User manual
Table Of Contents
- Chapter 1Introduction
- Chapter 2 Mechanical Description
- Chapter 3 Electronic Description
- Chapter 4 Maintenance and Storage
- Chapter 5 Operations
- Chapter 6 Launch and Recovery
- Chapter 7 MMP Firmware 4.X User Interface
- Figure 7-1: Electronics Board Configuration Error Message
- Power Up Sequence
- Re-Booting the System
- Prompts and Key Combinations
- Using the File Capture Utility
- Powering Down the MMP
- The Main Menu - Operating the MMP
- <1> Set Time
- <2> Diagnostics
- <3> Flash Card Ops
- <4> Sleep
- <5> Bench Test
- FSI CTD
- Sea-Bird CTD
- FSI ACM
- MAVS ACM
- Figure 7-36: MAVS ACM Pass-Through Communications
- Option <6> FSI ACM Tilt and Compass
- System Evaluation
- Option <7> Motor Operation
- Option <8> Brake On/Off Change?
- Option <9> Independent Watchdog
- System Options Tests
- Option Inductive Telemetry
- Option
Acoustic Transponder
- Option
Battery Endurance - Option
SIM/UIM Transactions - Option Inductive Charger Modem
- Option
Fluorometer - Option
CDOM Fluorometer - Option
IR Turbidity - Option Power UIM
- Option
Configure
- <6> Deploy Profiler
- Initialization
- Programming a Deployment
- MMP Deployment Definition Parameters
- Mooring ID
- Start Parameters
- Schedule Parameters
- Stops Parameters
- Endurance Parameters
- Deploy
- <7> Offload Deployment Data
- <8> Contacting McLane
Watchdog Initialization Profiling History Exiting to the Monitor
- Chapter 8 Data Offload, Processing, and Interpretation
- Overview
- Reviewing Deployment Data
- Removing the Flash Card
- Unpacking and Translating the Binary Data Files
- MMP Unpacker Application
- Editing MMPUnpacker.INI
- The PDP-N_NN Utility Program
- Processing and Interpreting MMP Data
- Mapping Velocity Measurements
- ACM Compass Calibration Step 1 – Map Horizontal C
- ACM Compass Calibration Step 2 – Plot Raw Measure
- ACM Compass Calibration Step 3 – Adjust Parameter
- ACM Compass Calibration Step 4 – Conduct a Spin T
- ACM Compass Calibration Step 5 – Removing the Bia
- Mapping Velocity Measurements to the Cartesian Earth Frame
- Sting and Acoustic Path Geometry
- Velocity Transformation
- Synchronizing the Data Streams
- Data Processing Shareware
- Appendix A Operating Crosscut for Windows and Crosscut
- Appendix B System Architecture
- Appendix C Bench Top Deployment
- Bench Top Deployment Example Settings
- Figure C-1: Bench top Deployment Example
- Figure C-2: Bench top Deployment Example (continued)
- Figure C-3: Bench top Deployment Example (continued)
- Figure C-4: Bench top Deployment Example (continued)
- Figure C-5:Bench top Deployment Example (continued)
- Figure C-6: Bench top Deployment Example (continued)
- Figure C-7: Bench top Deployment Example (continued)
- Figure C-8: Bench top Deployment Example (continued)
- Figure C-9: Bench top Deployment Example (continued)
- Figure C-10: Bench top Deployment Example (continued)
- Figure C-11: Bench top Deployment Example (continued)
- Figure C-12: Bench top Deployment Example (continued)
- Figure C-13: Bench top Deployment Example (continued)
- Figure C-14: Bench top Deployment Example (continued)
- Figure C-15 :Bench top Deployment Example (continued)
- Figure C-16: Bench top Deployment Example (continued)
- Figure C-17: Bench top Deployment Example (continued)
- Figure C-18: Bench top Deployment Example (continued)
- Figure C-19: Bench top Deployment Example (continued)
- Deployment Parameter Examples
- Bench Top Deployment Example Settings
- Appendix D ACM Compass Calibration
- Appendix E Optional Transponder
- Appendix F Unpacking data using PDP-N_NN.EXE
- Appendix G Rev C Electronics Board User Interface
- Power Up Sequence
- Re-Booting the System
- System Prompts and Key Combinations
- Using the File Capture Utility
- Powering Down the MMP
- The Main Menu - Operating the MMP
- <1> Set Time
- <2> Diagnostics
- <3> Flash Card Ops
- <4> Sleep
- <5> Bench Test
- Figure G-15: Bench Test
- Option <1> CTD Communication
- Verifying CTD Settings
- Option <2> CTD Pressure
- Option <3> CTD Average Pressure
- Option <4> CTD Temperature Record
- Option <5> ACM Communication
- Option <6> ACM Tilt and Compass
- Option <7> Motor Operation
- Option <8> Brake Set/Off Change?
