User manual
Table Of Contents
- Chapter 1Introduction
- Chapter 2 Mechanical Description
- Chapter 3 Electronic Description
- Chapter 4 Maintenance and Storage
- Chapter 5 Operations
- Chapter 6 Launch and Recovery
- Chapter 7 MMP Firmware 4.X User Interface
- Figure 7-1: Electronics Board Configuration Error Message
- Power Up Sequence
- Re-Booting the System
- Prompts and Key Combinations
- Using the File Capture Utility
- Powering Down the MMP
- The Main Menu - Operating the MMP
- <1> Set Time
- <2> Diagnostics
- <3> Flash Card Ops
- <4> Sleep
- <5> Bench Test
- FSI CTD
- Sea-Bird CTD
- FSI ACM
- MAVS ACM
- Figure 7-36: MAVS ACM Pass-Through Communications
- Option <6> FSI ACM Tilt and Compass
- System Evaluation
- Option <7> Motor Operation
- Option <8> Brake On/Off Change?
- Option <9> Independent Watchdog
- System Options Tests
- Option Inductive Telemetry
- Option
Acoustic Transponder
- Option
Battery Endurance - Option
SIM/UIM Transactions - Option Inductive Charger Modem
- Option
Fluorometer - Option
CDOM Fluorometer - Option
IR Turbidity - Option Power UIM
- Option
Configure
- <6> Deploy Profiler
- Initialization
- Programming a Deployment
- MMP Deployment Definition Parameters
- Mooring ID
- Start Parameters
- Schedule Parameters
- Stops Parameters
- Endurance Parameters
- Deploy
- <7> Offload Deployment Data
- <8> Contacting McLane
Watchdog Initialization Profiling History Exiting to the Monitor
- Chapter 8 Data Offload, Processing, and Interpretation
- Overview
- Reviewing Deployment Data
- Removing the Flash Card
- Unpacking and Translating the Binary Data Files
- MMP Unpacker Application
- Editing MMPUnpacker.INI
- The PDP-N_NN Utility Program
- Processing and Interpreting MMP Data
- Mapping Velocity Measurements
- ACM Compass Calibration Step 1 – Map Horizontal C
- ACM Compass Calibration Step 2 – Plot Raw Measure
- ACM Compass Calibration Step 3 – Adjust Parameter
- ACM Compass Calibration Step 4 – Conduct a Spin T
- ACM Compass Calibration Step 5 – Removing the Bia
- Mapping Velocity Measurements to the Cartesian Earth Frame
- Sting and Acoustic Path Geometry
- Velocity Transformation
- Synchronizing the Data Streams
- Data Processing Shareware
- Appendix A Operating Crosscut for Windows and Crosscut
- Appendix B System Architecture
- Appendix C Bench Top Deployment
- Bench Top Deployment Example Settings
- Figure C-1: Bench top Deployment Example
- Figure C-2: Bench top Deployment Example (continued)
- Figure C-3: Bench top Deployment Example (continued)
- Figure C-4: Bench top Deployment Example (continued)
- Figure C-5:Bench top Deployment Example (continued)
- Figure C-6: Bench top Deployment Example (continued)
- Figure C-7: Bench top Deployment Example (continued)
- Figure C-8: Bench top Deployment Example (continued)
- Figure C-9: Bench top Deployment Example (continued)
- Figure C-10: Bench top Deployment Example (continued)
- Figure C-11: Bench top Deployment Example (continued)
- Figure C-12: Bench top Deployment Example (continued)
- Figure C-13: Bench top Deployment Example (continued)
- Figure C-14: Bench top Deployment Example (continued)
- Figure C-15 :Bench top Deployment Example (continued)
- Figure C-16: Bench top Deployment Example (continued)
- Figure C-17: Bench top Deployment Example (continued)
- Figure C-18: Bench top Deployment Example (continued)
- Figure C-19: Bench top Deployment Example (continued)
- Deployment Parameter Examples
- Bench Top Deployment Example Settings
- Appendix D ACM Compass Calibration
- Appendix E Optional Transponder
- Appendix F Unpacking data using PDP-N_NN.EXE
- Appendix G Rev C Electronics Board User Interface
- Power Up Sequence
- Re-Booting the System
- System Prompts and Key Combinations
- Using the File Capture Utility
- Powering Down the MMP
- The Main Menu - Operating the MMP
- <1> Set Time
- <2> Diagnostics
- <3> Flash Card Ops
- <4> Sleep
- <5> Bench Test
- Figure G-15: Bench Test
- Option <1> CTD Communication
- Verifying CTD Settings
- Option <2> CTD Pressure
- Option <3> CTD Average Pressure
- Option <4> CTD Temperature Record
- Option <5> ACM Communication
- Option <6> ACM Tilt and Compass
- Option <7> Motor Operation
- Option <8> Brake Set/Off Change?
