Dell Configuration Guide for the S4820T System 9.7(0.
Notes, Cautions, and Warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. Copyright © 2015 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws.
Contents 1 About this Guide................................................................................................. 36 Audience..............................................................................................................................................36 Conventions........................................................................................................................................ 36 Related Documents...............................................................
Enabling Software Features on Devices Using a Command Option................................................ 58 View Command History......................................................................................................................59 Upgrading Dell Networking OS..........................................................................................................60 Using HTTP for File Transfers.............................................................................................
Recovering from a Forgotten Password.............................................................................................81 Recovering from a Forgotten Enable Password.......................................................................... 82 Recovering from a Failed Start........................................................................................................... 83 Restoring the Factory Default Settings................................................................................
Configuring Timeouts.......................................................................................................................108 Configuring Dynamic VLAN Assignment with Port Authentication................................................109 Guest and Authentication-Fail VLANs.............................................................................................. 110 Configuring a Guest VLAN...................................................................................................
Important Points to Remember........................................................................................................142 Configuration Task List for Route Maps..................................................................................... 142 Configuring Match Routes..........................................................................................................144 Configuring Set Conditions........................................................................................
Origin........................................................................................................................................... 193 AS Path.........................................................................................................................................194 Next Hop......................................................................................................................................194 Multiprotocol BGP...................................................
Configuring BGP Confederations...............................................................................................232 Enabling Route Flap Dampening................................................................................................232 Changing BGP Timers.................................................................................................................235 Enabling BGP Neighbor Soft-Reconfiguration..........................................................................
Important Points to Remember..................................................................................................272 Applying a DCB Map on a Port................................................................................................... 273 Configuring PFC without a DCB Map.........................................................................................273 Configuring Lossless Queues.................................................................................................
14 Dynamic Host Configuration Protocol (DHCP)........................................ 315 DHCP Packet Format and Options...................................................................................................315 Assign an IP Address using DHCP.....................................................................................................317 Implementation Information............................................................................................................
16 FCoE Transit.................................................................................................... 341 Fibre Channel over Ethernet.............................................................................................................341 Ensure Robustness in a Converged Ethernet Network................................................................... 341 FIP Snooping on Ethernet Bridges...................................................................................................
Viewing the FRRP Information................................................................................................... 369 Troubleshooting FRRP......................................................................................................................369 Configuration Checks.................................................................................................................369 Sample Configuration and Topology....................................................................
Viewing IGMP Enabled Interfaces.................................................................................................... 394 Selecting an IGMP Version............................................................................................................... 394 Viewing IGMP Groups.......................................................................................................................395 Adjusting Timers.............................................................................
Configuring EIS............................................................................................................................416 Management Interfaces.................................................................................................................... 416 Configuring Management Interfaces......................................................................................... 416 Configuring Management Interfaces on the S-Series...................................................
Configure the MTU Size on an Interface......................................................................................... 444 Port-Pipes......................................................................................................................................... 445 Auto-Negotiation on Ethernet Interfaces........................................................................................445 Setting the Speed and Duplex Mode of Ethernet Interfaces.........................................
Enabling ICMP Unreachable Messages............................................................................................470 UDP Helper........................................................................................................................................ 471 Configure UDP Helper................................................................................................................ 471 Important Points to Remember..................................................................
Configuring IPv6 RA Guard.............................................................................................................. 495 Configuring IPv6 RA Guard on an Interface.............................................................................. 497 Monitoring IPv6 RA Guard.......................................................................................................... 497 26 iSCSI Optimization........................................................................................
Sample Configurations......................................................................................................................531 28 Link Aggregation Control Protocol (LACP)...............................................534 Introduction to Dynamic LAGs and LACP....................................................................................... 534 Important Points to Remember................................................................................................. 534 LACP Modes.....
30 Link Layer Discovery Protocol (LLDP)........................................................564 802.1AB (LLDP) Overview.................................................................................................................564 Protocol Data Units.....................................................................................................................564 Optional TLVs........................................................................................................................
Limiting the Source-Active Cache............................................................................................. 597 Clearing the Source-Active Cache.............................................................................................597 Enabling the Rejected Source-Active Cache.............................................................................597 Accept Source-Active Messages that Fail the RFP Check...............................................................
Implementation Information............................................................................................................630 Multicast Policies...............................................................................................................................631 IPv4 Multicast Policies.................................................................................................................631 35 Object Tracking..................................................................
Assigning IPv6 Addresses on an Interface..................................................................................679 Assigning Area ID on an Interface.............................................................................................. 679 Assigning OSPFv3 Process ID and Router ID Globally.............................................................. 680 Assigning OSPFv3 Process ID and Router ID to a VRF..............................................................
Use PIM-SSM with IGMP Version 2 Hosts........................................................................................ 715 Configuring PIM-SSM with IGMPv2............................................................................................716 40 Port Monitoring.............................................................................................. 718 Important Points to Remember........................................................................................................
PVST+ Sample Configurations......................................................................................................... 752 43 Quality of Service (QoS)................................................................................754 Implementation Information............................................................................................................ 756 Port-Based QoS Configurations...............................................................................................
Implementation Information........................................................................................................... 800 Fault Recovery.................................................................................................................................. 800 Setting the rmon Alarm...............................................................................................................801 Configuring an RMON Event...............................................................
Protection from TCP Tiny and Overlapping Fragment Attacks...................................................... 835 Enabling SCP and SSH...................................................................................................................... 835 Using SCP with SSH to Copy a Software Image........................................................................836 Removing the RSA Host Keys and Zeroizing Storage ..............................................................
Setting Rate-Limit BPDUs........................................................................................................... 873 Debugging Layer 2 Protocol Tunneling.....................................................................................874 Provider Backbone Bridging.............................................................................................................874 50 sFlow.......................................................................................................
Copying the Startup-Config Files to the Server via TFTP......................................................... 898 Copy a Binary File to the Startup-Configuration.......................................................................898 Additional MIB Objects to View Copy Statistics........................................................................ 899 Obtaining a Value for MIB Objects.............................................................................................
Resetting a Unit on an S-Series Stack........................................................................................ 929 Verify a Stack Configuration.............................................................................................................929 Displaying the Status of Stacking Ports..................................................................................... 930 Remove Units or Front End Ports from a Stack....................................................................
Enabling NTP...............................................................................................................................955 Configuring NTP Broadcasts...................................................................................................... 955 Disabling NTP on an Interface....................................................................................................956 Configuring a Source IP Address for NTP Packets........................................................
Configuring Native VLANs................................................................................................................985 Enabling Null VLAN as the Default VLAN.........................................................................................986 60 Virtual Link Trunking (VLT).......................................................................... 987 Overview...........................................................................................................................
Interoperation of VLT Nodes in a PVLAN with ARP Requests.................................................1028 Scenarios for VLAN Membership and MAC Synchronization With VLT Nodes in PVLAN..... 1028 Configuring a VLT VLAN or LAG in a PVLAN................................................................................. 1030 Creating a VLT LAG or a VLT VLAN..........................................................................................1030 Associating the VLT LAG or VLT VLAN in a PVLAN..............
VRRP Benefits................................................................................................................................. 1068 VRRP Implementation.................................................................................................................... 1068 VRRP Configuration........................................................................................................................1069 Configuration Task List.........................................................
General IPv6 Protocols.............................................................................................................. 1118 Border Gateway Protocol (BGP)................................................................................................1118 Open Shortest Path First (OSPF)................................................................................................1119 Intermediate System to Intermediate System (IS-IS)..............................................................
1 About this Guide This guide describes the protocols and features the Dell Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. The S4820T platform is available with Dell Networking OS version 8.3.19.0 and beyond.The S4820T platform is available with Dell Networking OS version 8.3.19.0 and beyond. S4820T stacking is supported with Dell Networking OS version 8.3.19.0 and beyond.
Configuration Fundamentals 2 The Dell Networking Operating System (OS) command line interface (CLI) is a text-based interface you can use to configure interfaces and protocols. The CLI is largely the same for each platform except for some commands and command outputs. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
The Dell Networking OS CLI is divided into three major mode levels: • EXEC mode is the default mode and has a privilege level of 1, which is the most restricted level. Only a limited selection of commands is available, notably the show commands, which allow you to view system information. • EXEC Privilege mode has commands to view configurations, clear counters, manage configuration files, run diagnostics, and enable or disable debug operations. The privilege level is 15, which is unrestricted.
uBoot MAC ACCESS-LIST LINE AUXILLIARY CONSOLE VIRTUAL TERMINAL LLDP LLDP MANAGEMENT INTERFACE MONITOR SESSION MULTIPLE SPANNING TREE OPENFLOW INSTANCE PVST PORT-CHANNEL FAILOVER-GROUP PREFIX-LIST PRIORITY-GROUP PROTOCOL GVRP QOS POLICY RSTP ROUTE-MAP ROUTER BGP BGP ADDRESS-FAMILY ROUTER ISIS ISIS ADDRESS-FAMILY ROUTER OSPF ROUTER OSPFV3 ROUTER RIP SPANNING TREE TRACE-LIST VLT DOMAIN VRRP UPLINK STATE GROUP Navigating CLI Modes The Dell Networking OS prompt changes to indicate the CLI mode.
CLI Command Mode Prompt Access Command • From every mode except EXEC and EXEC Privilege, enter the exit command. NOTE: Access all of the following modes from CONFIGURATION mode.
CLI Command Mode Prompt Access Command Per-VLAN SPANNING TREE Plus Dell(config-pvst)# protocol spanning-tree pvst PREFIX-LIST Dell(conf-nprefixl)# ip prefix-list RAPID SPANNING TREE Dell(config-rstp)# protocol spanning-tree rstp REDIRECT Dell(conf-redirect-list)# ip redirect-list ROUTE-MAP Dell(config-route-map)# route-map ROUTER BGP Dell(conf-router_bgp)# router bgp BGP ADDRESS-FAMILY Dell(conf-router_bgp_af)# address-family {ipv4 multicast | ipv6 unicast} (for IPv4) (ROUTER BGP Mode)
CLI Command Mode Prompt Access Command LLDP MANAGEMENT INTERFACE Dell(conf-lldp-mgmtIf)# management-interface (LLDP Mode) LINE Dell(config-line-console) or Dell(config-line-vty) line console orline vty MONITOR SESSION Dell(conf-mon-sesssessionID)# monitor session OPENFLOW INSTANCE Dell(conf-of-instance-ofid)# openflow of-instance PORT-CHANNEL FAILOVERGROUP Dell(conf-po-failovergrp)# port-channel failovergroup PRIORITY GROUP Dell(conf-pg)# priority-group PROTOCOL GVRP Dell(config-gvrp)#
-- Stack Info -Unit UnitType Status ReqTyp CurTyp Version Ports ----------------------------------------------------------------------------------0 Management online S4810 S4810 9.4(0.
no ip address no shutdown Layer 2 protocols are disabled by default. To enable Layer 2 protocols, use the no disable command. For example, in PROTOCOL SPANNING TREE mode, enter no disable to enable Spanning Tree. Obtaining Help Obtain a list of keywords and a brief functional description of those keywords at any CLI mode using the ? or help command: • To list the keywords available in the current mode, enter ? at the prompt or after a keyword.
Short-Cut Key Combination Action CNTL-A Moves the cursor to the beginning of the command line. CNTL-B Moves the cursor back one character. CNTL-D Deletes character at cursor. CNTL-E Moves the cursor to the end of the line. CNTL-F Moves the cursor forward one character. CNTL-I Completes a keyword. CNTL-K Deletes all characters from the cursor to the end of the command line. CNTL-L Re-enters the previous command.
• show run | grep Ethernet returns a search result with instances containing a capitalized “Ethernet,” such as interface TenGigabitEthernet 1/1. • show run | grep ethernet does not return that search result because it only searches for instances containing a non-capitalized “ethernet.” • show run | grep Ethernet ignore-case returns instances containing both “Ethernet” and “ethernet.” The grep command displays only the lines containing specified text.
NOTE: You can filter a single command output multiple times. The save option must be the last option entered. For example: Dell# command | grep regular-expression | except regular-expression | grep other-regular-expression | find regular-expression | save. Multiple Users in Configuration Mode Dell Networking OS notifies all users when there are multiple users logged in to CONFIGURATION mode.
3 Getting Started This chapter describes how you start configuring your system. When you power up the chassis, the system performs a power-on self test (POST) during which the line card status light emitting diodes (LEDs) blink green. The system then loads the Dell Networking Operating System (OS). Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption.
Accessing the Console Port To access the console port, follow these steps: For the console port pinout, refer to Accessing the RJ-45 Console Port with a DB-9 Adapter. 1. Install an RJ-45 copper cable into the console port.Use a rollover (crossover) cable to connect the S4810 console port to a terminal server. 2. Connect the other end of the cable to the DTE terminal server. 3.
Entering CLI commands Using an SSH Connection You can run CLI commands by entering any one of the following syntax to connect to a switch using the preconfigured user credentials using SSH: ssh username@hostname or echo | ssh admin@hostname The SSH server transmits the terminal commands to the CLI shell and the results are displayed on the screen non-interactively.
Default Configuration A version of Dell Networking OS is pre-loaded onto the chassis; however, the system is not configured when you power up for the first time (except for the default hostname, which is Dell). You must configure the system using the CLI. Configuring a Host Name The host name appears in the prompt. The default host name is Dell. • Host names must start with a letter and end with a letter or digit. • Characters within the string can be letters, digits, and hyphens.
• 2. port: the range is 0. Assign an IP address to the interface. INTERFACE mode ip address ip-address/mask 3. • ip-address: an address in dotted-decimal format (A.B.C.D). • mask: a subnet mask in /prefix-length format (/ xx). Enable the interface. INTERFACE mode no shutdown Configure a Management Route Define a path from the system to the network from which you are accessing the system remotely.
• enable password stores the password in the running/startup configuration using a DES encryption method. • enable secret is stored in the running/startup configuration in using a stronger, MD5 encryption method. Dell Networking recommends using the enable secret password. To configure an enable password, use the following command. • Create a password to access EXEC Privilege mode.
Location source-file-url Syntax destination-file-url Syntax For a remote file location: copy scp://{hostip | hostname}/filepath/ filename scp://{hostip | hostname}/filepath/ filename SCP server Important Points to Remember • You may not copy a file from one remote system to another. • You may not copy a file from one location to the same location. • When copying to a server, you can only use a hostname if a domain name server (DNS) server is configured.
to the startup configuration. As a result, each time the device re-boots, the NFS file system is mounted during start up. Table 5. Forming a copy Command Location source-file-url Syntax destination-file-url Syntax For a remote file location: copy nfsmount://{}/filepath/ filename} username:password tftp://{hostip | hostname}/filepath/ filename NFS File System Important Points to Remember • You cannot copy a file from one remote system to another.
running-config remote host: Destination file name [test.c]: ! 225 bytes successfully copied Dell# Save the Running-Configuration The running-configuration contains the current system configuration. Dell Networking recommends coping your running-configuration to the startup-configuration. The commands in this section follow the same format as those commands in the Copy Files to and from the System section but use the filenames startup-configuration and running-configuration.
