Administrator Guide
Table Of Contents
- Contents
- Figures
- Tables
- About This Document
- Understanding Fibre Channel Services
- Performing Basic Configuration Tasks
- Performing Advanced Configuration Tasks
- Routing Traffic
- Managing User Accounts
- Configuring Protocols
- Configuring Security Policies
- In this chapter
- ACL policies overview
- ACL policy management
- FCS policies
- DCC policies
- SCC policies
- Authentication policy for fabric elements
- IP Filter policy
- Creating an IP Filter policy
- Cloning an IP Filter policy
- Displaying an IP Filter policy
- Saving an IP Filter policy
- Activating an IP Filter policy
- Deleting an IP Filter policy
- IP Filter policy rules
- IP Filter policy enforcement
- Adding a rule to an IP Filter policy
- Deleting a rule to an IP Filter policy
- Aborting an IP Filter transaction
- IP Filter policy distribution
- Policy database distribution
- Management interface security
- Maintaining the Switch Configuration File
- Installing and Maintaining Firmware
- In this chapter
- Firmware download process overview
- Preparing for a firmware download
- Firmware download on switches
- Firmware download on an enterprise-class platform
- Firmware download from a USB device
- FIPS Support
- Test and restore firmware on switches
- Test and restore firmware on enterprise-class platforms
- Validating a firmware download
- Managing Virtual Fabrics
- In this chapter
- Virtual Fabrics overview
- Logical switch overview
- Logical fabric overview
- Management model for logical switches
- Account management and Virtual Fabrics
- Supported platforms for Virtual Fabrics
- Limitations and restrictions of Virtual Fabrics
- Enabling Virtual Fabrics mode
- Disabling Virtual Fabrics mode
- Configuring logical switches to use basic configuration values
- Creating a logical switch or base switch
- Executing a command in a different logical fabric context
- Deleting a logical switch
- Adding and removing ports on a logical switch
- Displaying logical switch configuration
- Changing the fabric ID of a logical switch
- Changing a logical switch to a base switch
- Setting up IP addresses for a Virtual Fabric
- Removing an IP address for a Virtual Fabric
- Configuring a logical switch to use XISLs
- Changing the context to a different logical fabric
- Creating a logical fabric using XISLs
- Administering Advanced Zoning
- In this chapter
- Special zones
- Zoning overview
- Broadcast zones
- Zone aliases
- Zone creation and maintenance
- Default zoning mode
- Zoning database size
- Zoning configurations
- Creating a zoning configuration
- Adding zones (members) to a zoning configuration
- Removing zones (members) from a zone configuration
- Enabling a zone configuration
- Disabling a zone configuration
- Deleting a zone configuration
- Clearing changes to a configuration
- Viewing all zone configuration information
- Viewing selected zone configuration information
- Viewing the configuration in the effective zone database
- Clearing all zone configurations
- Zone object maintenance
- Zoning configuration management
- Security and zoning
- Zone merging scenarios
- Traffic Isolation Zoning
- In this chapter
- Traffic Isolation Zoning overview
- Enhanced TI zones
- Traffic Isolation Zoning over FC routers
- General rules for TI zones
- Supported configurations for Traffic Isolation Zoning
- Limitations and restrictions of Traffic Isolation Zoning
- Admin Domain considerations for Traffic Isolation Zoning
- Virtual Fabric considerations for Traffic Isolation Zoning
- Traffic Isolation Zoning over FC routers with Virtual Fabrics
- Creating a TI zone
- Modifying TI zones
- Changing the state of a TI zone
- Deleting a TI zone
- Displaying TI zones
- Setting up TI over FCR (sample procedure)
- Administering NPIV
- Interoperability for Merged SANs
- In this chapter
- Interoperability overview
- Connectivity solutions
- Domain ID offset modes
- McDATA Fabric mode configuration restrictions
- McDATA Open Fabric mode configuration restrictions
- Interoperability support for logical switches
- Switch configurations for interoperability
- Zone management in interoperable fabrics
- Frame Redirection in interoperable fabrics
- Traffic Isolation zones in interoperable fabrics
- Brocade SANtegrity implementation in mixed fabric SANS
