Specifications

CY14B108K
CY14B108M
Document Number: 001-47378 Rev. *K Page 7 of 36
the STORE operation is initiated. However, any SRAM write
cycles requested after HSB
goes LOW are inhibited until HSB
returns HIGH. In case the write latch is not set, HSB is not driven
LOW by the CY14B108K/CY14B108M. But any SRAM read and
write cycles are inhibited until HSB is returned HIGH by MPU or
other external source.
During any STORE operation, regardless of how it is initiated,
the CY14B108K/CY14B108M continues to drive the HSB pin
LOW, releasing it only when the STORE is complete. Upon
completion of the STORE operation, the nvSRAM memory
access is inhibited for t
LZHSB
time after HSB pin returns HIGH.
Leave the HSB
unconnected if it is not used.
Hardware RECALL (Power-Up)
During power-up or after any low power condition
(V
CC
<V
SWITCH
), an internal RECALL request is latched. When
V
CC
again exceeds the V
SWITCH
on powerup, a RECALL cycle
is automatically initiated and takes t
HRECALL
to complete. During
this time, the HSB
pin is driven LOW by the HSB driver and all
reads and writes to nvSRAM are inhibited.
Software STORE
Data is transferred from the SRAM to the nonvolatile memory by
a software address sequence. The CY14B108K/CY14B108M
Software STORE cycle is initiated by executing sequential CE
or
OE
controlled read cycles from six specific address locations in
exact order. During the STORE cycle, an erase of the previous
nonvolatile data is first performed, followed by a program of the
nonvolatile elements. After a STORE cycle is initiated, further
input and output are disabled until the cycle is completed.
Because a sequence of reads from specific addresses is used
for STORE initiation, it is important that no other read or write
accesses intervene in the sequence, or the sequence is aborted
and no STORE or RECALL takes place.
To initiate the Software STORE cycle, the following read
sequence must be performed:
1. Read address 0x4E38 Valid READ
2. Read address 0xB1C7 Valid READ
3. Read address 0x83E0 Valid READ
4. Read address 0x7C1F Valid READ
5. Read address 0x703F Valid READ
6. Read address 0x8FC0 Initiate STORE cycle
The software sequence may be clocked with CE
controlled reads
or OE
controlled reads, with WE kept HIGH for all the six READ
sequences. After the sixth address in the sequence is entered,
the STORE cycle commences and the chip is disabled. HSB
is
driven LOW. After the t
STORE
cycle time is fulfilled, the SRAM is
activated again for the read and write operation.
Software RECALL
Data is transferred from the nonvolatile memory to the SRAM by
a software address sequence. A software RECALL cycle is
initiated with a sequence of read operations in a manner similar
to the Software STORE initiation. To initiate the RECALL cycle,
perform the following sequence of CE
or OE controlled read
operations:
1. Read address 0x4E38 Valid READ
2. Read address 0xB1C7 Valid READ
3. Read address 0x83E0 Valid READ
4. Read address 0x7C1F Valid READ
5. Read address 0x703F Valid READ
6. Read address 0x4C63 Initiate RECALL cycle
Internally, RECALL is a two step procedure. First, the SRAM data
is cleared; then, the nonvolatile information is transferred into the
SRAM cells. After the t
RECALL
cycle time, the SRAM is again
ready for read and write operations. The RECALL operation
does not alter the data in the nonvolatile elements.