EXEC Privilege mode • show running-config View the startup-configuration. EXEC Privilege mode show startup-config Example of the dir Command The output of the dir command also shows the read/write privileges, size (in bytes), and date of modification for each file.
Dell#show file-systems Size(b) 2056916992 Dell# Free(b) 2056540160 - Feature Type FAT32 USERFLASH network network network Flags rw rw rw rw Prefixes flash: ftp: tftp: scp: Managing the File System The Dell Networking system can use the internal Flash, external Flash, or remote devices to store files. The system stores files on the internal Flash by default but can be configured to store files elsewhere. To view file system information, use the following command.
whether this enabling or disabling method is available for such features. In 9.4(0.0), you can enable or disable the VRF application globally across the system by using this capability. You can activate VRF application on a device by using the feature vrf command in CONFIGURATION mode. NOTE: The no feature vrf command is not supported on any of the platforms. To enable the VRF feature and cause all VRF-related commands to be available or viewable in the CLI interface, use the following command.
Upgrading Dell Networking OS NOTE: To upgrade Dell Networking Operating System (OS), refer to the Release Notes for the version you want to load on the system. Using HTTP for File Transfers Stating with Release 9.3(0.1), you can use HTTP to copy files or configuration details to a remote server. Use the copy source-file-url http://host[:port]/file-path command to transfer files to an external server.
To validate the software image on the flash drive after the image has been transferred to the system, but before the image has been installed, use the verify {md5 | sha256} [ flash://]img-file [hash-value] command in EXEC mode. • md5: MD5 message-digest algorithm • sha256: SHA256 Secure Hash Algorithm • flash: (Optional) Specifies the flash drive. The default is to use the flash drive. You can just enter the image file name. • hash-value: (Optional). Specify the relevant hash published on i-Support.
4 Management This chapter describes the different protocols or services used to manage the Dell Networking system. Configuring Privilege Levels Privilege levels restrict access to commands based on user or terminal line. There are 16 privilege levels, of which three are pre-defined. The default privilege level is 1. Level Description Level 0 Access to the system begins at EXEC mode, and EXEC mode commands are limited to enable, disable, and exit.
Moving a Command from EXEC Privilege Mode to EXEC Mode To move a command from EXEC Privilege to EXEC mode for a privilege level, use the privilege exec command from CONFIGURATION mode. In the command, specify the privilege level of the user or terminal line and specify all keywords in the command to which you want to allow access. Allowing Access to CONFIGURATION Mode Commands To allow access to CONFIGURATION mode, use the privilege exec level level configure command from CONFIGURATION mode.
• Allow access to INTERFACE, LINE, ROUTE-MAP, and/or ROUTER mode. Specify all the keywords in the command. CONFIGURATION mode • privilege configure level level {interface | line | route-map | router} {command-keyword ||...|| command-keyword} Allow access to a CONFIGURATION, INTERFACE, LINE, ROUTE-MAP, and/or ROUTER mode command. CONFIGURATION mode privilege {configure |interface | line | route-map | router} level level {command ||...
vlan VLAN interface Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#? end Exit from configuration mode exit Exit from interface configuration mode Dell(conf-if-te-1/1)#exit Dell(conf)#line ? aux Auxiliary line console Primary terminal line vty Virtual terminal Dell(conf)#line vty 0 Dell(config-line-vty)#? exit Exit from line configuration mode Dell(config-line-vty)# Dell(conf)#interface group ? fortyGigE FortyGigabit Ethernet interface gigabitethernet GigabitEthernet interface IEEE 802.
• no logging on Disable logging to the logging buffer. CONFIGURATION mode • no logging buffer Disable logging to terminal lines. CONFIGURATION mode • no logging monitor Disable console logging. CONFIGURATION mode no logging console Audit and Security Logs This section describes how to configure, display, and clear audit and security logs.
• Violations on secure flows or certificate issues. • Adding and deleting of users. • User access and configuration changes to the security and crypto parameters (not the key information but the crypto configuration) Important Points to Remember When you enabled RBAC and extended logging: • Only the system administrator user role can execute this command. • The system administrator and system security administrator user roles can view security events and system events.
Configuring Logging Format To display syslog messages in a RFC 3164 or RFC 5424 format, use the logging version [0 | 1} command in CONFIGURATION mode. By default, the system log version is set to 0.
To view any changes made, use the show running-config logging command in EXEC privilege mode, as shown in the example for Configure a UNIX Logging Facility Level . Setting Up a Secure Connection to a Syslog Server You can use reverse tunneling with the port forwarding to securely connect to a syslog server. Pre-requisites To configure a secure connection from the switch to the syslog server: 1. On the switch, enable the SSH server Dell(conf)#ip ssh server enable 2.
In the following example the syslog server IP address is 10.156.166.48 and the listening port is 5141. The switch IP address is 10.16.131.141 and the listening port is 5140 ssh -R 5140:10.156.166.48:5141 admin@10.16.131.141 -nNf 3. Configure logging to a local host. locahost is “127.0.0.1” or “::1”. If you do not, the system displays an error when you attempt to enable role-based only AAA authorization. Dell(conf)# logging localhost tcp port Dell(conf)#logging 127.0.0.
Sending System Messages to a Syslog Server To send system messages to a specified syslog server, use the following command. The following syslog standards are supported: RFC 5424 The SYSLOG Protocol, R.Gerhards and Adiscon GmbH, March 2009, obsoletes RFC 3164 and RFC 5426 Transmission of Syslog Messages over UDP. • Specify the server to which you want to send system messages. You can configure up to eight syslog servers.
• Specify the minimum severity level for logging to the syslog history table. CONFIGURATION mode • logging history level Specify the size of the logging buffer. CONFIGURATION mode logging buffered size • NOTE: When you decrease the buffer size, Dell Networking OS deletes all messages stored in the buffer. Increasing the buffer size does not affect messages in the buffer. Specify the number of messages that Dell Networking OS saves to its logging history table.
%CHMGR-5-CHECKIN: Checkin from line card 5 (type EX1YB, 1 ports) %TSM-6-PORT_CONFIG: Port link status for LC 5 => portpipe 0: OK portpipe 1: N/A %CHMGR-5-LINECARDUP: Line card 5 is up %CHMGR-5-CHECKIN: Checkin from line card 12 (type S12YC12, 12 ports) %TSM-6-PORT_CONFIG: Port link status for LC 12 => portpipe 0: OK portpipe 1: N/A %CHMGR-5-LINECARDUP: Line card 12 is up %IFMGR-5-CSTATE_UP: changed interface Physical state to up: So 12/8 %IFMGR-5-CSTATE_DN: changed interface Physical state to down: So 12/8
Example of the show running-config logging Command To view nondefault settings, use the show running-config logging command in EXEC mode. Dell#show running-config logging ! logging buffered 524288 debugging service timestamps log datetime msec service timestamps debug datetime msec ! logging trap debugging logging facility user logging source-interface Loopback 0 logging 10.10.10.
CONFIGURATION mode service timestamps [log | debug] [datetime [localtime] [msec] [show-timezone] | uptime] Specify the following optional parameters: – You can add the keyword localtime to include the localtime, msec, and show-timezone. If you do not add the keyword localtime, the time is UTC. – uptime: To view time since last boot. If you do not specify a parameter, Dell Networking OS configures uptime. To view the configuration, use the show running-config logging command in EXEC privilege mode.
ftp-server enable Example of Viewing FTP Configuration Dell#show running ftp ! ftp-server enable ftp-server username nairobi password 0 zanzibar Dell# Configuring FTP Server Parameters After you enable the FTP server on the system, you can configure different parameters. To specify the system logging settings, use the following commands. • Specify the directory for users using FTP to reach the system. CONFIGURATION mode ftp-server topdir dir • The default is the internal flash directory.
CONFIGURATION mode • ip ftp password password Enter a username to use on the FTP client. CONFIGURATION mode ip ftp username name To view the FTP configuration, use the show running-config ftp command in EXEC privilege mode, as shown in the example for Enable FTP Server. Terminal Lines You can access the system remotely and restrict access to the system by creating user profiles. Terminal lines on the system provide different means of accessing the system.
7.4.2.0, only an ACL is required, and users are denied access before they are prompted for a username and password. Configuring Login Authentication for Terminal Lines You can use any combination of up to six authentication methods to authenticate a user on a terminal line. A combination of authentication methods is called a method list. If the user fails the first authentication method, Dell Networking OS prompts the next method until all methods are exhausted, at which point the connection is terminated.
line vty 2 password myvtypassword login authentication myvtymethodlist Dell(config-line-vty)# Setting Time Out of EXEC Privilege Mode EXEC time-out is a basic security feature that returns Dell Networking OS to EXEC mode after a period of inactivity on the terminal lines. To set time out, use the following commands. • Set the number of minutes and seconds. The default is 10 minutes on the console and 30 minutes on VTY. Disable EXEC time out by setting the time-out period to 0.
Enter an IPv6 address in the format 0000:0000:0000:0000:0000:0000:0000:0000. Elision of zeros is supported. Example of the telnet Command for Device Access Dell# telnet 10.11.80.203 Trying 10.11.80.203... Connected to 10.11.80.203. Exit character is '^]'. Login: Login: admin Password: Dell>exit Dell#telnet 2200:2200:2200:2200:2200::2201 Trying 2200:2200:2200:2200:2200::2201... Connected to 2200:2200:2200:2200:2200::2201. Exit character is '^]'. FreeBSD/i386 (freebsd2.force10networks.
If another user attempts to enter CONFIGURATION mode while a lock is in place, the following appears on their terminal (message 1): % Error: User "" on line console0 is in exclusive configuration mode. If any user is already in CONFIGURATION mode when while a lock is in place, the following appears on their terminal (message 2): % Error: Can't lock configuration mode exclusively since the following users are currently configuring the system: User "admin" on line vty1 ( 10.1.1.1 ).
LINE mode no authentication login no password 9. Save the running-config. EXEC Privilege mode copy running-config startup-config 10. Set the system parameters to use the startup configuration file when the system reloads. uBoot mode setenv stconfigignore false 11. Save the running-config. EXEC Privilege mode copy running-config startup-config Recovering from a Forgotten Enable Password Use the following commands if you forget the enable password. 1. Log onto the system using the console. 2.
Recovering from a Failed Start A system that does not start correctly might be attempting to boot from a corrupted Dell Networking OS image or from a mis-specified location. In this case, you can restart the system and interrupt the boot process to point the system to another boot location. Use the setenv command, as described in the following steps.
• When you restore the units in standalone mode, the units remain in standalone mode after the restoration. • After the restore is complete, the units power cycle immediately. The following example illustrates the restore factory-defaults command to restore the factory default settings.
2. Hit any key to abort the boot process. You enter uBoot immediately, the => prompt indicates success. (during bootup) press any key 3. Assign the new location to the Dell Networking OS image it uses when the system reloads. uBoot mode => setenv primary_boot f10boot Boot variable (f10boot) can take the following values: 4. • flash0 — to boot from flash partition A. • flash1 — to boot from flash partition B. • tftp://server-ip/image-file-name — to boot from the network.
5 802.1ag Ethernet operations, administration, and maintenance (OAM) are a set of tools used to install, monitor, troubleshoot, and manage Ethernet infrastructure deployments. Ethernet OAM consists of three main areas: • Service layer OAM — IEEE 802.1ag connectivity fault management (CFM) • Link layer OAM — IEEE 802.
In addition to providing end-to-end OAM in native Layer 2 Ethernet Service Provider/Metro networks, you can also use CFM to manage and troubleshoot any Layer 2 network including enterprise, datacenter, and cluster networks. Maintenance Domains Connectivity fault management (CFM) divides a network into hierarchical maintenance domains, as shown in the following illustration. A CFM maintenance domain is a management space on a network that a single management entity owns and operates.
Figure 3. Maintenance Points Maintenance End Points A maintenance end point (MEP) is a logical entity that marks the end point of a domain. There are two types of MEPs defined in 802.1ag for an 802.1 bridge: • Up-MEP — monitors the forwarding path internal to a bridge on the customer or provider edge. On Dell Networking systems, the internal forwarding path is effectively the switch fabric and forwarding engine. • Down-MEP — monitors the forwarding path external another bridge.
Implementation Information Because the S-Series has a single MAC address for all physical/LAG interfaces, only one MEP is allowed per MA (per VLAN or per MD level). Configuring the CFM To configure the CFM, follow these steps: 1. Configure the ecfmacl CAM region using the cam-acl command. 2. Enable Ethernet CFM. 3. Create a Maintenance Domain. 4. Create a Maintenance Association. 5. Create Maintenance Points. 6. Use CFM tools: a. Continuity Check Messages. b. Loopback Message and Response.
The range is from 0 to 7. 2. Display maintenance domain information.
• Up-MEP — monitors the forwarding path internal to a bridge on the customer or provider edge. On Dell Networking systems, the internal forwarding path is effectively the switch fabric and forwarding engine. • Down-MEP — monitors the forwarding path external another bridge. Configure Up- MEPs on ingress ports, ports that send traffic towards the bridge relay. Configure DownMEPs on egress ports, ports that send traffic away from the bridge relay. 1. Create an MEP.
0 service1 Your_MA 4 3333 MIP UP Te 1/5 Disabled 00:01:e8:0b:c6:36 Displaying the MP Databases CFM maintains two MP databases: • MEP Database (MEP-DB): Every MEP must maintain a database of all other MEPs in the MA that have announced their presence via CCM. • MIP Database (MIP-DB): Every MIP must maintain a database of all other MEPs in the MA that have announced their presence via CCM. To display the MEP and MIP databases, use the following commands. • Display the MEP Database.
Continuity Check Messages Continuity check messages (CCM) are periodic hellos. Continuity check messages: • discover MEPs and MIPs within a maintenance domain • detect loss of connectivity between MEPs • detect misconfiguration, such as VLAN ID mismatch between MEPs • to detect unauthorized MEPs in a maintenance domain CCMs are multicast Ethernet frames sent at regular intervals from each MEP.
Enabling CCM To enable CCM, use the following commands. 1. Enable CCM. ECFM DOMAIN mode no ccm disable The default is Disabled. 2. Configure the transmit interval (mandatory). The interval specified applies to all MEPs in the domain. ECFM DOMAIN mode ccm transmit-interval seconds The default is 10 seconds. Enabling Cross-Checking To enable cross-checking, use the following commands. 1. Enable cross-checking. ETHERNET CFM mode mep cross-check enable The default is Disabled. 2.
