White Papers

System Building Blocks
7 Dell EMC Ready Solution for HPC Digital Manufacturing—Siemens’ Simcenter STAR-CCM+™ Performance
Table 1 Recommended Configurations for the Compute Building Block
Platforms
Dell EMC PowerEdge R640
Dell EMC PowerEdge C6420
Processors
Dual Intel Xeon Gold 6242 (16 cores per socket)
Dual Intel Xeon Gold 6248 (20 cores per socket)
Dual Intel Xeon Gold 6252 (24 cores per socket)
Memory
Options
192 GB (12 x 16GB 2933 MTps DIMMs)
384 GB (12 x 32GB 2933 MTps DIMMs)
768 GB (24 x 32GB 2933 MTps DIMMs, R640 only)
Storage
Options
PERC H330, H730P or H740P RAID controller
2 x 480GB Mixed-Use SATA SSD RAID 0
4 x 480GB Mixed-Use SATA SSD RAID 0
iDRAC
iDRAC9 Enterprise (R640)
iDRAC9 Express (C6420)
Power Supplies
2 x 750W PSU (R640)
2 x 2000W PSU (C6400)
Networking
Mellanox® ConnectX®-5 EDR InfiniBand adapter
2.3 Basic Building Blocks
Basic Building Block (BBB) servers are selected by customers to create simple but powerful HPC systems.
These servers are appropriate for smaller HPC systems where reducing the management complexity of the
HPC system is important. The BBB is based on the 4-socket Dell EMC PowerEdge R840 server.
The recommended configuration for BBB servers is:
Dell EMC PowerEdge R840 server
Quad Intel Xeon Gold 6142 processors
384 GB of RAM (24 x 16GB 2666 MTps DIMMS)
PERC H740P RAID controller
2 x 240GB Read-Intensive SATA SSD RAID 1 (OS)
4 x 480GB Mixed-Use SATA SSD RAID 0 (scratch)
Dell EMC iDRAC9 Enterprise
2 x 1600W power supply units (PSUs)
Mellanox ConnectX-5 EDR InfiniBand (optional)
Mellanox 25 GbE (optional)
The R840 platform is used to minimize server count and provide good compute power per server. Each
server can contain up to four Intel Xeon processors, where each BBB is essentially two CBB’s fused into a
single server. The Intel Xeon Gold 6142 processor is a sixteen-core CPU with a base frequency of 2.6 GHz
and a max all-core turbo frequency of 3.3 GHz. With four processors, a BBB contains 64 cores, a natural
number for many CAE simulations. A memory configuration of 24 x 16GB DIMMs is used to provide balanced
performance and capacity. While 384GB is typically sufficient for most CAE workloads, customers expecting
to handle larger production jobs should consider increasing the memory capacity to 768GB. Various CAE
applications, such as implicit FEA, often have large file system I/O requirements and four Mixed-use SATA