- E_Port authentication between Fabric OS and M-EOS switches
- FCR SANtegrity
- FICON implementation in a mixed fabric
- Fabric OS version change restrictions in an interoperable environment
- Coordinated Hot Code Load
- McDATA-aware features
- McDATA-unaware features
- Supported hardware in an interoperable environment
- Supported features in an interoperable environment
- Unsupported features in an interoperable environment
- Managing Administrative Domains
- In this chapter
- Administrative Domains overview
- Admin Domain management for physical fabric administrators
- Setting the default zoning mode for Admin Domains
- Creating an Admin Domain
- User assignments to Admin Domains
- Removing an Admin Domain from a user account
- Activating an Admin Domain
- Deactivating an Admin Domain
- Adding members to an existing Admin Domain
- Removing members from an Admin Domain
- Renaming an Admin Domain
- Deleting an Admin Domain
- Deleting all user-defined Admin Domains
- Deleting all user-defined Admin Domains non-disruptively
- Validating an Admin Domain member list
- SAN management with Admin Domains
- CLI commands in an AD context
- Executing a command in a different AD context
- Displaying an Admin Domain configuration
- Switching to a different Admin Domain context
- Admin Domain interactions with other Fabric OS features
- Admin Domains, zones, and zone databases
- Admin Domains and LSAN zones
- Configuration upload and download in an AD context
- Administering Licensing
- Monitoring Fabric Performance
- In this chapter
- Advanced Performance Monitoring overview
- End-to-end performance monitoring
- Frame monitoring
- ISL performance monitoring
- Top Talker monitors
- Adding a Top Talker monitor on an F_Port
- Adding Top Talker monitors on all switches in the fabric (fabric mode)
- Displaying the top n bandwidth-using flows on an F_Port
- Displaying top talking flows for a given domain ID (fabric mode)
- Deleting a Top Talker monitor on an F_Port
- Deleting the fabric mode Top Talker monitors
- Limitations of Top Talker monitors
- Trunk monitoring
- Displaying end-to-end and ISL monitor counters
- Clearing end-to-end and ISL monitor counters
- Saving and restoring monitor configurations
- Performance data collection
- Optimizing Fabric Behavior
- In this chapter
- Adaptive Networking overview
- Ingress Rate Limiting
- QoS: SID/DID traffic prioritization
- QoS zones
- QoS on E_Ports
- QoS over FC routers
- Virtual Fabric considerations for traffic prioritization
- High availability considerations for traffic prioritization
- Supported configurations for traffic prioritization
- Upgrade considerations for traffic prioritization
- Limitations and restrictions for traffic prioritization
- Setting traffic prioritization
- Setting traffic prioritization over FC routers
- Disabling QoS
- Bottleneck detection
- Supported configurations for bottleneck detection
- How bottlenecks are reported
- Limitations of bottleneck detection
- High availability considerations for bottleneck detection
- Upgrade and downgrade considerations for bottleneck detection
- Trunking considerations for bottleneck detection
- Virtual Fabrics considerations for bottleneck detection
- Access Gateway considerations for bottleneck detection
- Enabling bottleneck detection on a switch
- Excluding a port from bottleneck detection
- Displaying bottleneck detection configuration details
- Changing bottleneck alert parameters
- Displaying bottleneck statistics
- Disabling bottleneck detection on a switch
- Managing Trunking Connections
- Managing Long Distance Fabrics
- In this chapter
- Long distance fabrics overview
- Extended Fabrics device limitations
- Long distance link modes
- Configuring an extended ISL
- Buffer credit management
- Buffer-to-Buffer flow control
- Optimal buffer credit allocation
- Fibre Channel gigabit values reference definition
- Allocating buffer credits based on full-size frames
- Allocating buffer credits based on average-size frames
- Allocating buffer credits for F_Ports
- Displaying the remaining buffers in a port group
- Buffer credits for each switch model
- Maximum configurable distances for Extended Fabrics
- Buffer credit recovery
- Using the FC-FC Routing Service
- In this chapter
- FC-FC routing service overview
- Integrated Routing
- Fibre Channel routing concepts
