User's Manual

Table Of Contents
4/1/05 Operating System Security
OL-7426-02
Layer 3 SolutionsLayer 3 Solutions
The WEP problem can be further solved using industry-standard Layer 3 security solutions, such as
VPNs (virtual private networks), L2TP (Layer Two Tunneling Protocol), and IPSec (IP security) proto-
cols. The Cisco SWAN L2TP implementation includes IPsec, and the IPSec implementation includes IKE
(internet key exchange), DH (Diffie-Hellman) groups, and three optional levels of encryption: DES
(ANSI X.3.92 data encryption standard), 3DES (ANSI X9.52-1998 data encryption standard), or AES/
CBC (advanced encryption standard/cipher block chaining). Disabling is also used to automatically
block Layer 3 access after an operator-set number of failed authentication attempts.
The Cisco SWAN IPSec implementation also includes industry-standard authentication using: MD5
(message digest algorithm), or SHA-1 (secure hash algorithm-1).
The Cisco SWAN supports local and RADIUS MAC (media access control) filtering. This filtering is best
suited to smaller client groups with a known list of 802.11 access card MAC addresses.
Finally, the Cisco SWAN supports local and RADIUS user/password authentication. This authentication
is best suited to small to medium client groups.
Single Point of Configuration Policy Manager SolutionsSingle Point of Configuration Policy Manager Solutions
When the Cisco SWAN is equipped with Cisco Wireless Control System, you can configure system-wide
security policies on a per-WLAN basis. SOHO access points force you to individually configure security
policies on each AP, or use a third-party appliance to configure security policies across multiple APs.
Because the Cisco SWAN security policies can be applied across the whole system from the Cisco
Wireless Control System, errors can be eliminated and the overall effort is greatly reduced.
Rogue Access Point SolutionsRogue Access Point Solutions
Rogue Access Point ChallengesRogue Access Point Challenges
Rogue Access Points can disrupt WLAN operations by hijacking legitimate clients and using plaintext or
other denial-of-service or man-in-the-middle attacks. That is, a hacker can use a Rogue AP to capture
sensitive information, such as passwords and username. The hacker can then transmit a series of
clear-to-send (CTS) frames, which mimics an access point informing a particular NIC to transmit and
instructing all others to wait, which results in legitimate clients being unable to access the WLAN
resources. WLAN service providers thus have a strong interest in banning Rogue APs from the air
space.
The Operating System Security solution uses the Radio Resource Management (RRM)
function to
continuously monitor all nearby Cisco 1000 Series lightweight access points, and automatically discover
Rogue APs, and locate them as described in Detecting and Locating Rogue Access Points
.
Tagging and Containing Rogue Access PointsTagging and Containing Rogue Access Points
When the Cisco SWAN is monitored using Cisco Wireless Control System, Cisco WCS generates the
flags as Rogue AP traps, and displays the known Rogue APs by MAC address. The operator can then
display a map showing the location of the Cisco 1000 Series lightweight access points closest to each
Rogue AP, allowing Known or Acknowledged rogues (no further action), marking them as Alert rogues
(watch for and notify when active), or marking them as Contained rogues (have between one and four
Cisco 1000 Series lightweight access points Discourage Rogue AP clients by sending the clients
deauthenticate and disassociate messages whenever they associate with the Rogue AP).
When the Cisco SWAN is monitored using a Web User Interface
or a Command Line Interface, the
interface displays the known Rogue APs by MAC address. The operator then has the option of marking
them as Known or Acknowledged rogues (no further action), marking them as Alert rogues (watch for
and notify when active), or marking them as Contained rogues (have between one and four Cisco 1000