User manual
Table Of Contents
- Chapter 1Introduction
- Chapter 2 Mechanical Description
- Chapter 3 Electronic Description
- Chapter 4 Maintenance and Storage
- Chapter 5 Operations
- Chapter 6 Launch and Recovery
- Chapter 7 MMP Firmware 4.X User Interface
- Figure 7-1: Electronics Board Configuration Error Message
- Power Up Sequence
- Re-Booting the System
- Prompts and Key Combinations
- Using the File Capture Utility
- Powering Down the MMP
- The Main Menu - Operating the MMP
- <1> Set Time
- <2> Diagnostics
- <3> Flash Card Ops
- <4> Sleep
- <5> Bench Test
- FSI CTD
- Sea-Bird CTD
- FSI ACM
- MAVS ACM
- Figure 7-36: MAVS ACM Pass-Through Communications
- Option <6> FSI ACM Tilt and Compass
- System Evaluation
- Option <7> Motor Operation
- Option <8> Brake On/Off Change?
- Option <9> Independent Watchdog
- System Options Tests
- Option Inductive Telemetry
- Option
Acoustic Transponder
- Option
Battery Endurance - Option
SIM/UIM Transactions - Option Inductive Charger Modem
- Option
Fluorometer - Option
CDOM Fluorometer - Option
IR Turbidity - Option Power UIM
- Option
Configure
- <6> Deploy Profiler
- Initialization
- Programming a Deployment
- MMP Deployment Definition Parameters
- Mooring ID
- Start Parameters
- Schedule Parameters
- Stops Parameters
- Endurance Parameters
- Deploy
- <7> Offload Deployment Data
- <8> Contacting McLane
Watchdog Initialization Profiling History Exiting to the Monitor
- Chapter 8 Data Offload, Processing, and Interpretation
- Overview
- Reviewing Deployment Data
- Removing the Flash Card
- Unpacking and Translating the Binary Data Files
- MMP Unpacker Application
- Editing MMPUnpacker.INI
- The PDP-N_NN Utility Program
- Processing and Interpreting MMP Data
- Mapping Velocity Measurements
- ACM Compass Calibration Step 1 – Map Horizontal C
- ACM Compass Calibration Step 2 – Plot Raw Measure
- ACM Compass Calibration Step 3 – Adjust Parameter
- ACM Compass Calibration Step 4 – Conduct a Spin T
- ACM Compass Calibration Step 5 – Removing the Bia
- Mapping Velocity Measurements to the Cartesian Earth Frame
- Sting and Acoustic Path Geometry
- Velocity Transformation
- Synchronizing the Data Streams
- Data Processing Shareware
- Appendix A Operating Crosscut for Windows and Crosscut
- Appendix B System Architecture
- Appendix C Bench Top Deployment
- Bench Top Deployment Example Settings
- Figure C-1: Bench top Deployment Example
- Figure C-2: Bench top Deployment Example (continued)
- Figure C-3: Bench top Deployment Example (continued)
- Figure C-4: Bench top Deployment Example (continued)
- Figure C-5:Bench top Deployment Example (continued)
- Figure C-6: Bench top Deployment Example (continued)
- Figure C-7: Bench top Deployment Example (continued)
- Figure C-8: Bench top Deployment Example (continued)
- Figure C-9: Bench top Deployment Example (continued)
- Figure C-10: Bench top Deployment Example (continued)
- Figure C-11: Bench top Deployment Example (continued)
- Figure C-12: Bench top Deployment Example (continued)
- Figure C-13: Bench top Deployment Example (continued)
- Figure C-14: Bench top Deployment Example (continued)
- Figure C-15 :Bench top Deployment Example (continued)
- Figure C-16: Bench top Deployment Example (continued)
- Figure C-17: Bench top Deployment Example (continued)
- Figure C-18: Bench top Deployment Example (continued)
- Figure C-19: Bench top Deployment Example (continued)
- Deployment Parameter Examples
- Bench Top Deployment Example Settings
- Appendix D ACM Compass Calibration
- Appendix E Optional Transponder
- Appendix F Unpacking data using PDP-N_NN.EXE
- Appendix G Rev C Electronics Board User Interface
- Power Up Sequence
- Re-Booting the System
- System Prompts and Key Combinations
- Using the File Capture Utility
- Powering Down the MMP
- The Main Menu - Operating the MMP
- <1> Set Time
- <2> Diagnostics
- <3> Flash Card Ops
- <4> Sleep
- <5> Bench Test
- Figure G-15: Bench Test
- Option <1> CTD Communication
- Verifying CTD Settings
- Option <2> CTD Pressure
- Option <3> CTD Average Pressure
- Option <4> CTD Temperature Record
- Option <5> ACM Communication
- Option <6> ACM Tilt and Compass
- Option <7> Motor Operation
- Option <8> Brake Set/Off Change?