- Setting up the FC-FC routing service
- Backbone fabric IDs
- FCIP tunnel configuration
- Inter-fabric link configuration
- FC Router port cost configuration
- EX_Port frame trunking configuration
- LSAN zone configuration
- Use of Admin Domains with LSAN zones and FCR
- Zone definition and naming
- LSAN zones and fabric-to-fabric communications
- Controlling device communication with the LSAN
- Setting the maximum LSAN count
- Configuring backbone fabrics for interconnectivity
- HA and downgrade considerations for LSAN zones
- LSAN zone policies using LSAN tagging
- LSAN zone binding
- Proxy PID configuration
- Fabric parameter considerations
- Inter-fabric broadcast frames
- Resource monitoring
- FC-FC Routing and Virtual Fabrics
- Upgrade and downgrade considerations for FC-FC routing
- Displaying the range of output ports connected to xlate domains
- M-EOS Migration Path to Fabric OS
- Inband Management
- Port Indexing
- FIPS Support
- Hexadecimal
- Index
Fabric OS Administrator’s Guide 279
53-1001763-02
Admin Domain considerations for Traffic Isolation Zoning
12
• Two N_Ports that have the same shared area should not be configured in different TI zones.
This limitation does not apply to E_Ports that use the same shared area on the FC4-48 and
FC8-48 port blades.
• Ports that are in different TI zones cannot communicate with each other if failover is disabled.
• TI zone members that overlap must have the same TI failover policy across all TI zones to which
they belong. That is, if an overlapping member is part of a failover-disabled zone, then it can
belong only to other TI zones where the policy is also failover-disabled; the member cannot
overlap with failover-enabled TI zones.
• TI zones that have members with port index greater than 511 are not supported with Fabric OS
versions earlier than v6.4.0. If such a TI zone and Fabric OS version combination is detected, a
warning is issued. These configurations are not prevented, but their behavior is unpredictable.
Admin Domain considerations for Traffic Isolation Zoning
Note the following if you implement Admin Domains and TI zones:
• TI zones are applicable only in AD0, and the E_Ports that are members of a TI zone must be in
the AD0 device list. Because TI zones must use D,I notation, the AD0 device list must be
declared using D,I notation for ports that are to be used in TI zones.
• A port used in a TI zone should not be a member of multiple Admin Domains.
• Use care if defining TI zones with ports that are shared across Admin Domains because of the
limitation that a given port can appear in only one TI zone.
Best practice: Do not use ports that are shared across Admin Domains in a TI zone.
Virtual Fabric considerations for Traffic Isolation Zoning
This section describes how TI zones work with Virtual Fabrics. See Chapter 10, “Managing Virtual
Fabrics,” for information about the Virtual Fabrics feature, including logical switches and logical
fabrics.
TI zones can be created in a logical fabric like in regular fabrics, with the following exceptions:
• The disable failover option is not supported in logical fabrics that use XISLs.
Although logical switches that use XISLs allow the creation of a TI zone with failover disabled,
this is not a supported configuration. Base switches do not allow the creation of a TI zone with
failover disabled.
• To create a TI zone for a logical fabric that uses XISLs, you must create two TI zones: one in the
logical fabric and one in the base fabric. The combination of TI zones in the base fabric and
logical fabric sets the path through the base fabric for logical switches.
The TI zone in the logical fabric includes the extended XISL (XISL) port numbers, as well as the
F_Ports and ISLs in the logical fabric.
The TI zone in the base fabric reserves XISLs for a particular logical fabric. The base fabric TI zone
should also include ISLs that belong to logical switches participating in the logical fabric.
Figure 44 shows an initiator and target in a logical fabric (FID1). The dotted line indicates a
dedicated path between initiator and target. The dedicated path passes through the base fabric
over an XISL. (Figure 44 shows only physical ISLs, not logical ISLs.) To create the TI zones for this
dedicated path, you must create a TI zone in the logical fabric (FID 1) and one in the base fabric.