Jul 16 Jul 12-Aug 19 Jul 17-Aug 24 Aug 25-Sep 05 Oct 06-Oct 10 Oct 02-Nov 07 Nov 14-Nov 21 Nov 15-Nov 25 Nov 28-Dec 09 Dec 01-Dec 15 Dec 07-Dec 17 Dec 17-Dec 26 Peak
CELESTRON TWO YEAR WARRANTY A. Celestron warrants this telescope to be free from defects in materials and workmanship for two years. Celestron will repair or replace such product or part thereof which, upon inspection by Celestron, is found to be defective in materials or workmanship. As a condition to the obligation of Celestron to repair or replace such product, the product must be returned to Celestron together with proof-of-purchase satisfactory to Celestron. B.
Celestron 2835 Columbia Street Torrance, CA 90503 Tel. (310) 328-9560 Fax. (310) 212-5835 Web site at http//www.celestron.com Copyright 2003 Celestron All rights reserved. (Products or instructions may change without notice or obligation.) Item # 11052-INST v2.2 $10.