Sending Linktrace Messages and Responses Linktrace message and response (LTM, LTR), also called Layer 2 Traceroute, is an administratively sent multicast frames transmitted by MEPs to track, hop-by-hop, the path to another MEP or MIP within the maintenance domain. All MEPs and MIPs in the same domain respond to an LTM with a unicast LTR. Intermediate MIPs forward the LTM toward the target MEP. Figure 5.
• Set the amount of time a trace result is cached. ETHERNET CFM mode traceroute cache hold-time minutes The default is 100 minutes. • The range is from 10 to 65535 minutes. Set the size of the Link Trace Cache. ETHERNET CFM mode traceroute cache size entries The default is 100. • The range is from 1 to 4095 entries. Display the Link Trace Cache. EXEC Privilege mode • show ethernet cfm traceroute-cache Delete all Link Trace Cache entries.
Priority Defects Trap Message MAC Status defect %ECFM-5-ECFM_MAC_STATUS_ALARM: MAC Status Defect detected by MEP 1 in Domain provider at Level 4 VLAN 3000 Remote CCM defect %ECFM-5-ECFM_REMOTE_ALARM: Remote CCM Defect detected by MEP 3 in Domain customer1 at Level 7 VLAN 1000 RDI defect %ECFM-5-ECFM_RDI_ALARM: RDI Defect detected by MEP 3 in Domain customer1 at Level 7 VLAN 1000 Three values are given within the trap messages: MD Index, MA Index, and MPID.
Displaying Ethernet CFM Statistics To display Ethernet CFM statistics, use the following commands. • Display MEP CCM statistics. EXEC Privilege mode • show ethernet cfm statistics [domain {name | level} vlan-id vlan-id mpid mpid Display CFM statistics by port.
802.1X 6 802.1X is a method of port security. A device connected to a port that is enabled with 802.1X is disallowed from sending or receiving packets on the network until its identity can be verified (through a username and password, for example). This feature is named for its IEEE specification. 802.
Figure 7. EAP Frames Encapsulated in Ethernet and RADUIS The authentication process involves three devices: • The device attempting to access the network is the supplicant. The supplicant is not allowed to communicate on the network until the authenticator authorizes the port. It can only communicate with the authenticator in response to 802.1X requests. • The device with which the supplicant communicates is the authenticator. The authenticator is the gate keeper of the network.
2. The supplicant responds with its identity in an EAP Response Identity frame. 3. The authenticator decapsulates the EAP response from the EAPOL frame, encapsulates it in a RADIUS Access-Request frame and forwards the frame to the authentication server. 4. The authentication server replies with an Access-Challenge frame. The Access-Challenge frame requests that the supplicant prove that it is who it claims to be, using a specified method (an EAPMethod).
EAP over RADIUS 802.1X uses RADIUS to shuttle EAP packets between the authenticator and the authentication server, as defined in RFC 3579. EAP messages are encapsulated in RADIUS packets as a type of attribute in Type, Length, Value (TLV) format. The Type value for EAP messages is 79. Figure 9. EAP Over RADIUS RADIUS Attributes for 802.1 Support Dell Networking systems include the following RADIUS attributes in all 802.
Important Points to Remember • Dell Networking OS supports 802.1X with EAP-MD5, EAP-OTP, EAP-TLS, EAP-TTLS, PEAPv0, PEAPv1, and MS-CHAPv2 with PEAP. • All platforms support only RADIUS as the authentication server. • If the primary RADIUS server becomes unresponsive, the authenticator begins using a secondary RADIUS server, if configured. • 802.1X is not supported on port-channels or port-channel members. Enabling 802.1X Enable 802.1X globally. Figure 10. 802.1X Enabled 1. Enable 802.1X globally.
dot1x authentication 2. Enter INTERFACE mode on an interface or a range of interfaces. INTERFACE mode interface [range] 3. Enable 802.1X on the supplicant interface only. INTERFACE mode dot1x authentication Examples of Verifying that 802.1X is Enabled Globally and on an Interface Verify that 802.1X is enabled globally and at the interface level using the show running-config | find dot1x command from EXEC Privilege mode. In the following example, the bold lines show that 802.1X is enabled.
Configuring Request Identity Re-Transmissions If the authenticator sends a Request Identity frame, but the supplicant does not respond, the authenticator waits 30 seconds and then re-transmits the frame. The amount of time that the authenticator waits before re-transmitting and the maximum number of times that the authenticator re-transmits are configurable.
Example of Configuring and Verifying Port Authentication The following example shows configuration information for a port for which the authenticator retransmits an EAP Request Identity frame: • after 90 seconds and a maximum of 10 times for an unresponsive supplicant • re-transmits an EAP Request Identity frame The bold lines show the new re-transmit interval, new quiet period, and new maximum re-transmissions.
Example of Placing a Port in Force-Authorized State and Viewing the Configuration The example shows configuration information for a port that has been force-authorized. The bold line shows the new port-control state. Dell(conf-if-Te-1/1)#dot1x port-control force-authorized Dell(conf-if-Te-1/1)#show dot1x interface TenGigabitEthernet 1/1 802.
The bold lines show that re-authentication is enabled and the new maximum and re-authentication time period. Dell(conf-if-Te-1/1)#dot1x reauthentication interval 7200 Dell(conf-if-Te-1/1)#dot1x reauth-max 10 Dell(conf-if-Te-1/1)#do show dot1x interface TenGigabitEthernet 1/1 802.
The bold lines show the new supplicant and server timeouts. Dell(conf-if-Te-1/1)#dot1x port-control force-authorized Dell(conf-if-Te-1/1)#do show dot1x interface TenGigabitEthernet 1/1 802.
Figure 11. Dynamic VLAN Assignment 1. Configure 8021.x globally (refer to Enabling 802.1X) along with relevant RADIUS server configurations (refer to the illustration inDynamic VLAN Assignment with Port Authentication). 2. Make the interface a switchport so that it can be assigned to a VLAN. 3. Create the VLAN to which the interface will be assigned. 4. Connect the supplicant to the port configured for 802.1X. 5.
If the supplicant fails authentication, the authenticator typically does not enable the port. In some cases this behavior is not appropriate. External users of an enterprise network, for example, might not be able to be authenticated, but still need access to the network. Also, some dumb-terminals, such as network printers, do not have 802.1X capability and therefore cannot authenticate themselves.
! interface TenGigabitEthernet 2/1 switchport dot1x authentication dot1x guest-vlan 200 no shutdown Dell(conf-if-Te-2/1)# Dell(conf-if-Te-2/1)#dot1x auth-fail-vlan 100 max-attempts 5 Dell(conf-if-Te-2/1)#show config ! interface TenGigabitEthernet 2/1 switchport dot1x authentication dot1x guest-vlan 200 dot1x auth-fail-vlan 100 max-attempts 5 no shutdown Dell(conf-if-Te-2/1)# Example of Viewing Configured Authentication View your configuration using the show config command from INTERFACE mode, as shown in th
7 Access Control List (ACL) VLAN Groups and Content Addressable Memory (CAM) This chapter describes the access control list (ACL) VLAN group and content addressable memory (CAM) enhancements. Optimizing CAM Utilization During the Attachment of ACLs to VLANs This functionality is supported on the S4820T platform.
for the ACL VLAN groups present on the system, an appropriate error message is displayed.
• • Port ACL optimization is applicable only for ACLs that are applied without the VLAN range. • You cannot view the statistical details of ACL rules per VLAN and per interface if you enable the ACL VLAN group capability. You can view the counters per ACL only using the show ip accounting access list command. • Within a port, you can apply Layer 2 ACLs on a VLAN or a set of VLANs. In this case, CAM optimization is not applied.
5. Display all the ACL VLAN groups or display a specific ACL VLAN group, identified by name.
============== 11 | 0 7152 | 31687 | 0 11 | 1 7152 | 31687 | | IN-L2 ACL | 7152 | 0 | | IN-L2 FIB | 32768 | 1081 | | OUT-L2 ACL | 0 | 0 | | IN-L2 ACL | 7152 | 0 | | IN-L2 FIB | 32768 | 1081 | | OUT-L2 ACL | 0 | 0 | 0 Viewing CAM Usage This functionality is supported on the S4820T platform.
11 | | | | 0 | | | | IN-L2 ACL IN-L3 ACL OUT-L2 ACL OUT-L3 ACL | | | | 1008 12288 1024 1024 | | | | 0 2 2 0 | | | | 1008 12286 1022 1024 The following sample output displays the CAM space utilization for Layer 2 ACLs: Dell#show cam-usage switch Linecard|Portpipe| CAM Partition | Total CAM | Used CAM |Available CAM ========|========|=================|=============|=============|============== 11 | 0 | IN-L2 ACL | 7152 | 0 | 7152 | | IN-L2 FIB | 32768 | 1081 | 31687 | | OUT-L2 ACL | 0 | 0 | 0 11 |
• To allocate the number of FP blocks for ACL VLAN optimization feature, use the cam-acl-vlan vlanaclopt <0-2> command. To reset the number of FP blocks to the default, use the no version of these commands. By default, zero groups are allocated for the ACL in VCAP. ACL VLAN groups or CAM optimization is not enabled by default, and you need to allocate the slices for CAM optimization.
8 Access Control Lists (ACLs) This chapter describes access control lists (ACLs), prefix lists, and route-maps. At their simplest, access control lists (ACLs), prefix lists, and route-maps permit or deny traffic based on MAC and/or IP addresses. This chapter describes implementing IP ACLs, IP prefix lists and route-maps. For MAC ACLS, refer to Layer 2.
• VRF based IMPLICIT DENY Rules NOTE: In order for the VRF ACLs to take effect, ACLs configured in the Layer 3 CAM region must have an implicit-permit option. You can use the ip access-group command to configure VRF-aware ACLs on interfaces. Using the ip access-group command, in addition to a range of VLANs, you can also specify a range of VRFs as input for configuring ACLs on interfaces. The VRF range is from 1 to 63.
• CAM Optimization User Configurable CAM Allocation Allocate space for IPV6 ACLs by using the cam-acl command in CONFIGURATION mode. The CAM space is allotted in filter processor (FP) blocks. The total space allocated must equal 13 FP blocks. (There are 16 FP blocks, but System Flow requires three blocks that cannot be reallocated.) Enter the ipv6acl allocation as a factor of 2 (2, 4, 6, 8, 10). All other profile allocations can use either even or odd numbered ranges.
If counters are enabled on ACL rules that are already configured, those counters are reset when a new rule which is inserted or prepended or appended requires a hardware shift in the flow table. Resetting the counters to 0 is transient as the proginal counter values are retained after a few seconds. If there is no need to shift the flow in the hardware, the counters are not disturbed.
Dell(config-std-nacl)#exit Dell(conf)#class-map match-all cmap1 Dell(conf-class-map)#match ip access-group acl1 Dell(conf-class-map)#exit Dell(conf)#class-map match-all cmap2 Dell(conf-class-map)#match ip access-group acl2 Dell(conf-class-map)#exit Dell(conf)#policy-map-input pmap Dell(conf-policy-map-in)#service-queue 7 class-map cmap1 Dell(conf-policy-map-in)#service-queue 4 class-map cmap2 Dell(conf-policy-map-in)#exit Dell(conf)#interface te 10/1 Dell(conf-if-te-10/1)#service-policy input pmap IP Fragm
Dell(conf-ext-nacl)#permit ip any 10.1.1.1/32 Dell(conf-ext-nacl) Layer 4 ACL Rules Examples The following examples show the ACL commands for Layer 4 packet filtering. Permit an ACL line with L3 information only, and the fragments keyword is present: If a packet’s L3 information matches the L3 information in the ACL line, the packet's FO is checked. • If a packet's FO > 0, the packet is permitted. • If a packet's FO = 0, the next ACL entry is processed.
Configure a Standard IP ACL To configure an ACL, use commands in IP ACCESS LIST mode and INTERFACE mode. For a complete list of all the commands related to IP ACLs, refer to the Dell Networking OS Command Line Interface Reference Guide. To set up extended ACLs, refer to Configure an Extended IP ACL. A standard IP ACL uses the source IP address as its match criterion. 1. Enter IP ACCESS LIST mode by naming a standard IP access list. CONFIGURATION mode ip access-list standard access-listname 2.
If you are creating a standard ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. The software assigns filters in multiples of 5. Configuring a Standard IP ACL Filter If you are creating a standard ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. The software assigns filters in multiples of five. 1.
To delete a filter, enter the show config command in IP ACCESS LIST mode and locate the sequence number of the filter you want to delete. Then use the no seq sequence-number command in IP ACCESS LIST mode. Configure an Extended IP ACL Extended IP ACLs filter on source and destination IP addresses, IP host addresses, TCP addresses, TCP host addresses, UDP addresses, and UDP host addresses.
ip access-list extended access-list-name 2. Configure an extended IP ACL filter for UDP packets. CONFIG-EXT-NACL mode seq sequence-number {deny | permit} tcp {source mask | any | host ipaddress}} [count [byte]] [order] [fragments] Example of the seq Command When you create the filters with a specific sequence number, you can create the filters in any order and the filters are placed in the correct order. NOTE: When assigning sequence numbers to filters, you may have to insert a new filter.
The following example shows an extended IP ACL in which the sequence numbers were assigned by the software. The filters were assigned sequence numbers based on the order in which they were configured (for example, the first filter was given the lowest sequence number). The show config command in IP ACCESS LIST mode displays the two filters with the sequence numbers 5 and 10. Example of Viewing Filter Sequence for a Specified Extended ACL Dell(config-ext-nacl)#deny tcp host 123.55.34.
For information about MAC ACLs, refer to Layer 2. Assign an IP ACL to an Interface To pass traffic through a configured IP ACL, assign that ACL to a physical interface, a port channel interface, or a VLAN. The IP ACL is applied to all traffic entering a physical or port channel interface and the traffic is either forwarded or dropped depending on the criteria and actions specified in the ACL. The same ACL may be applied to different interfaces and that changes its functionality.
Example of Viewing ACLs Applied to an Interface Dell(conf-if)#show conf ! interface TenGigabitEthernet 1/1 ip address 10.2.1.100 255.255.255.0 ip access-group nimule in no shutdown Dell(conf-if)# To filter traffic on Telnet sessions, use only standard ACLs in the access-class command. Counting ACL Hits You can view the number of packets matching the ACL by using the count option when creating ACL entries. 1. Create an ACL that uses rules with the count option. Refer to Configure a Standard IP ACL Filter.
seq 10 deny icmp any any seq 15 permit 1.1.1.2 Dell(conf)#interface tengigabitethernet 1/1/1 Dell(conf-if-te1/1/1)#ip access-group abcd in Dell(conf-if-te1/1/1)#show config ! tengogabitethernet 1/1/1 no ip address ip access-group abcd in no shutdown Dell(conf-if-te1/1/1)#end Dell#configure terminal Dell(conf)#ip access-list extended abcd Dell(config-ext-nacl)#permit tcp any any Dell(config-ext-nacl)#deny icmp any any Dell(config-ext-nacl)#permit 1.1.1.
