Lifeline Technical Manual

Document No. 6-0101 Rev. D Page 6 of 38
CHAPTER 2 - BATTERY CONSTRUCTION
2.1 Component Description
Refer to the battery pictorial in Section 2.2 showing a cut away view of the cell and a summary
of the features and benefits. A more detailed description of the battery’s construction is given
below.
GRIDS - The negative grid is made of pure lead calcium alloy. The positive grid is extra thick
and is made from a proprietary, pure lead-tin-calcium alloy with special grain refiners. These
features improve corrosion resistance of the grid and gives the battery excellent cycling
capability and float life.
PLATES The grids are pasted on state-of-the-art pasting machines to give the highest quality
plates with tightly controlled weight and thickness specifications. The lead oxide paste used to
make the positive plates is our high density formula. With time and use, the active material
tends to soften and give less discharge capacity. The high density paste formula retards the
active material softening and extends battery life.
ABSORBENT GLASS MAT [AGM] SEPARATOR The AGM is a premium blend of glass micro
fibers having an optimum ratio of fine and extra fine fiber sizes. This blend features superior
wicking characteristics and promotes maximum retention of the electrolyte. The AGM layer is
squeezed to an optimum level of compression during assembly to provide sufficient contact with
the surface of the plate over the life of the battery. This compression also promotes retention of
the active material if the battery is exposed to shock or vibration conditions.
POLYETHYLENE ENVELOPE Concorde is the only manufacturer that envelopes the AGM
separator with a thin layer of microporous polyethylene. The microporous layer is wrapped
around the glass-matted plate and then sealed along the sides to eliminate the possibility of
shorts at the edges of the plate (a common failure mode). The microporous polyethylene is
more durable and puncture resistant than the AGM material alone and significantly reduces the
occurrence of plate to plate shorts.
INTERCELL CONNECTIONS - Massive “over the partition” fusion welds are used which
increase the strength of the intercell connection. This minimizes the possibility of open welds
and provides a low resistance connection between cells. Other manufacturers use “through the
partition” spot welded construction that inserts a weak point into the assembly because of the
small cross section area and the difficulty of making a reliable weld and leak proof construction.
HIGH IMPACT, REINFORCED CONTAINER & COVER The battery container and cover are
made of a thick walled polypropylene copolymer. This material provides excellent impact
resistance at extreme low temperatures and minimizes bulging at high temperatures.
COVER-TO-CONTAINER SEAL - The batteries use an epoxy-filled tongue and groove seal
between the cover and container. Most other manufacturers heat seal their cover to the
container. The epoxy-filled tongue and groove seal is a far stronger than a heat seal and will not
separate in high or low temperature extreme applications.