- Option <9> Independent Watchdog
- System Options Tests
- Option Inductive Telemetry
- Option
Acoustic Transponder
- Option <0> Offload Routines
- Option
Fluorometer - Option
IR Turbidity - Option Power UIM
- <6> Deploy Profiler
- Programming a Deployment
- MMP Deployment Definition Parameters
- Mooring ID
- Start Parameters
- Schedule Parameters
- Stops Parameters
- Deploy
- Profile and Deployment Termination Conditions
- <7> Offload Deployment Data
- <8> Contacting McLane
Watchdog Initialization Profiling Odometer Exiting to the Monitor
- Appendix H Using the MMP Deployment Planner
- Creating a Deployment Plan
- Changing User Preferences
- Understanding Dive Zero
- Figure H-9: Deployment Planner Project Tab
- Figure H-10: Dive Zero - 1 Oct 2008, First Pattern 10 Oct 2008
- Figure H-11: Dive Zero - 1 Nov 2008, First Pattern 10 Oct 2009
- Figure H-12: Dive Zero - 20 Oct 2008, First Pattern Oct, 2008
- Figure H-13: Schedule Display in Profiler Firmware
- Figure H-14: Deployment Screen
- Figure H-15: Dive Zero Changed
- Appendix I Seapoint Analog Sensors
- Appendix J Underwater Inductive Modem (UIM)
- Appendix K Turbidity/Fluorometer Inductive Coil Configuration
- Appendix L Sea-Bird CTD Sensors
- Appendix M Aanderaa Oxygen Optode Sensor
- Appendix N MMP w/ Battery Housing Glass Sphere Extension
- Figure N-1: MMP with Battery Housing Glass Sphere Extension
- Figure N-2: MMP Battery Housing Glass Sphere Extension
- Figure N-3: Removing Bottom Bolts
- Figure N-4: Installed Support Legs
- Figure N-5: Removing Top Cap
- Figure N-6: Removing Horsehair Padding
- Figure N-7: Removing “Top” Sphere
- Figure N-8: Removing Panel Cap Screw
- Figure N-9: Installing Nylon Studs
- Figure N-10: Installing M3100A Extension Plate
- Figure N-11: Installing Front Panel Extension
- Figure N-12: Installing Spacer Legs with Studs
- Figure N-13: Reinstalling “Top” Sphere
- Figure N-14: Installing Spacer Legs with Studs
- Figure N-15: Frame Plate ‘A’ Reinstalled
- Figure N-16: Installing and Tightening Cap Screws on Front Panel
- Figure N-17: Tightening Cap Screw on Frame Plate
- Figure N-18: Glass Battery Housing Sphere Installed
- Figure N-19: Routed and Connected Cable
- Figure N-20: Installing Extension Skin
- Figure N-21: Reinstalling Horsehair
- Figure N-22: Reinstalling Top Cap
- Figure N-23: End Cap – Full View
- Figure N-24: Color-Coding on End Cap

Connector Alignment
All of the cables and connectors are keyed to indicate the correct orientation. The
“thumb bump” on the outside of the cable connector cowl should always be aligned with the thick
pin (or socket) on the bulkhead connector. If the connectors are not properly aligned and are
forced together, you can permanently damage the sockets resulting in damage to the electronics,
peripheral component or both.
Note that the large pin is
aligned with thumb bump
Figure 4-1: Cable Connector Alignment
Nylon and Stainless Steel Hardware
Nylon hardware is used in the MMP because it is light, strong, and does not corrode.
Maintenance requires fresh water rinsing after recovery. Do not over tighten the nylon hardware
as the threads are easily stripped and the heads of screws and bolts can twist off the shaft when
excessive torque is applied. The flat head bolts that secure the MMP skin can pull right through
the skin if they are over-tightened. The MMP Toolkit contains spare screws and bolts.
NOTE
Do not force the nylon bolts. Nylon absorbs water and swells slightly when immersed, therefore,
the screws and bolts will be tighter when the MMP is recovered. The swollen screws and bolts
will respond to a slow, steady turn and should not be forced.
The socket head cap screws securing the controller and motor housing end caps are 316
stainless steel. They are more robust than the nylon hardware, but they should still not be over-
4-3