Dell(config-ext-nacl)#deny icmp any any Dell(config-ext-nacl)#permit 1.1.1.2 Dell(config-ext-nacl)#end Dell#show ip accounting access-list ! Extended Ingress IP access list abcd on tengigabitethernet 0/0 seq 5 permit tcp any any seq 10 deny icmp any any seq 15 permit 1.1.1.
IP Prefix Lists IP prefix lists control routing policy. An IP prefix list is a series of sequential filters that contain a matching criterion (examine IP route prefix) and an action (permit or deny) to process routes. The filters are processed in sequence so that if a route prefix does not match the criterion in the first filter, the second filter (if configured) is applied. When the route prefix matches a filter, Dell Networking OS drops or forwards the packet based on the filter’s designated action.
Creating a Prefix List To create a prefix list, use the following commands. 1. Create a prefix list and assign it a unique name. You are in PREFIX LIST mode. CONFIGURATION mode ip prefix-list prefix-name 2. Create a prefix list with a sequence number and a deny or permit action. CONFIG-NPREFIXL mode seq sequence-number {deny | permit} ip-prefix [ge min-prefix-length] [le max-prefix-length] The optional parameters are: • ge min-prefix-length: the minimum prefix length to match (from 0 to 32).
CONFIGURATION mode ip prefix-list prefix-name 2. Create a prefix list filter with a deny or permit action. CONFIG-NPREFIXL mode {deny | permit} ip-prefix [ge min-prefix-length] [le max-prefix-length] The optional parameters are: • ge min-prefix-length: is the minimum prefix length to be matched (0 to 32). • le max-prefix-length: is the maximum prefix length to be matched (0 to 32).
ip prefix-list filter_ospf: count: 4, range entries: 1, sequences: 5 - 10 seq 5 deny 100.100.1.0/24 (hit count: 0) seq 6 deny 200.200.1.0/24 (hit count: 0) seq 7 deny 200.200.2.0/24 (hit count: 0) seq 10 permit 0.0.0.0/0 le 32 (hit count: 0) The following example shows the show ip prefix-list summary command.
Applying a Filter to a Prefix List (OSPF) To apply a filter to routes in open shortest path first (OSPF), use the following commands. • Enter OSPF mode. CONFIGURATION mode • router ospf Apply a configured prefix list to incoming routes. You can specify an interface. If you enter the name of a non-existent prefix list, all routes are forwarded. CONFIG-ROUTER-OSPF mode • distribute-list prefix-list-name in [interface] Apply a configured prefix list to incoming routes.
Table 9. ACL Resequencing Rules Resquencing Rules Before Resequencing: seq 5 permit any host 1.1.1.1 seq 6 permit any host 1.1.1.2 seq 7 permit any host 1.1.1.3 seq 10 permit any host 1.1.1.4 Rules After Resequencing: seq 5 permit any host 1.1.1.1 seq 10 permit any host 1.1.1.2 seq 15 permit any host 1.1.1.3 seq 20 permit any host 1.1.1.4 Resequencing an ACL or Prefix List Resequencing is available for IPv4 and IPv6 ACLs, prefix lists, and MAC ACLs.
! ip access-list extended test remark 2 XYZ remark 4 this remark corresponds to permit any host 1.1.1.1 seq 4 permit ip any host 1.1.1.1 remark 6 this remark has no corresponding rule remark 8 this remark corresponds to permit ip any host 1.1.1.2 seq 8 permit ip any host 1.1.1.2 seq 10 permit ip any host 1.1.1.3 seq 12 permit ip any host 1.1.1.4 Remarks that do not have a corresponding rule are incremented as a rule. These two mechanisms allow remarks to retain their original position in the list.
Important Points to Remember • For route-maps with more than one match clause: – Two or more match clauses within the same route-map sequence have the same match commands (though the values are different), matching a packet against these clauses is a logical OR operation. – Two or more match clauses within the same route-map sequence have different match commands, matching a packet against these clauses is a logical AND operation.
route-map dilling permit 10 Dell(config-route-map)# You can create multiple instances of this route map by using the sequence number option to place the route maps in the correct order. Dell Networking OS processes the route maps with the lowest sequence number first. When a configured route map is applied to a command, such as redistribute, traffic passes through all instances of that route map until a match is found. The following is an example with two instances of a route map.
When there are multiple match commands with the same parameter under one instance of route-map, Dell Networking OS does a match between all of those match commands. If there are multiple match commands with different parameters, Dell Networking OS does a match ONLY if there is a match among ALL the match commands. In the following example, there is a match if a route has any of the tag values specified in the match commands.
• Match routes whose next hop is a specific interface. CONFIG-ROUTE-MAP mode match interface interface The parameters are: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For a port channel interface, enter the keywords port-channel then a number.
• Match routes with a specific tag. CONFIG-ROUTE-MAP mode match tag tag-value To create route map instances, use these commands. There is no limit to the number of match commands per route map, but the convention is to keep the number of match filters in a route map low. Set commands do not require a corresponding match command. Configuring Set Conditions To configure a set condition, use the following commands. • Add an AS-PATH number to the beginning of the AS-PATH.
• set tag tag-value Specify a value as the route’s weight. CONFIG-ROUTE-MAP mode set weight value To create route map instances, use these commands. There is no limit to the number of set commands per route map, but the convention is to keep the number of set filters in a route map low. Set commands do not require a corresponding match command. Configure a Route Map for Route Redistribution Route maps on their own cannot affect traffic and must be included in different commands to affect routing traffic.
In the following example, the redistribute ospf command with a route map is used in ROUTER RIP mode to apply a tag of 34 to all internal OSPF routes that are redistributed into RIP. Example of the redistribute Command Using a Route Tag ! router rip redistribute ospf 34 metric 1 route-map torip ! route-map torip permit 10 match route-type internal set tag 34 ! Continue Clause Normally, when a match is found, set clauses are executed, and the packet is then forwarded; no more route-map modules are processed.
the maximum number of logs to be generated. If you do not specify the frequency at which ACL logs must be generated, a default interval of 5 minutes is used. Similarly, if you do not specify the threshold for ACL logs, a default threshold of 10 is used, where this value refers to the number of packets that are matched against an ACL . A Layer 2 or Layer 3 ACL contains a set of defined rules that are saved as flow processor (FP) entries.
• A maximum of 125 ACL entries with permit action can be logged. A maximum of 126 ACL entries with deny action can be logged. • For virtual ACL entries, the same match rule number is reused. Similarly, when an ACL entry is deleted that was previously enabled for ACL logging, the match rule number used by it is released back to the pool or available set of match indices so that it can be reused for subsequent allocations.
Flow-Based Monitoring Support for ACLs Flow-based monitoring is supported on the S4820T platform. Flow-based monitoring conserves bandwidth by monitoring only the specified traffic instead of all traffic on the interface. It is available for Layer 2 and Layer 3 ingress traffic. You can specify traffic using standard or extended access-lists. This mechanism copies incoming packets that matches the ACL rules applied on the ingress port and forwards (mirrors) them to another port.
destination port, and the endpoint to which the packet must be forwarded when a match occurs with the ACL entry. If you configure the flow-based enable command and do not apply an ACL on the source port or the monitored port, both flow-based monitoring and port mirroring do not function. Flow-based monitoring is supported only for ingress traffic and not for egress packets. The port mirroring application maintains a database that contains all monitoring sessions (including port monitor sessions).
MONITOR SESSION mode flow-based enable 2. Define access-list rules that include the keyword monitor. Dell Networking OS only considers port monitoring traffic that matches rules with the keyword monitor. CONFIGURATION mode ip access-list For more information, see Access Control Lists (ACLs). 3. Apply the ACL to the monitored port.
9 Bidirectional Forwarding Detection (BFD) BFD is a protocol that is used to rapidly detect communication failures between two adjacent systems. It is a simple and lightweight replacement for existing routing protocol link state detection mechanisms. It also provides a failure detection solution for links on which no routing protocol is used. BFD is a simple hello mechanism. Two neighboring systems running BFD establish a session using a three-way handshake.
NOTE: A session state change from Up to Down is the only state change that triggers a link state change in the routing protocol client. BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets. The following illustration shows the complete encapsulation of a BFD control packet inside an IPv4 packet. Figure 12. BFD in IPv4 Packet Format Field Description Diagnostic Code The reason that the last session failed. State The current local session state.
Field Description system clears the poll bit and sets the final bit in its response. The poll and final bits are used during the handshake and in Demand mode (refer to BFD Sessions). NOTE: Dell Networking OS does not currently support multi-point sessions, Demand mode, authentication, or control plane independence; these bits are always clear. Detection Multiplier The number of packets that must be missed in order to declare a session down. Length The entire length of the BFD packet.
BFD Sessions BFD must be enabled on both sides of a link in order to establish a session. The two participating systems can assume either of two roles: Active The active system initiates the BFD session. Both systems can be active for the same session. Passive The passive system does not initiate a session. It only responds to a request for session initialization from the active system.
handshake. Now the discriminator values have been exchanged and the transmit intervals have been negotiated. 4. The passive system receives the control packet and changes its state to Up. Both systems agree that a session has been established. However, because both members must send a control packet — that requires a response — anytime there is a state change or change in a session parameter, the passive system sends a final response indicating the state change.
receives a Down status notification from the remote system, the session state on the local system changes to Init. Figure 14. Session State Changes Important Points to Remember • On the S4820T platform, Dell Networking OS supports 128 sessions per stack unit at 200 minimum transmit and receive intervals with a multiplier of 3, and 64 sessions at 100 minimum transmit and receive intervals with a multiplier of 4. • Enable BFD on both ends of a link.
• Configure BFD for OSPFv3 • Configure BFD for IS-IS • Configure BFD for BGP • Configure BFD for VRRP • Configuring Protocol Liveness • Troubleshooting BFD Configure BFD for Physical Ports Configuring BFD for physical ports is supported on the C-Series and E-Series platforms only. BFD on physical ports is useful when you do not enable the routing protocol.
Establishing a Session on Physical Ports To establish a session, enable BFD at the interface level on both ends of the link, as shown in the following illustration. The configuration parameters do not need to match. Figure 15. Establishing a BFD Session on Physical Ports 1. Enter interface mode. CONFIGURATION mode interface 2. Assign an IP address to the interface if one is not already assigned. INTERFACE mode ip address ip-address 3.
Remote Addr: 2.2.2.
Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 7 Disabling and Re-Enabling BFD BFD is enabled on all interfaces by default, though sessions are not created unless explicitly configured. If you disable BFD, all of the sessions on that interface are placed in an Administratively Down state ( the first message example), and the remote systems are notified of the session state change (the second message example).
Establishing Sessions for Static Routes Sessions are established for all neighbors that are the next hop of a static route. Figure 16. Establishing Sessions for Static Routes To establish a BFD session, use the following command. • Establish BFD sessions for all neighbors that are the next hop of a static route. CONFIGURATION mode ip route bfd Example of the show bfd neighbors Command to Verify Static Routes To verify that sessions have been created for static routes, use the show bfd neighbors command.
• Change parameters for all static route sessions. CONFIGURATION mode ip route bfd interval milliseconds min_rx milliseconds multiplier value role [active | passive] To view session parameters, use the show bfd neighbors detail command, as shown in the examples in Displaying BFD for BGP Information Disabling BFD for Static Routes If you disable BFD, all static route BFD sessions are torn down.
Establishing Sessions with OSPF Neighbors BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state. Figure 17. Establishing Sessions with OSPF Neighbors To establish BFD with all OSPF neighbors or with OSPF neighbors on a single interface, use the following commands. • Establish sessions with all OSPF neighbors.
INTERFACE mode ip ospf bfd all-neighbors Example of Verifying Sessions with OSPF Neighbors To view the established sessions, use the show bfd neighbors command. The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.2 * 2.2.3.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Te 2/1 Up 100 100 3 O 2.2.3.
• Disable BFD sessions with all OSPF neighbors. ROUTER-OSPF mode • no bfd all-neighbors Disable BFD sessions with all OSPF neighbors on an interface. INTERFACE mode ip ospf bfd all-neighbors disable Configure BFD for OSPFv3 BFD for OSPFv3 provides support for IPV6. Configuring BFD for OSPFv3 is a two-step process: 1. Enable BFD globally. 2. Establish sessions with OSPFv3 neighbors.
• Change parameters for all OSPFv3 sessions. ROUTER-OSPFv3 mode • bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Change parameters for OSPFv3 sessions on a single interface. INTERFACE mode ipv6 ospf bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Disabling BFD for OSPFv3 If you disable BFD globally, all sessions are torn down and sessions on the remote system are placed in a Down state.
Establishing Sessions with IS-IS Neighbors BFD sessions can be established for all IS-IS neighbors at once or sessions can be established for all neighbors out of a specific interface. Figure 18. Establishing Sessions with IS-IS Neighbors To establish BFD with all IS-IS neighbors or with IS-IS neighbors on a single interface, use the following commands. • Establish sessions with all IS-IS neighbors. ROUTER-ISIS mode • bfd all-neighbors Establish sessions with IS-IS neighbors on a single interface.
The bold line shows that IS-IS BFD sessions are enabled. R2(conf-router_isis)#bfd all-neighbors R2(conf-router_isis)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.2 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Te 2/1 Up 100 100 3 I Changing IS-IS Session Parameters BFD sessions are configured with default intervals and a default role.
INTERFACE mose isis bfd all-neighbors disable Configure BFD for BGP In a BGP core network, BFD provides rapid detection of communication failures in BGP fast-forwarding paths between internal BGP (iBGP) and external BGP (eBGP) peers for faster network reconvergence. BFD for BGP is supported on 1GE, 10GE, 40GE, port-channel, and VLAN interfaces. BFD for BGP does not support IPv6 and the BGP multihop feature. Prerequisites Before configuring BFD for BGP, you must first configure the following settings: 1.
