Programmable System-on-Chip Specification Sheet

CY8C24094, CY8C24794
CY8C24894, CY8C24994
Document Number: 38-12018 Rev. *M Page 2 of 47
3. PSoC Functional Overview
The PSoC family consists of many Mixed-Signal Array with
On-Chip Controller devices. All PSoC family devices are
designed to replace traditional MCUs, system ICs, and the
numerous discrete components that surround them. The PSoC
CY8C24x94 devices are unique members of the PSoC family
because it includes a full featured, full speed (12 Mbps) USB
port. Configurable analog, digital, and interconnect circuitry
enable a high level of integration in a host of industrial,
consumer, and communication applications.
This architecture allows the user to create customized peripheral
configurations that match the requirements of each individual
application. Additionally, a fast CPU, Flash program memory,
SRAM data memory, and configurable I/O are included in a
range of convenient pinouts and packages.
The PSoC architecture, as illustrated on the left, is comprised of
four main areas: PSoC Core, Digital System, Analog System,
and System Resources including a full-speed USB port. Config-
urable global busing allows all the device resources to be
combined into a complete custom system. The PSoC
CY8C24x94 devices can have up to seven I/O ports that connect
to the global digital and analog interconnects, providing access
to 4 digital blocks and 6 analog blocks.
3.1 The PSoC Core
The PSoC Core is a powerful engine that supports a rich feature
set. The core includes a CPU, memory, clocks, and configurable
GPI/O (General Purpose I/O).
The M8C CPU core is a powerful processor with speeds up to 24
MHz, providing a four MIPS 8-bit Harvard architecture micropro-
cessor. The CPU uses an interrupt controller with up to 20
vectors, to simplify programming of real time embedded events.
Program execution is timed and protected using the included
Sleep and Watch Dog Timers (WDT).
Memory encompasses 16K of Flash for program storage, 1K of
SRAM for data storage, and up to 2K of EEPROM emulated
using the Flash. Program Flash uses four protection levels on
blocks of 64 bytes, allowing customized software IP protection.
The PSoC device incorporates flexible internal clock generators,
including a 24 MHz IMO (internal main oscillator) accurate to 8%
over temperature and voltage. The 24 MHz IMO can also be
doubled to 48 MHz for use by the digital system. A low power 32
kHz ILO (internal low speed oscillator) is provided for the Sleep
timer and WDT. The clocks, together with programmable clock
dividers (as a System Resource), provide the flexibility to
integrate almost any timing requirement into the PSoC device. In
USB systems, the IMO self tunes to ± 0.25% accuracy for USB
communication.
PSoC GPI/Os provide connection to the CPU, digital and analog
resources of the device. Each pin’s drive mode may be selected
from eight options, allowing great flexibility in external inter-
facing. Every pin is also capable of generating a system interrupt
on high level, low level, and change from last read.
3.2 The Digital System
The Digital System is composed of four digital PSoC blocks.
Each block is an 8-bit resource used alone or combined with
other blocks to form 8, 16, 24, and 32-bit peripherals, which are
called user module references.
Figure 3-1. Digital System Block Diagram
Digital peripheral configurations include those listed below.
Full-Speed USB (12 Mbps)
PWMs (8 to 32 bit)
PWMs with Dead band (8 to 24 bit)
Counters (8 to 32 bit)
Timers (8 to 32 bit)
UART 8 bit with selectable parity
SPI master and slave
I2C slave and multi-master
Cyclical Redundancy Checker/Generator (8 to 32 bit)
IrDA
Pseudo Random Sequence Generators (8 to 32 bit)
The digital blocks are connected to any GPI/O through a series
of global buses that can route any signal to any pin. The buses
also allow signal multiplexing and performing logic operations.
This configurability frees the designs from the constraints of a
fixed peripheral controller.
Digital blocks are provided in rows of four, where the number of
blocks varies by PSoC device family. This allows you the
optimum choice of system resources for your application. Family
resources are shown in Table 3-1 on page 4.
DIGITAL SYSTEM
To System Bus
D
i
g
i
t
a
l
C
l
o
c
k
s
F
r
o
m
C
o
r
e
Digital PSoC Block Array
To Analog
System
8
Row Input
Configuration
Row Output
Configuration
88
8
Row 0
DBB00 DBB01 DCB02 DCB03
4
4
GIE[7:0]
GIO[7:0]
GOE[7:0]
GOO[7:0]
Global Digital
Interconnect
Port 1
Port 0
Port 3
Port 2
Port 5
Port 4
Port 7
[+] Feedback