- Option <9> Independent Watchdog
- System Options Tests
- Option Inductive Telemetry
- Option
Acoustic Transponder
- Option <0> Offload Routines
- Option
Fluorometer - Option
IR Turbidity - Option Power UIM
- <6> Deploy Profiler
- Programming a Deployment
- MMP Deployment Definition Parameters
- Mooring ID
- Start Parameters
- Schedule Parameters
- Stops Parameters
- Deploy
- Profile and Deployment Termination Conditions
- <7> Offload Deployment Data
- <8> Contacting McLane
Watchdog Initialization Profiling Odometer Exiting to the Monitor
- Appendix H Using the MMP Deployment Planner
- Creating a Deployment Plan
- Changing User Preferences
- Understanding Dive Zero
- Figure H-9: Deployment Planner Project Tab
- Figure H-10: Dive Zero - 1 Oct 2008, First Pattern 10 Oct 2008
- Figure H-11: Dive Zero - 1 Nov 2008, First Pattern 10 Oct 2009
- Figure H-12: Dive Zero - 20 Oct 2008, First Pattern Oct, 2008
- Figure H-13: Schedule Display in Profiler Firmware
- Figure H-14: Deployment Screen
- Figure H-15: Dive Zero Changed
- Appendix I Seapoint Analog Sensors
- Appendix J Underwater Inductive Modem (UIM)
- Appendix K Turbidity/Fluorometer Inductive Coil Configuration
- Appendix L Sea-Bird CTD Sensors
- Appendix M Aanderaa Oxygen Optode Sensor
- Appendix N MMP w/ Battery Housing Glass Sphere Extension
- Figure N-1: MMP with Battery Housing Glass Sphere Extension
- Figure N-2: MMP Battery Housing Glass Sphere Extension
- Figure N-3: Removing Bottom Bolts
- Figure N-4: Installed Support Legs
- Figure N-5: Removing Top Cap
- Figure N-6: Removing Horsehair Padding
- Figure N-7: Removing “Top” Sphere
- Figure N-8: Removing Panel Cap Screw
- Figure N-9: Installing Nylon Studs
- Figure N-10: Installing M3100A Extension Plate
- Figure N-11: Installing Front Panel Extension
- Figure N-12: Installing Spacer Legs with Studs
- Figure N-13: Reinstalling “Top” Sphere
- Figure N-14: Installing Spacer Legs with Studs
- Figure N-15: Frame Plate ‘A’ Reinstalled
- Figure N-16: Installing and Tightening Cap Screws on Front Panel
- Figure N-17: Tightening Cap Screw on Frame Plate
- Figure N-18: Glass Battery Housing Sphere Installed
- Figure N-19: Routed and Connected Cable
- Figure N-20: Installing Extension Skin
- Figure N-21: Reinstalling Horsehair
- Figure N-22: Reinstalling Top Cap
- Figure N-23: End Cap – Full View
- Figure N-24: Color-Coding on End Cap

Chapter 6
Launch and Recovery
This chapter describes a basic MMP launch and recovery operation and provides sample
steps that you can refer to and modify for your specific launch and recovery scenarios. An
illustration of a simple mooring setup is shown in Figure 6-1. Use this schematic as an example
as you review the information provided in this chapter.
Attaching to a Mooring
Physical stoppers can be secured to the mooring cable above and below the range defined
by the pressure stops. These stoppers are typically placed 5 meters to 50 meters outside the range
defined by the pressure stops. The actual placement depends on the anticipated dynamics of the
mooring and on the placement of other mooring components. In the mooring schematic in
Figure 6-1, they have been placed 25 meters above the shallow pressure stop and 25 meters below
the deep pressure stop. The bumpers prevent the profiler from straying off the portion of the
mooring reserved for it. This is important because flotation and other instrumentation may
occupy other parts of the mooring. Repeated collisions due to profiler motion or current and
wave induced mooring motion are not in the best interests of either the MMP or those other
mooring components. Additionally, the deep end of the mooring may extend below the 6000
meter depth limit of the MMP.
Launch Overview
This launch example assumes a simple mooring with a subsurface float, a single,
continuous length of jacketed cable, an acoustic release, and an anchor. Two physical stops with
padded stoppers are mounted on the mooring, some distance above and below the programmed
depth limits of the profile. In more complex moorings there may be additional instruments above
and/or below the physical stops. The ship has a rear A-frame, a crane, and a selection of winches,
blocks, and capstans. You may need to modify the process that follows based on your specific
equipment.
6-1