Figure 19. Establishing Sessions with BGP Neighbors The sample configuration shows alternative ways to establish a BFD session with a BGP neighbor: • By establishing BFD sessions with all neighbors discovered by BGP (the bfd all-neighbors command). • By establishing a BFD session with a specified BGP neighbor (the neighbor {ip-address | peergroup-name} bfd command) BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays.
typical response is to terminate the peering session for the routing protocol and reconverge by bypassing the failed neighboring router. A log message is generated whenever BFD detects a failure condition. 1. Enable BFD globally. CONFIGURATION mode bfd enable 2. Specify the AS number and enter ROUTER BGP configuration mode. CONFIGURATION mode router bgp as-number 3. Add a BGP neighbor or peer group in a remote AS. CONFIG-ROUTERBGP mode neighbor {ip-address | peer-group name} remote-as as-number 4.
ROUTER BGP mode • neighbor {ip-address | peer-group-name} bfd disable Remove the disabled state of a BFD for BGP session with a specified neighbor. ROUTER BGP mode no neighbor {ip-address | peer-group-name} bfd disable Use BFD in a BGP Peer Group You can establish a BFD session for the members of a peer group (the neighbor peer-group-name bfd command in ROUTER BGP configuration mode).
Examples of the BFD show Commands The following example shows verifying a BGP configuration. R2# show running-config bgp ! router bgp 2 neighbor 1.1.1.2 remote-as 1 neighbor 1.1.1.2 no shutdown neighbor 2.2.2.2 remote-as 1 neighbor 2.2.2.2 no shutdown neighbor 3.3.3.2 remote-as 1 neighbor 3.3.3.2 no shutdown bfd all-neighbors The following example shows viewing all BFD neighbors.
Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 5 Session Discriminator: 10 Neighbor Discriminator: 11 Local Addr: 2.2.2.3 Local MAC Addr: 00:01:e8:66:da:34 Remote Addr: 2.2.2.
Down Admin Down : 0 : 2 The following example shows viewing BFD summary information. The bold line shows the message displayed when you enable BFD for BGP connections. R2# show ip bgp summary BGP router identifier 10.0.0.1, local AS number 2 BGP table version is 0, main routing table version 0 BFD is enabled, Interval 100 Min_rx 100 Multiplier 3 Role Active 3 neighbor(s) using 24168 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 1.1.1.2 2.2.2.2 3.3.3.
Connections established 1; dropped 0 Last reset never Local host: 2.2.2.3, Local port: 63805 Foreign host: 2.2.2.2, Foreign port: 179 E1200i_ExaScale# R2# show ip bgp neighbors 2.2.2.3 BGP neighbor is 2.2.2.3, remote AS 1, external link Member of peer-group pg1 for session parameters BGP version 4, remote router ID 12.0.0.4 BGP state ESTABLISHED, in this state for 00:05:33 ... Neighbor is using BGP neighbor mode BFD configuration Peer active in peer-group outbound optimization ...
Establishing Sessions with All VRRP Neighbors BFD sessions can be established for all VRRP neighbors at once, or a session can be established with a particular neighbor. Figure 20. Establishing Sessions with All VRRP Neighbors To establish sessions with all VRRP neighbors, use the following command. • Establish sessions with all VRRP neighbors.
The bold line shows that VRRP BFD sessions are enabled. Dell(conf-if-te-4/25)#vrrp bfd all-neighbors Dell(conf-if-te-4/25)#do show bfd neighbor * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) V - VRRP LocalAddr * 2.2.5.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.5.2 Te 4/25 Down 1000 1000 3 V To view session state information, use the show vrrp command. The bold line shows the VRRP BFD session.
• vrrp bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Change parameters for a particular VRRP session. INTERFACE mode vrrp bfd neighbor ip-address interval milliseconds min_rx milliseconds multiplier value role [active | passive] To view session parameters, use the show bfd neighbors detail command, as shown in the example in Verifying BFD Sessions with BGP Neighbors Using the show bfd neighbors command example in Displaying BFD for BGP Information.
• debug bfd detail Examine the control packets in hexadecimal format. CONFIGURATION debug bfd packet Examples of Output from the debug bfd Commands The following example shows a three-way handshake using the debug bfd detail command. R1(conf-if-te-4/24)#00:54:38: %RPM0-P:RP2 %BFDMGR-1-BFD_STATE_CHANGE: Changed session state to Down for neighbor 2.2.2.2 on interface Te 4/24 (diag: 0) 00:54:38 : Sent packet for session with neighbor 2.2.2.
10 Border Gateway Protocol IPv4 (BGPv4) This chapter provides a general description of BGPv4 as it is supported in the Dell Networking Operating System (OS). BGP protocol standards are listed in the Standards Compliance chapter. BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS). The primary function of the BGP is to exchange network reachability information with other BGP systems.
Figure 21. Internal BGP BGP version 4 (BGPv4) supports classless interdomain routing and aggregate routes and AS paths. BGP is a path vector protocol — a computer network in which BGP maintains the path that updated information takes as it diffuses through the network. Updates traveling through the network and returning to the same node are easily detected and discarded.
Figure 22. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. Sessions and Peers When two routers communicate using the BGP protocol, a BGP session is started. The two end-points of that session are Peers. A Peer is also called a Neighbor.
Establish a Session Information exchange between peers is driven by events and timers. The focus in BGP is on the traffic routing policies. In order to make decisions in its operations with other BGP peers, a BGP process uses a simple finite state machine that consists of six states: Idle, Connect, Active, OpenSent, OpenConfirm, and Established. For each peer-to-peer session, a BGP implementation tracks which of these six states the session is in.
Route reflection divides iBGP peers into two groups: client peers and nonclient peers. A route reflector and its client peers form a route reflection cluster. Because BGP speakers announce only the best route for a given prefix, route reflector rules are applied after the router makes its best path decision. • If a route was received from a nonclient peer, reflect the route to all client peers. • If the route was received from a client peer, reflect the route to all nonclient and all client peers.
• Next Hop NOTE: There are no hard coded limits on the number of attributes that are supported in the BGP. Taking into account other constraints such as the Packet Size, maximum number of attributes are supported in BGP. Communities BGP communities are sets of routes with one or more common attributes. Communities are a way to assign common attributes to multiple routes at the same time. NOTE: Duplicate communities are not rejected.
Figure 24. BGP Best Path Selection Best Path Selection Details 1. Prefer the path with the largest WEIGHT attribute. 2. Prefer the path with the largest LOCAL_PREF attribute. 3. Prefer the path that was locally Originated via a network command, redistribute command or aggregate-address command. a. 4. Routes originated with the Originated via a network or redistribute commands are preferred over routes originated with the aggregate-address command.
c. Paths with no MED are treated as “worst” and assigned a MED of 4294967295. 7. Prefer external (EBGP) to internal (IBGP) paths or confederation EBGP paths. 8. Prefer the path with the lowest IGP metric to the BGP if next-hop is selected when synchronization is disabled and only an internal path remains. 9. Dell Networking OS deems the paths as equal and does not perform steps 9 through 11, if the following criteria is met: a.
and AS300. This is advertised to all routers within AS100, causing all BGP speakers to prefer the path through Router B. Figure 25. BGP Local Preference Multi-Exit Discriminators (MEDs) If two ASs connect in more than one place, a multi-exit discriminator (MED) can be used to assign a preference to a preferred path. MED is one of the criteria used to determine the best path, so keep in mind that other criteria may impact selection, as shown in the illustration in Best Path Selection Criteria.
Figure 26. Multi-Exit Discriminators NOTE: Configuring the set metric-type internal command in a route-map advertises the IGP cost as MED to outbound EBGP peers when redistributing routes. The configured set metric value overwrites the default IGP cost. If the outbound route-map uses MED, it overwrites IGP MED. Origin The origin indicates the origin of the prefix, or how the prefix came into BGP. There are three origin codes: IGP, EGP, INCOMPLETE.
*> 7.0.0.0/30 *> 9.2.0.0/16 10.114.8.33 10.114.8.33 0 10 0 0 18508 18508 ? 701 i AS Path The AS path is the list of all ASs that all the prefixes listed in the update have passed through. The local AS number is added by the BGP speaker when advertising to a eBGP neighbor. NOTE: Any update that contains the AS path number 0 is valid. The AS path is shown in the following example. The origin attribute is shown following the AS path information (shown in bold).
Multiprotocol BGP Multiprotocol extensions for BGP (MBGP) is defined in IETF RFC 2858. MBGP allows different types of address families to be distributed in parallel. MBGP allows information about the topology of the IP multicast-capable routers to be exchanged separately from the topology of normal IPv4 and IPv6 unicast routers. It allows a multicast routing topology different from the unicast routing topology.
• If BGP peer outbound route-map has metric configured, all other metrics are overwritten by this configuration. NOTE: When redistributing static, connected, or OSPF routes, there is no metric option. Simply assign the appropriate route-map to the redistributed route. The following table lists some examples of these rules. Table 10.
AS4 Number Representation Dell Networking OS supports multiple representations of 4-byte AS numbers: asplain, asdot+, and asdot. NOTE: The ASDOT and ASDOT+ representations are supported only with the 4-Byte AS numbers feature. If 4-Byte AS numbers are not implemented, only ASPLAIN representation is supported. ASPLAIN is the method Dell Networking OS has used for all previous Dell Networking OS versions. ASPLAIN remains the default method with Dell Networking OS.
router bgp 100 bgp asnotation asdot+ bgp four-octet-as-support neighbor 172.30.1.250 local-as 65057
Figure 27. Before and After AS Number Migration with Local-AS Enabled When you complete your migration, and you have reconfigured your network with the new information, disable this feature. If you use the “no prepend” option, the Local-AS does not prepend to the updates received from the eBGP peer. If you do not select “no prepend” (the default), the Local-AS is added to the first AS segment in the AS-PATH.
BGP4 Management Information Base (MIB) The FORCE10-BGP4-V2-MIB enhances Dell Networking OS BGP management information base (MIB) support with many new simple network management protocol (SNMP) objects and notifications (traps) defined in draft-ietf-idr-bgp4-mibv2-05. To see these enhancements, download the MIB from the Dell website. NOTE: For the Force10-BGP4-V2-MIB and other MIB documentation, refer to the Dell iSupport web page.
disabled, it is assumed that clients are in a full mesh and there is no need to advertise prefixes to the other clients. • High CPU utilization may be observed during an SNMP walk of a large BGP Loc-RIB. • To avoid SNMP timeouts with a large-scale configuration (large number of BGP neighbors and a large BGP Loc-RIB), Dell Networking recommends setting the timeout and retry count values to a relatively higher number. For example, t = 60 or r = 5.
NOTE: In Dell Networking OS, all newly configured neighbors and peer groups are disabled. To enable a neighbor or peer group, enter the neighbor {ip-address | peer-group-name} no shutdown command. The following table displays the default values for BGP on Dell Networking OS. Table 11. BGP Default Values Item Default BGP Neighbor Adjacency changes All BGP neighbor changes are logged.
1. Assign an AS number and enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number • as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte) or 0.1 to 65535.65535 (Dotted format). Only one AS is supported per system. NOTE: If you enter a 4-Byte AS number, 4-Byte AS support is enabled automatically. a. Enable 4-Byte support for the BGP process. NOTE: This command is OPTIONAL. Enable if you want to use 4-Byte AS numbers or if you support AS4 number representation.
Examples of the show ip bgp Commands NOTE: When you change the configuration of a BGP neighbor, always reset it by entering the clear ip bgp * command in EXEC Privilege mode. To view the BGP configuration, enter show config in CONFIGURATION ROUTER BGP mode. To view the BGP status, use the show ip bgp summary command in EXEC Privilege mode.
To view the status of BGP neighbors, use the show ip bgp neighbors command in EXEC Privilege mode as shown in the first example. For BGP neighbor configuration information, use the show running-config bgp command in EXEC Privilege mode as shown in the second example. NOTE: The showconfig command in CONFIGURATION ROUTER BGP mode gives the same information as the show running-config bgp command.
The following example shows verifying the BGP configuration using the show running-config bgp command.. Dell#show running-config bgp ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list ISP1in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.
• NOTE: ASPLAIN is the default method Dell Networking OS uses and does not appear in the configuration display. Enable ASDOT AS Number representation. CONFIG-ROUTER-BGP mode • bgp asnotation asdot Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ Examples of the bgp asnotation Commands The following example shows the bgp asnotation asplain command output.
Configuring Peer Groups To configure multiple BGP neighbors at one time, create and populate a BGP peer group. An advantage of peer groups is that members of a peer group inherit the configuration properties of the group and share same update policy. A maximum of 256 peer groups are allowed on the system. Create a peer group by assigning it a name, then adding members to the peer group. After you create a peer group, you can configure route policies for it.
To add an internal BGP (IBGP) neighbor, configure the as-number parameter with the same BGP asnumber configured in the router bgp as-number command. Examples of Viewing and Configuring Peer Groups After you create a peer group, you can use any of the commands beginning with the keyword neighbor to configure that peer group. When you add a peer to a peer group, it inherits all the peer group’s configured parameters.
neighbor 10.1.1.1 shutdown neighbor 10.14.8.60 remote-as 18505 neighbor 10.14.8.60 no shutdown Dell(conf-router_bgp)# To disable a peer group, use the neighbor peer-group-name shutdown command in CONFIGURATION ROUTER BGP mode. The configuration of the peer group is maintained, but it is not applied to the peer group members. When you disable a peer group, all the peers within the peer group that are in the ESTABLISHED state move to the IDLE state.
When you enable fall-over, BGP tracks IP reachability to the peer remote address and the peer local address. Whenever either address becomes unreachable (for example, no active route exists in the routing table for peer IPv6 destinations/local address), BGP brings down the session with the peer. The BGP fast fall-over feature is configured on a per-neighbor or peer-group basis and is disabled by default. To enable the BGP fast fall-over feature, use the following command.
Notification History 'Connection Reset' Sent : 5 Recv: 0 Local host: 200.200.200.200, Local port: 65519 Foreign host: 100.100.100.100, Foreign port: 179 Dell# To verify that fast fall-over is enabled on a peer-group, use the show ip bgp peer-group command (shown in bold).
CONFIG-ROUTER-BGP mode neighbor peer-group-name subnet subnet-number mask The peer group responds to OPEN messages sent on this subnet. 3. Enable the peer group. CONFIG-ROUTER-BGP mode neighbor peer-group-name no shutdown 4. Create and specify a remote peer for BGP neighbor. CONFIG-ROUTER-BGP mode neighbor peer-group-name remote-as as-number Only after the peer group responds to an OPEN message sent on the subnet does its BGP state change to ESTABLISHED.
network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.1 update-source Loopback 0 neighbor 192.168.10.1 no shutdown neighbor 192.168.12.
neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.1 update-source Loopback 0 neighbor 192.168.10.1 no shutdown neighbor 192.168.12.2 remote-as 65123 neighbor 192.168.12.2 allowas-in 9 neighbor 192.168.12.2 update-source Loopback 0 neighbor 192.168.12.2 no shutdown R2(conf-router_bgp)#R2(conf-router_bgp)# Enabling Graceful Restart Use this feature to lessen the negative effects of a BGP restart.
