Datasheet

Aalap Tripathy, 2004P3PS208
PSOC Lab, BITS Pilani Goa Campus
27
experiments – level 2
SIGNAL GENERATION
Generate a fixed frequency Sine Wave
Theoretical Analysis (AN 2086)
The fourier series of a square wave is given by :
w(t)= a
0
+
=
+
1
00
sincos
n
nn
tnwbtnwa
i.e a
0
=
0
)(
1
0
T
dttw
T
=
+
4/
4/
0
0
0
1
T
T
dt
T
=1/2
a
n
=
4/
4/
0
0
0
0
cos
2
T
T
tdtn
T
ω
=
Π
Π 2
sin
2 n
n
b
n
=
4/
4/
0
0
0
0
sin
2
T
T
tdtn
T
ω
= 0
So, w(t) =
++++ ..9cos
9
1
7cos
7
1
5cos
5
1
3cos
3
1
cos
2
2
1
0000
ttttt
o
ωωωωω
π
Assuming ω
0
=1
0 1 2 3 4 5 6 7 8 9 10
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
0 1 2 3 4 5 6 7 8 9 10
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
0 1 2 3 4 5 6 7 8 9 10
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
0 1 2 3 4 5 6 7 8 9 10
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
0 20 40 60 80 100 120 140 160 180 200
0
0.2
0.4
0.6
0.8
1
t = 0:.1:10;
y = 1/2+(2/pi)*(cos(t));
plot(t,y);
t = 0:.1:10;
y = 1/2+(2/pi)*(cos(t) -(1/3)*cos(3*t));
plot(t,y);
t = 0:.1:10;
y = 1/2+(2/pi)*(cos(t) -
(1/3)*cos(3*t)+(1/5)*cos(5*t));
plot(t,y);
t = 0:.1:10;
y = 1/2+(2/pi)*(cos(t) -
(1/3)*cos(3*t)+(1/5)*cos(5*t));
plot(t,y);