- Option <9> Independent Watchdog
- System Options Tests
- Option Inductive Telemetry
- Option
Acoustic Transponder
- Option <0> Offload Routines
- Option
Fluorometer - Option
IR Turbidity - Option Power UIM
- <6> Deploy Profiler
- Programming a Deployment
- MMP Deployment Definition Parameters
- Mooring ID
- Start Parameters
- Schedule Parameters
- Stops Parameters
- Deploy
- Profile and Deployment Termination Conditions
- <7> Offload Deployment Data
- <8> Contacting McLane
Watchdog Initialization Profiling Odometer Exiting to the Monitor
- Appendix H Using the MMP Deployment Planner
- Creating a Deployment Plan
- Changing User Preferences
- Understanding Dive Zero
- Figure H-9: Deployment Planner Project Tab
- Figure H-10: Dive Zero - 1 Oct 2008, First Pattern 10 Oct 2008
- Figure H-11: Dive Zero - 1 Nov 2008, First Pattern 10 Oct 2009
- Figure H-12: Dive Zero - 20 Oct 2008, First Pattern Oct, 2008
- Figure H-13: Schedule Display in Profiler Firmware
- Figure H-14: Deployment Screen
- Figure H-15: Dive Zero Changed
- Appendix I Seapoint Analog Sensors
- Appendix J Underwater Inductive Modem (UIM)
- Appendix K Turbidity/Fluorometer Inductive Coil Configuration
- Appendix L Sea-Bird CTD Sensors
- Appendix M Aanderaa Oxygen Optode Sensor
- Appendix N MMP w/ Battery Housing Glass Sphere Extension
- Figure N-1: MMP with Battery Housing Glass Sphere Extension
- Figure N-2: MMP Battery Housing Glass Sphere Extension
- Figure N-3: Removing Bottom Bolts
- Figure N-4: Installed Support Legs
- Figure N-5: Removing Top Cap
- Figure N-6: Removing Horsehair Padding
- Figure N-7: Removing “Top” Sphere
- Figure N-8: Removing Panel Cap Screw
- Figure N-9: Installing Nylon Studs
- Figure N-10: Installing M3100A Extension Plate
- Figure N-11: Installing Front Panel Extension
- Figure N-12: Installing Spacer Legs with Studs
- Figure N-13: Reinstalling “Top” Sphere
- Figure N-14: Installing Spacer Legs with Studs
- Figure N-15: Frame Plate ‘A’ Reinstalled
- Figure N-16: Installing and Tightening Cap Screws on Front Panel
- Figure N-17: Tightening Cap Screw on Frame Plate
- Figure N-18: Glass Battery Housing Sphere Installed
- Figure N-19: Routed and Connected Cable
- Figure N-20: Installing Extension Skin
- Figure N-21: Reinstalling Horsehair
- Figure N-22: Reinstalling Top Cap
- Figure N-23: End Cap – Full View
- Figure N-24: Color-Coding on End Cap

Test timing
information
System enters
LPS
Awakened by
operator before
test completion
System
restored to
normal
This test verifies operation of the watchdog
system RESET. If successful, the system will
be RESET and operation will proceed as it does
when power is first applied to the system.
The RESET will not occur until an interval of
68 minutes and 16 seconds (4096 seconds) has
passed. The test will time out after 70 minutes
if the RESET hardware fails. The operator can
cancel the test at any time by entering three or
more <CTRL>-<C>s.
Proceed with test (Yes/No) [N] ? y
Current time: 02/09/2006 18:36:05
Expected RESET: 02/09/2006 19:44:21
Time out: 02/09/2006 19:46:05
<02/09/2006 18:36:07> Sleeping . . .
Enter <CTRL-C> now to wake up?
02/09/2006 18:36:09
Watchdog RESET test terminated by
operator before completion.
Figure 7-43: Test Watchdog Reset
Watchdog Reset Test Example
A Watchdog Reset test in which the operator did not assert control after the re-boot, is
shown in Figures 7-44 and 7-45. The test illustrates how the URAO (Unattended Reset,
Autonomous Operation) automatically programmed and started a deployment without operator
guidance. The firmware worked from a default set of parameters and reconstructed the other
information it needed by searching through the files.
Watchdog IRQ
ignored at 1
minute after the
hour
System checks
status every 20
minutes during
low power
sleep
This test verifies operation of the watchdog
system RESET. If successful, the system will
be RESET and operation will proceed as it does
when power is first applied to the system.
The RESET will not occur until an interval of
68 minutes and 16 seconds (4096 seconds) has
passed. The test will time out after 70 minutes
if the RESET hardware fails. The operator can
cancel the test at any time by entering three or
more <CTRL>-<C>s.
Proceed with test (Yes/No) [N] ? y
Current time: 03/21/2007 15:13:18
Expected RESET: 03/21/2007 16:21:34
Time out: 03/21/2007 16:23:18
03/21/2007 15:13:20 Sleeping until 03/21/2007 16:23:18 . . .
03/21/2007 15:33:20 Sleeping until 03/21/2007 16:23:18 . . .
Figure 7-44: Watchdog Reset URAO (screen 1 of 2)
7-29