• Set maximum time to retain the restarting peer’s stale paths. CONFIG-ROUTER-BGP mode bgp graceful-restart [stale-path-time time-in-seconds] • The default is 360 seconds. Local router supports graceful restart as a receiver only. CONFIG-ROUTER-BGP mode bgp graceful-restart [role receiver-only] Enabling Neighbor Graceful Restart BGP graceful restart is active only when the neighbor becomes established. Otherwise, it is disabled. Graceful-restart applies to all neighbors with established adjacency.
to affect interdomain routing. By identifying certain ASN in the AS_PATH, you can permit or deny routes based on the number in its AS_PATH. AS-PATH ACLs use regular expressions to search AS_PATH values. AS-PATH ACLs have an “implicit deny.” This means that routes that do not meet a deny or match filter are dropped. To configure an AS-PATH ACL to filter a specific AS_PATH value, use these commands in the following sequence. 1. Assign a name to a AS-PATH ACL and enter AS-PATH ACL mode.
0x6cc18d4 0x5982e44 0x67d4a14 0x559972c 0x59cd3b4 0x7128114 0x536a914 0x2ffe884 0x2ff7284 0x2ff7ec4 0x2ff8544 0x736c144 0x3b8d224 0x5eb1e44 0x5cd891c --More-- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 162 2 31 2 10 3 1 99 4 3 1 10 1 9 18508 18508 18508 18508 18508 18508 18508 18508 18508 18508 18508 18508 18508 18508 18508 701 209 701 209 209 209 209 701 701 209 701 701 209 701 209 2914 4713 17935 i i 19878 ? 18756 i 7018 15227 i 3356 13845 i 701 6347 7781 i 3561 9116 21350 i 1239 577 855 ? 3561 4755 17426 i 574
The following example applies access list Eagle to routes inbound from BGP peer 10.5.5.2. Access list Eagle uses a regular expression to deny routes originating in AS 32. The first lines shown in bold create the access list and filter. The second lines shown in bold are the regular expression shown as part of the access list filter.
redistribute isis [level-1 | level-1-2 | level-2] [metric value] [route-map map-name] Configure the following parameters: – level-1, level-1-2, or level-2: Assign all redistributed routes to a level. The default is level-2. – metric value: The value is from 0 to 16777215. The default is 0. • – map-name: name of a configured route map. Include specific OSPF routes in IS-IS.
IETF RFC 1997 defines the COMMUNITY attribute and the predefined communities of INTERNET, NO_EXPORT_SUBCONFED, NO_ADVERTISE, and NO_EXPORT. All BGP routes belong to the INTERNET community. In the RFC, the other communities are defined as follows: • All routes with the NO_EXPORT_SUBCONFED (0xFFFFFF03) community attribute are not sent to CONFED-EBGP or EBGP peers, but are sent to IBGP peers within CONFED-SUB-AS. • All routes with the NO_ADVERTISE (0xFFFFFF02) community attribute must not be advertised.
deny deny deny deny deny deny Dell# 701:667 702:667 703:667 704:666 705:666 14551:666 Configuring an IP Extended Community List To configure an IP extended community list, use these commands. 1. Create a extended community list and enter the EXTCOMMUNITY-LIST mode. CONFIGURATION mode ip extcommunity-list extcommunity-list-name 2. Two types of extended communities are supported.
Filtering Routes with Community Lists To use an IP community list or IP extended community list to filter routes, you must apply a match community filter to a route map and then apply that route map to a BGP neighbor or peer group. 1. Enter the ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2. Configure a match filter for all routes meeting the criteria in the IP community or IP extended community list.
To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. If you want to remove or add a specific COMMUNITY number from a BGP path, you must create a route map with one or both of the following statements in the route map. Then apply that route map to a BGP neighbor or peer group. 1. Enter ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2.
Dell>show ip bgp community BGP table version is 3762622, local router ID is 10.114.8.48 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP, ? - incomplete Network * i 3.0.0.0/8 *>i 4.2.49.12/30 * i 4.21.132.0/23 *>i 4.24.118.16/30 *>i 4.24.145.0/30 *>i 4.24.187.12/30 *>i 4.24.202.0/30 *>i 4.25.88.0/30 *>i 6.1.0.0/16 *>i 6.2.0.0/22 *>i 6.3.0.0/18 *>i 6.4.0.0/16 *>i 6.5.0.0/19 *>i 6.8.0.0/20 *>i 6.9.0.0/20 *>i 6.10.0.0/15 *>i 6.14.0.0/15 *>i 6.133.0.
CONFIG-ROUTER-BGP mode bgp default local-preference value – value: the range is from 0 to 4294967295. The default is 100. To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode or the show running-config bgp command in EXEC Privilege mode. A more flexible method for manipulating the LOCAL_PREF attribute value is to use a route map. 1. Enter the ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2.
set next-hop ip-address Changing the WEIGHT Attribute To change how the WEIGHT attribute is used, enter the first command. You can also use route maps to change this and other BGP attributes. For example, you can include the second command in a route map to specify the next hop address. • Assign a weight to the neighbor connection. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} weight weight – weight: the range is from 0 to 65535. • The default is 0. Sets weight for the route.
For inbound and outbound updates the order of preference is: • prefix lists (using the neighbor distribute-list command) • AS-PATH ACLs (using the neighbor filter-list command) • route maps (using the neighbor route-map command) Prior to filtering BGP routes, create the prefix list, AS-PATH ACL, or route map. For configuration information about prefix lists, AS-PATH ACLs, and route maps, refer to Access Control Lists (ACLs).
• If the prefix list contains no filters, all routes are permitted. • If none of the routes match any of the filters in the prefix list, the route is denied. This action is called an implicit deny. (If you want to forward all routes that do not match the prefix list criteria, you must configure a prefix list filter to permit all routes. For example, you could have the following filter as the last filter in your prefix list permit 0.0.0.0/0 le 32).
Filtering BGP Routes Using AS-PATH Information To filter routes based on AS-PATH information, use these commands. 1. Create a AS-PATH ACL and assign it a name. CONFIGURATION mode ip as-path access-list as-path-name 2. Create a AS-PATH ACL filter with a deny or permit action. AS-PATH ACL mode {deny | permit} as-regular-expression 3. Return to CONFIGURATION mode. AS-PATH ACL exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5.
• Assign an ID to a router reflector cluster. CONFIG-ROUTER-BGP mode bgp cluster-id cluster-id • You can have multiple clusters in an AS. Configure the local router as a route reflector and the neighbor or peer group identified is the route reflector client. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-reflector-client When you enable a route reflector, Dell Networking OS automatically enables route reflection to all clients.
Configuring BGP Confederations Another way to organize routers within an AS and reduce the mesh for IBGP peers is to configure BGP confederations. As with route reflectors, BGP confederations are recommended only for IBGP peering involving many IBGP peering sessions per router. Basically, when you configure BGP confederations, you break the AS into smaller sub-AS, and to those outside your network, the confederations appear as one AS.
• history entry — an entry that stores information on a downed route • dampened path — a path that is no longer advertised • penalized path — a path that is assigned a penalty To configure route flap dampening parameters, set dampening parameters using a route map, clear information on route dampening and return suppressed routes to active state, view statistics on route flapping, or change the path selection from the default mode (deterministic) to non-deterministic, use the following commands.
show ip bgp [vrf vrf-name] flap-statistics [ip-address [mask]] [filter-list as-path-name] [regexp regular-expression] – ip-address [mask]: enter the IP address and mask. – filter-list as-path-name: enter the name of an AS-PATH ACL. – regexp regular-expression: enter a regular express to match on. • By default, the path selection in Dell Networking OS is deterministic, that is, paths are compared irrespective of the order of their arrival.
Dampening enabled. 0 history paths, 0 dampened paths, 0 penalized paths Neighbor AS MsgRcvd MsgSent TblVer 10.114.8.34 18508 82883 79977 780266 10.114.8.33 18508 117265 25069 780266 Dell> InQ OutQ Up/Down State/PfxRcd 0 2 00:38:51 118904 0 20 00:38:50 102759 To view which routes are dampened (non-active), use the show ip bgp dampened-routes command in EXEC Privilege mode. Changing BGP Timers To configure BGP timers, use either or both of the following commands.
To reset a BGP connection using BGP soft reconfiguration, use the clear ip bgp command in EXEC Privilege mode at the system prompt. When you enable soft-reconfiguration for a neighbor and you execute the clear ip bgp soft in command, the update database stored in the router is replayed and updates are reevaluated. With this command, the replay and update process is triggered only if a route-refresh request is not negotiated with the peer.
Route Map Continue The BGP route map continue feature, continue [sequence-number], (in ROUTE-MAP mode) allows movement from one route-map entry to a specific route-map entry (the sequence number). If you do not specify a sequence number, the continue feature moves to the next sequence number (also known as an “implied continue”). If a match clause exists, the continue feature executes only after a successful match occurs. If there are no successful matches, continue is ignored.
• Exchange of IPv4 multicast route information occurs through the use of two new attributes called MP_REACH_NLRI and MP_UNREACH_NLRI, for feasible and withdrawn routes, respectively. • If the peer has not been activated in any AFI/SAFI, the peer remains in Idle state. Most Dell Networking OS BGP IPv4 unicast commands are extended to support the IPv4 multicast RIB using extra options to the command.
• debug ip bgp [ip-address | peer-group peer-group-name] notifications [in | out] View information about BGP updates and filter by prefix name. EXEC Privilege mode • debug ip bgp [ip-address | peer-group peer-group-name] updates [in | out] [prefix-list name] Enable soft-reconfiguration debug.
MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) For address family: IPv4 Unicast BGP table version 1395, neighbor version 1394 Prefixes accepted 1 (consume 4 bytes), 0 withdrawn by peer Prefixes advertised 0, rejected 0, 0 withdrawn from peer Connections established 3; dropped 2 Last reset 00:00:12, due to Missing well known attribute Notification History 'UPDATE error/Missing well-known attr' Sent : 1 Recv: 0 'Connection Reset' Sent : 1 Recv: 0 Last notification (len 21) sent 00:26:02 ago fffff
00000000 00000000 00000000 00000001 0181a1e4 0181a25c 41af9400 00000000 PDU[2] : len 19, captured 00:34:51 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[3] : len 19, captured 00:34:51 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[4] : len 19, captured 00:34:22 ago ffffffff ffffffff ffffffff ffffffff 00130400 [. . .] Outgoing packet capture enabled for BGP neighbor 20.20.20.
The following illustration shows the configurations described on the following examples. These configurations show how to create BGP areas using physical and virtual links. They include setting up the interfaces and peers groups with each other. Figure 28. Sample Configurations Example of Enabling BGP (Router 1) R1# conf R1(conf)#int loop 0 R1(conf-if-lo-0)#ip address 192.168.128.1/24 R1(conf-if-lo-0)#no shutdown R1(conf-if-lo-0)#show config ! interface Loopback 0 ip address 192.168.128.
R1(conf-if-te-1/31)#show config ! interface TengigabitEthernet 1/31 ip address 10.0.3.31/24 no shutdown R1(conf-if-te-1/31)#router bgp 99 R1(conf-router_bgp)#network 192.168.128.0/24 R1(conf-router_bgp)#neighbor 192.168.128.2 remote 99 R1(conf-router_bgp)#neighbor 192.168.128.2 no shut R1(conf-router_bgp)#neighbor 192.168.128.2 update-source loop 0 R1(conf-router_bgp)#neighbor 192.168.128.3 remote 100 R1(conf-router_bgp)#neighbor 192.168.128.3 no shut R1(conf-router_bgp)#neighbor 192.168.128.
Example of Enabling BGP (Router 3) R3# conf R3(conf)# R3(conf)#int loop 0 R3(conf-if-lo-0)#ip address 192.168.128.3/24 R3(conf-if-lo-0)#no shutdown R3(conf-if-lo-0)#show config ! interface Loopback 0 ip address 192.168.128.3/24 no shutdown R3(conf-if-lo-0)#int te 3/11 R3(conf-if-te-3/11)#ip address 10.0.3.33/24 R3(conf-if-te-3/11)#no shutdown R3(conf-if-te-3/11)#show config ! interface TengigabitEthernet 3/11 ip address 10.0.3.33/24 no shutdown R3(conf-if-lo-0)#int te 3/21 R3(conf-if-te-3/21)#ip address 10.
neighbor 192.168.128.2 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 peer-group BBB neighbor 192.168.128.3 update-source Loopback 0 neighbor 192.168.128.3 no shutdown R1# R1#show ip bgp summary BGP router identifier 192.168.128.
R2(conf-router_bgp)# neighbor 192.168.128.3 no shut R2(conf-router_bgp)#show conf ! router bgp 99 network 192.168.128.0/24 neighbor AAA peer-group neighbor AAA no shutdown neighbor BBB peer-group neighbor BBB no shutdown neighbor 192.168.128.1 remote-as 99 neighbor 192.168.128.1 peer-group CCC neighbor 192.168.128.1 update-source Loopback 0 neighbor 192.168.128.1 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 peer-group BBB neighbor 192.168.128.
Received 93 messages, 0 in queue 5 opens, 0 notifications, 5 updates 83 keepalives, 0 route refresh requests Sent 99 messages, 0 in queue 5 opens, 4 notifications, 5 updates 85 keepalives, 0 route refresh requestsCapabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Update source set to Loopback 0 Peer active in peer-group outbound op
Content Addressable Memory (CAM) 11 CAM is a type of memory that stores information in the form of a lookup table. On Dell Networking systems, CAM stores Layer 2 and Layer 3 forwarding information, access-lists (ACLs), flows, and routing policies. CAM Allocation CAM Allocation for Ingress To allocate the space for regions such has L2 ingress ACL, IPV4 ingress ACL, IPV6 ingress ACL, IPV4 QOS, L2 QOS, PBR, VRF ACL etc on the S-Series by using the cam-acl command in CONFIGURATION mode.
CAM Allocation Setting vrfv4Acl 0 Openflow 0 fedgovacl 0 The following additional CAM allocation settings are supported on the S6000, S4810, S4820T, or S6000– ON platforms. Table 13. Additional Default CAM Allocation Settings Additional CAM Allocation Setting FCoE ACL (fcoeacl) 0 ISCSI Opt ACL (iscsioptacl) 0 The ipv6acl and vman-dual-qos allocations must be entered as a factor of 2 (2, 4, 6, 8, 10). All other profile allocations can use either even or odd numbered ranges.
NOTE: Selecting default resets the CAM entries to the default settings. Select l2acl to allocate the desired space for all other regions. 2. Enter the number of FP blocks for each region.
L2ACL IPv4FIB IPv4ACL IPv4Flow EgL2ACL EgIPv4ACL Reserved FIB : ACL : Flow : EgACL : MicroCode Name --More-- : : : : : : : 0 0 0 0 : 1K entries 256K entries 12K entries 24K entries 1K entries 1K entries 8K entries entries entries entries entries Default : : : : 0 0 0 0 : 1K entries : 256K entries : 12K entries : 24K entries : 1K entries : 1K entries : 8K entries entries entries entries entries : Default To view brief output of the show cam-profile command, use the summary option.
L2Qos L2PT IpMacAcl VmanQos VmanDualQos EcfmAcl FcoeAcl iscsiOptAcl ipv4pbr vrfv4Acl Openflow fedgovacl : : : : : : : : : : : : 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 2 0 0 Dell(conf)# Example of Viewing CAM-ACL Settings NOTE: If you change the cam-acl setting from the CONFIGURATION mode, the output of this command does not reflect any changes until you save the running-configuration and reload the chassis.
fedgovacl : 0 -- Stack unit 7 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDualQos : 0 EcfmAcl : 0 FcoeAcl : 0 iscsiOptAcl : 0 ipv4pbr : 0 vrfv4Acl : 0 Openflow : 0 fedgovacl : 0 Dell# View CAM Usage View the amount of CAM space available, used, and remaining in each ACL partition using the show cam-usage command from EXEC Privilege mode.
Troubleshoot CAM Profiling The following section describes CAM profiling troubleshooting. CAM Profile Mismatches The CAM profile on all cards must match the system profile. In most cases, the system corrects mismatches by copying the correct profile to the card, and rebooting the card. If three resets do not bring up the card, or if the system is running an Dell Networking OS version prior to version 6.3.1.1, the system presents an error message.
Control Plane Policing (CoPP) 12 Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level.
Figure 30. CoPP Implemented Versus CoPP Not Implemented Configure Control Plane Policing The system can process a maximum of 4200 packets per second (PPS). Protocols that share a single queue may experience flaps if one of the protocols receives a high rate of control traffic even though per protocol CoPP is applied. This happens because queue-based rate limiting is applied first.
queue rate limit value. You must complete queue bandwidth tuning carefully because the system cannot open up to handle any rate, including traffic coming at the line rate. CoPP policies are assigned on a per-protocol or a per-queue basis, and are assigned in CONTROLPLANE mode to each port-pipe. CoPP policies are configured by creating extended ACL rules and specifying rate-limits through QoS policies. The ACLs and QoS policies are assigned as service-policies.
CONTROL-PLANE mode service-policy rate-limit-protocols Examples of Configuring CoPP for Different Protocols The following example shows creating the IP/IPv6/MAC extended ACL.
The following example shows matching the QoS class map to the QoS policy.
The following example shows assigning the QoS policy to the queues. Dell(conf)#policy-map-input cpuq_rate_policy cpu-qos Dell(conf-qos-policy-in)#service-queue 5 qos-policy cpuq_1 Dell(conf-qos-policy-in)#service-queue 6 qos-policy cpuq_2 Dell(conf-qos-policy-in)#service-queue 7 qos-policy cpuq_1 The following example shows creating the control plane service policy.
points, and the queue (0 – 3) taken by the CPU bound data streams are uniform. In back-plane ports, queue 0 – 3 will carry both the front-end bound data streams as well as the CPU bound data streams which is acceptable but the well-known protocol streams must not be mixed with the data streams on queues 0 – 3 in back-plane ports.
NDP Packets Neighbor discovery protocol has 4 types of packets NS, NA, RA, RS. These packets need to be taken to CPU for neighbor discovery. • Unicast NDP packets: – Packets hitting the L3 host/route table and discovered as local terminated packets/CPU bound traffic. For CPU bound traffic route entry have CPU action. Below are packets are CPU bound traffic. • * Packets destined to chassis.
CPU Queue Weights Rate (pps) Protocol 4 127 2000 IPC/IRC, VLT Control frames 5 16 300 ARP Request, NS, RS, iSCSI OPT Snooping 6 16 400 ICMP, ARP Reply, NTP, Local terminated L3, NA, RA,ICMPv6 (other Than NDP and MLD) 7 64 400 xSTP, FRRP, LACP, 802.
To configure control-plane policing, perform the following: 1. Create an IPv6 ACL for control-plane traffic policing for ospfv3. CONFIGURATION mode Dell(conf)#ipv6 access-list ospfv3 cpu-qos Dell(conf-ipv6-acl-cpuqos)#permit ospf 2. Create a QoS input policy for the router and assign the policing. CONFIGURATION mode Dell(conf)#qos-policy-input ospfv3_rate cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 1500 16 peak 1500 16 3.
Q7 Dell# 1100 Example of Viewing Queue Mapping To view the queue mapping for each configured protocol, use the show ip protocol-queuemapping command.
13 Data Center Bridging (DCB) NOTE: DCB is not supported when you use 10GBaseT ports for stacking. Ethernet Enhancements in Data Center Bridging The following section describes DCB. The S4820T system supports loading two DCB_Config files: FCoE_DCB_Config and iSCSI_DCB_Config. These files are located in the root directory flash:/CONFIG_TEMPLATE. After copying the configuration files to the startup config and reloading the system.
generally insensitive to latency requirements, while certain applications, such as streaming video, are more sensitive to latency. Ethernet functions as a best-effort network that may drop packets in case of network congestion. IP networks rely on transport protocols (for example, TCP) for reliable data transmission with the associated cost of greater processing overhead and performance impact.
The system supports loading two DCB_Config files: • FCoE converged traffic with priority 3. • iSCSI storage traffic with priority 4. In the Dell Networking OS, PFC is implemented as follows: • PFC supports buffering to receive data that continues to arrive on an interface while the remote system reacts to the PFC operation. • PFC uses DCB MIB IEEE 802.1azd2.5 and PFC MIB IEEE 802.1bb-d2.2. • PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface.
low-latency storage or server cluster traffic in a traffic class to receive more bandwidth and restrict besteffort LAN traffic assigned to a different traffic class. The following figure shows how ETS allows you to allocate bandwidth when different traffic types are classed according to 802.1p priority and mapped to priority groups. Figure 31. Enhanced Transmission Selection The following table lists the traffic groupings ETS uses to select multiprotocol traffic for transmission. Table 14.
• • • Discovery of DCB capabilities on peer-device connections. Determination of possible mismatch in DCB configuration on a peer link. Configuration of a peer device over a DCB link. DCBx requires the link layer discovery protocol (LLDP) to provide the path to exchange DCB parameters with peer devices. Exchanged parameters are sent in organizationally specific TLVs in LLDP data units.
For DCB to operate effectively, you can classify ingress traffic according to its dot1p priority so that it maps to different data queues. The dot1p-queue assignments used are shown in the following table. To enable DCB, enable either the iSCSI optimization configuration or the FCoE configuration. To enable DCB with PFC buffers on a switch, enter the following commands, save the configuration, and reboot the system to allow the changes to take effect. 1. Enable DCB. CONFIGURATION mode dcb enable 2.
dot1p Value in the Incoming Frame Egress Queue Assignment 1 0 2 1 3 3 4 4 5 5 6 6 7 7 DCB Maps and its Attributes This topic contains the following sections that describe how to configure a DCB map, apply the configured DCB map to a port, configure PFC without a DCB map, and configure lossless queues. DCB Map: Configuration Procedure A DCB map consists of PFC and ETS parameters. By default, PFC is not enabled on any 802.1p priority and ETS allocates equal bandwidth to each priority.
As a result, PFC and lossless port queues are disabled on 802.1p priorities, and all priorities are mapped to the same priority queue and equally share the port bandwidth. • To change the ETS bandwidth allocation configured for a priority group in a DCB map, do not modify the existing DCB map configuration. Instead, first create a new DCB map with the desired PFC and ETS settings, and apply the new map to the interfaces to override the previous DCB map settings.
Step Task Command Command Mode 1 Enter interface configuration mode on an Ethernet port. CONFIGURATION interface {tengigabitEthernet slot/ port | fortygigabitEthernet slot/port} 2 Enable PFC on specified priorities. Range: 0-7. Default: None. pfc priority priority-range INTERFACE Maximum number of lossless queues supported on an Ethernet port: 2. Separate priority values with a comma. Specify a priority range with a dash, for example: pfc priority 3,5-7 1.
Step Task Command Command Mode 3 Disable PFC. no pfc mode on DCB MAP 4 Return to interface configuration mode. exit DCB MAP 5 Apply the DCB map, created to disable the PFC operation, on the interface dcb-map {name | default} INTERFACE 6 Configure the port queues that still function as no-drop queues for lossless traffic. For the dot1p-queue assignments. pfc no-drop queuesqueue-range INTERFACE The maximum number of lossless queues globally supported on a port is 2.
Configuring PFC and ETS in a DCB Map switch supports the use of a DCB map in which you configure priority-based flow control (PFC) and enhanced transmission selection (ETS) settings. To configure PFC and ETS parameters, you must apply a DCB map on interface. This functionality is supported on the platform. PFC Configuration Notes PFC provides flow control based on the 802.1p priorities in a converged Ethernet traffic that is received on an interface and is enabled by default when you enable DCB.
• In a switch stack, configure all stacked ports with the same PFC configuration. • Dell Networking OS allows you to change the default dot1p priority-queue assignments only if the change satisfies the following requirements in DCB maps already applied to S6000 interfaces: • All 802.1p priorities mapped to the same queue must be in the same priority group. • A maximum of two PFC-enabled, lossless queues are supported on an interface.
priority group, use the bandwidth percentage parameter. The sum of the bandwidth allocated to all priority groups in a DCB map must be 100% of the bandwidth on the link. You must allocate at least 1% of the total bandwidth to each priority group. • Scheduling of priority traffic: dot1p priority traffic on the switch is scheduled to the current queue mapping. dot1p priorities within the same queue must have the same traffic properties and scheduling method.
Configuring Priority-Based Flow Control Priority-Based Flow Control (PFC) provides a flow control mechanism based on the 802.1p priorities in converged Ethernet traffic received on an interface and is enabled by default when you enable DCB. As an enhancement to the existing Ethernet pause mechanism, PFC stops traffic transmission for specified priorities (Class of Service (CoS) values) without impacting other priority classes. Different traffic types are assigned to different priority classes.
Configuring Lossless Queues DCB also supports the manual configuration of lossless queues on an interface when PFC mode is turned off. Prerequisite: A DCB with PFC configuration is applied to the interface with the following conditions: • PFC mode is off (no pfc mode on). • No PFC priority classes are configured (no pfc priority priority-range). The configuration of no-drop queues provides flexibility for ports on which PFC is not needed but lossless traffic should egress from the interface.
ETS Prerequisites and Restrictions The following prerequisites and restrictions apply when you configure ETS bandwidth allocation or queue scheduling. • Configuring ETS bandwidth allocation or a queue scheduler for dot1p priorities in a priority group is applicable if the DCBx version used on a port is CIN (refer to Configuring DCBx).
6. Specify the dot1p priority-to-priority group mapping for each priority. priority-pgid dot1p0_group_num dot1p1_group_num ...dot1p7_group_num Priority group range is from 0 to 7. All priorities that map to the same queue must be in the same priority group. Leave a space between each priority group number.
CIN supports only the dot1p priority-queue assignment in a priority group. To configure a dot1p priority flow in a priority group to operate with link strict priority, you configure: The dot1p priority for strict-priority scheduling (strict-priority command). The priority group for strict-priority scheduling (scheduler strict command.
NOTE: Use only 40G ports as stacking ports when you enable DCB. S4820T does not support DCB when you use 10GBaseT ports as stacking ports. • Apply the specified DCB policy on all ports of the switch stack or a single stacked switch.
A port that receives an internally propagated configuration overwrites its local configuration with the new parameter values. When an auto-upstream port (besides the configuration source) receives and overwrites its configuration with internally propagated information, one of the following actions is taken: • If the peer configuration received is compatible with the internally propagated port configuration, the link with the DCBx peer is enabled.
internally propagated configuration from the configuration source. If you enable DCBx, ports in Manual mode advertise their configurations to peer devices but do not accept or propagate internal or external configurations. Unlike other userconfigured ports, the configuration of DCBx ports in Manual mode is saved in the running configuration. On a DCBx port in a manual role, all PFC, application priority, ETS recommend, and ETS configuration TLVs are enabled.
Configuration Source Election When an auto-upstream or auto-downstream port receives a DCB configuration from a peer, the port first checks to see if there is an active configuration source on the switch. • If a configuration source already exists, the received peer configuration is checked against the local port configuration. If the received configuration is compatible, the DCBx marks the port as DCBxenabled.
• The switch reboots. • The link is reset (goes down and up). • User-configured CLI commands require the version negotiation to restart. • The peer times out. • Multiple peers are detected on the link. If you configure a DCBx port to operate with a specific version (the DCBx version {cee | cin | ieee-v2.5} command in the Configuring DCBx), DCBx operations are performed according to the configured version, including fast and slow transmit timers and message formats.
Expected PFC Priority 1 2 To configure the aforementioned DSCP and PFC priority values, perform the following tasks: 1. Create class-maps to group the DSCP subsets class-map match ip ! class-map match ip 2. match-any dscp-pfc-1 dscp 0-5,10-15 match-any dscp-pfc-2 dscp 20-25,30-35 Associate above class-maps to Queues Queue assignment to be based on the below table . Table 15. 3.
Figure 33. DCBx Sample Topology DCBx Prerequisites and Restrictions The following prerequisites and restrictions apply when you configure DCBx operation on a port: • For DCBx, on a port interface, enable LLDP in both Send (TX) and Receive (RX) mode (the protocol lldp mode command; refer to the example in CONFIGURATION versus INTERFACE Configurations in the Link Layer Discovery Protocol (LLDP) chapter). If multiple DCBx peer ports are detected on a local DCBx interface, LLDP is shut down.
[no] protocol lldp 3. Configure the DCBx version used on the interface, where: auto configures the port to operate using the DCBx version received from a peer. PROTOCOL LLDP mode [no] DCBx version {auto | cee | cin | ieee-v2.5} • cee: configures the port to use CEE (Intel 1.01). • cin: configures the port to use Cisco-Intel-Nuova (DCBx 1.0). • ieee-v2.5: configures the port to use IEEE 802.1Qaz (Draft 2.5). The default is Auto. 4.
• fcoe: enables the advertisement of FCoE in Application Priority TLVs. • iscsi: enables the advertisement of iSCSI in Application Priority TLVs. The default is Application Priority TLVs are enabled to advertise FCoE and iSCSI. NOTE: To disable TLV transmission, use the no form of the command; for example, no advertise DCBx-appln-tlv iscsi. For information about how to use iSCSI, refer to iSCSI Optimization To verify the DCBx configuration on a port, use the show interface DCBx detail command.
NOTE: You can configure the transmission of more than one TLV type at a time. You can only enable ETS recommend TLVs (ets-reco) if you enable ETS configuration TLVs (ets-conf). To disable TLV transmission, use the no form of the command; for example, no advertise DCBx-tlv pfc ets-reco. The default is All TLV types are enabled. 5. Configure the Application Priority TLVs that advertise on unconfigured interfaces with a manual portrole.
in a DCBx TLV from a remote peer but received a different, conflicting DCBx version. DSM_DCBx_PFC_PARAMETERS_MATCH and DSM_DCBx_PFC_PARAMETERS_MISMATCH: A local DCBx port received a compatible (match) or incompatible (mismatch) PFC configuration from a peer. DSM_DCBx_ETS_PARAMETERS_MATCH and DSM_DCBx_ETS_PARAMETERS_MISMATCH: A local DCBx port received a compatible (match) or incompatible (mismatch) ETS configuration from a peer.
Command Output show interface port-type slot/port pfc {summary | detail} Displays the PFC configuration applied to ingress traffic on an interface, including priorities and link delay. To clear PFC TLV counters, use the clear pfc counters interface port-type slot/port command. show interface port-type slot/port pfc statistics Displays counters for the PFC frames received and transmitted (by dot1p priority class) on an interface.
Priorities:0 1 2 5 6 7 PG:1 TSA:ETS BW:50 Priorities:3 4 PFC:ON The following example shows the show interfaces pfc summary command.
Fields Description is on, PFC advertisements are enabled to be sent and received from peers; received PFC configuration takes effect. The admin operational status for a DCBx exchange of PFC configuration is enabled or disabled. Remote is enabled; Priority list Remote Willing Status is enabled Operational status (enabled or disabled) of peer device for DCBx exchange of PFC configuration with a list of the configured PFC priorities.
Fields Description Application Priority TLV: Local ISCSI Priority Map Priority bitmap used by local DCBx port in ISCSI advertisements in application priority TLVs. Application Priority TLV: Remote FCOE Priority Map Status of FCoE advertisements in application priority TLVs from remote peer port: enabled or disabled. Application Priority TLV: Remote ISCSI Priority Map Status of iSCSI advertisements in application priority TLVs from remote peer port: enabled or disabled.
Remote Parameters : ------------------Remote is disabled Local Parameters : -----------------Local is enabled TC-grp Priority# Bandwidth TSA -----------------------------------------------0 1 0,1,2 100% ETS 2 3 0 % SP 3 4,5,6,7 0 % SP 4 5 6 7 Oper status is init ETS DCBx Oper status is Down State Machine Type is Asymmetric Conf TLV Tx Status is enabled Reco TLV Tx Status is enabled 0 Input Conf TLV Pkts, 1955 Output Conf TLV Pkts, 0 Error Conf TLV Pkts 0 Input Reco TLV Pkts, 1955 Output Reco TLV Pkts, 0 Err
4 0% ETS 5 0% ETS 6 0% ETS 7 0% ETS Priority# Bandwidth TSA 0 13% ETS 1 13% ETS 2 13% ETS 3 13% ETS 4 12% ETS 5 12% ETS 6 12% ETS 7 12% ETS Oper status is init Conf TLV Tx Status is disabled Traffic Class TLV Tx Status is disabled 0 Input Conf TLV Pkts, 0 Output Conf TLV Pkts, 0 Error Conf TLV Pkts 0T LIVnput Traffic Class TLV Pkts, 0 Output Traffic Class TLV Pkts, 0 Error Traffic Class Pkts The following example shows the show interface ets detail command.
5 6 7 0% 0% 0% Priority# Bandwidth 0 13% 1 13% 2 13% 3 13% 4 12% 5 12% 6 12% 7 12% Oper status is init Conf TLV Tx Status is disabled Traffic Class TLV Tx Status is disabled 0 Input Conf TLV Pkts, 0 Output Conf TLV 0 Input Traffic Class TLV Pkts, 0 Output Traffic Class TLV Pkts ETS ETS ETS TSA ETS ETS ETS ETS ETS ETS ETS ETS Pkts, 0 Error Conf TLV Pkts Traffic Class TLV Pkts, 0 Error The following table describes the show interface ets detail command fields. Table 18.
Field Description • Internally propagated: ETS configuration parameters were received from configuration source. ETS DCBx Oper status Operational status of ETS configuration on local port: match or mismatch. State Machine Type Type of state machine used for DCBx exchanges of ETS parameters: • • Feature: for legacy DCBx versions Asymmetric: for an IEEE version Conf TLV Tx Status Status of ETS Configuration TLV advertisements: enabled or disabled.
5 6 7 8 - - Stack unit 1 stack port all Max Supported TC Groups is 4 Number of Traffic Classes is 1 Admin mode is on Admin Parameters: -------------------Admin is enabled TC-grp Priority# Bandwidth TSA -----------------------------------------------0 0,1,2,3,4,5,6,7 100% ETS 1 2 3 4 5 6 7 8 The following example shows the show interface DCBx detail command (IEEE).
I-Application priority for iSCSI enabled i-Application Priority for iSCSI disabled ----------------------------------------------------------------------Interface TenGigabitEthernet 1/14 Remote Mac Address 00:01:e8:8a:df:a0 Port Role is Auto-Upstream DCBx Operational Status is Enabled Is Configuration Source? FALSE Local DCBx Compatibility mode is CEE Local DCBx Configured mode is CEE Peer Operating version is CEE Local DCBx TLVs Transmitted: ErPFi Local DCBx Status ----------------DCBx Operational Version
Field Description Local DCBx Configured mode DCBx version configured on the port: CEE, CIN, IEEE v2.5, or Auto (port auto-configures to use the DCBx version received from a peer). Peer Operating version DCBx version that the peer uses to exchange DCB parameters. Local DCBx TLVs Transmitted Transmission status (enabled or disabled) of advertised DCB TLVs (see TLV code at the top of the show command output). Local DCBx Status: DCBx Operational Version DCBx version advertised in Control TLVs.
Figure 34. PFC and ETS Applied to LAN, IPC, and SAN Priority Traffic QoS Traffic Classification: The service-class dynamic dot1p command has been used in Global Configuration mode to map ingress dot1p frames to the queues shown in the following table. For more information, refer to QoS dot1p Traffic Classification and Queue Assignment.
dot1p Value in the Incoming Frame Priority Group Assignment 3 SAN 4 IPC 5 LAN 6 LAN 7 LAN The following describes the priority group-bandwidth assignment. Priority Group Bandwidth Assignment IPC 5% SAN 50% LAN 45% PFC and ETS Configuration Command Examples The following examples show PFC and ETS configuration commands to manage your data center traffic.
Priority group 1 Assigns traffic to one priority queue with 20% of the link bandwidth and strictpriority scheduling. Priority group 2 Assigns traffic to one priority queue with 30% of the link bandwidth. Priority group 3 Assigns traffic to two priority queues with 50% of the link bandwidth and strictpriority scheduling.
When a device sends a pause frame to another device, the time for which the sending of packets from the other device must be stopped is contained in the pause frame. The device that sent the pause frame empties the buffer to be less than the threshold value and restarts the acceptance of data packets. Dynamic ingress buffering enables the sending of pause frames at different thresholds based on the number of ports that experience congestion at a time.
dcb enable 2. Configure the shared PFC buffer size and the total buffer size. A maximum of 4 lossless queues are supported. CONFIGURATION mode dcb pfc-shared-buffer-size 4000 dcb pfc-total-buffer-size 5000 3. Configure the number of PFC queues. CONFIGURATION mode dcb enable pfc-queues pfc-queues The number of ports supported based on lossless queues configured will depend on the buffer. The default number of PFC queues in the system is two for S4810 and Z9500, and one for S6000 platforms.
Sample Configurations Figure 35.
Description Link to RoCE Adapter in Blade Server no ip address mtu 12000 portmode hybrid switchport no spanning-tree ! protocol lldp dcbx port-role auto-downstream no shutdown ! interface fortyGigE 0/33 Description “To S4810s” no ip address mtu 12000 ! port-channel-protocol LACP port-channel 1 mode active ! protocol lldp no advertise dcbx-tlv ets-reco dcbx port-role auto-upstream no shutdown S4810 1 and S4810 2, VLT, RoCE, and iSCSI ! dcb enable iscsi enable ! dcb-map converged Description DCB map for S4810
vlt domain 2 peer-link port-channel 128 back-up destination interface Port-channel 128 no ip address mtu 12000 channel-member fortyGigE 0/56 no shutdown interface fortyGigE 0/56 no ip address mtu 12000 dcb-map Converged protocol lldp no shutdown S4810 2 vlt domain 2 peer-link port-channel 128 back-up destination interface Port-channel 128 no ip address mtu 12000 channel-member fortyGigE 0/56 no shutdown interface fortyGigE 0/56 no ip address mtu 12000 dcb-map Converge
Description SOFS-RDMA no ip address mtu 12000 portmode hybrid switchport no spanning-tree dcb-map RoCE ! protocol lldp no shutdown ! interface TenGigabitEthernet 0/22 Description SOFS- iSCSI no ip address mtu 12000 portmode hybrid switchport spanning-tree rstp edge-port spanning-tree 0 portfast dcb-map iSCSI ! protocol lldp no shutdown 314 Data Center Bridging (DCB)
Dynamic Host Configuration Protocol (DHCP) 14 DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on configuration policies determined by network administrators.
Option Number and Description Subnet Mask Option 1 Specifies the client’s subnet mask. Router Option 3 Specifies the router IP addresses that may serve as the client’s default gateway. Domain Name Server Option 6 Domain Name Option 15 Specifies the domain name servers (DNSs) that are available to the client. Specifies the domain name that clients should use when resolving hostnames via DNS.
Option Number and Description Identifiers a user-defined string used by the Relay Agent to forward DHCP client packets to a specific server. L2 DHCP Snooping Option 82 User Port Stacking Option 230 Specifies IP addresses for DHCP messages received from the client that are to be monitored to build a DHCP snooping database. Set the stacking option variable to provide DHCP server stack-port detail when the DHCP offer is set. End Option 255 Signals the last option in the DHCP packet.
Figure 37. Client and Server Messaging Implementation Information The following describes DHCP implementation. • Dell Networking implements DHCP based on RFC 2131 and RFC 3046. • IP source address validation is a sub-feature of DHCP Snooping; the Dell Networking OS uses access control lists (ACLs) internally to implement this feature and as such, you cannot apply ACLs to an interface which has IP source address validation.
Configure the System to be a DHCP Server A DHCP server is a network device that has been programmed to provide network configuration parameters to clients upon request. Servers typically serve many clients, making host management much more organized and efficient. The following table lists the key responsibilities of DHCP servers. Table 20. DHCP Server Responsibilities DHCP Server Responsibility Description Address Storage and Management DHCP servers are the owners of the addresses used by DHCP clients.
DHCP mode network network/prefix-length • network: the subnet address. • prefix-length: specifies the number of bits used for the network portion of the address you specify. The prefix-length range is from 17 to 31. 4. Display the current pool configuration. DHCP mode show config After an IP address is leased to a client, only that client may release the address. Dell Networking OS performs a IP + MAC source address validation to ensure that no client can release another clients address.
The default is 24 hours. Specifying a Default Gateway The IP address of the default router should be on the same subnet as the client. To specify a default gateway, follow this step. • Specify default gateway(s) for the clients on the subnet, in order of preference. DHCP default-router address Configure a Method of Hostname Resolution Dell systems are capable of providing DHCP clients with parameters for two methods of hostname resolution—using DNS or NetBIOS WINS.
useful when you want to guarantee that a particular network device receives a particular IP address. Manual bindings can be considered single-host address pools. There is no limit on the number of manual bindings, but you can only configure one manual binding per host. NOTE: Dell Networking OS does not prevent you from using a network IP as a host IP; be sure to not use a network IP as a host IP. 1. Create an address pool. DHCP mode pool name 2. Specify the client IP address. DHCP host address 3.
shown in the following illustration. Specify multiple DHCP servers by using the ip helper-address dhcp-address command multiple times. When you configure the ip helper-address command, the system listens for DHCP broadcast messages on port 67. The system rewrites packets received from the client and forwards them via unicast to the DHCP servers; the system rewrites the destination IP address and writes its own address as the relay device.
To view the ip helper-address configuration for an interface, use the show ip interface command from EXEC privilege mode. Example of the show ip interface Command R1_E600#show ip int tengigabitethernet 1/3 TenGigabitEthernet 1/3 is up, line protocol is down Internet address is 10.11.0.1/24 Broadcast address is 10.11.0.255 Address determined by user input IP MTU is 1500 bytes Helper address is 192.168.0.1 192.168.0.
DHCP Client Operation with Other Features The DHCP client operates with other Dell Networking OS features, as the following describes. Stacking The DHCP client daemon runs only on the master unit and handles all DHCP packet transactions. It periodically synchronizes the lease file with the standby unit. When a stack failover occurs, the new master requires the same DHCP server-assigned IP address on DHCP client interfaces.
DHCP Client on a Management Interface These conditions apply when you enable a management interface to operate as a DHCP client. • The management default route is added with the gateway as the router IP address received in the DHCP ACK packet. It is required to send and receive traffic to and from other subnets on the external network. The route is added irrespective when the DHCP client and server are in the same or different subnets.
• • Dynamic ARP Inspection Source Address Validation Option 82 RFC 3046 (the relay agent information option, or Option 82) is used for class-based IP address assignment. The code for the relay agent information option is 82, and is comprised of two sub-options, circuit ID and remote ID. Circuit ID This is the interface on which the client-originated message is received. Remote ID This identifies the host from which the message is received.
packet arrived on the correct port. Packets that do not pass this check are forwarded to the server for validation. This checkpoint prevents an attacker from spoofing a client and declining or releasing the real client’s address. Server-originated packets (DHCPOFFER, DHCPACK, and DHCPNACK) that arrive on a not trusted port are also dropped. This checkpoint prevents an attacker from acting as an imposter as a DHCP server to facilitate a man-in-the-middle attack.
INTERFACE mode ipv6 dhcp snooping trust 3. Enable IPv6 DHCP snooping on a VLAN or range of VLANs. CONFIGURATION mode ipv6 dhcp snooping vlan vlan-id Adding a Static Entry in the Binding Table To add a static entry in the binding table, use the following command. • Add a static entry in the binding table. EXEC Privilege mode ip dhcp snooping binding mac Adding a Static IPV6 DHCP Snooping Binding Table To add a static entry in the snooping database, use the following command.
Example of the show ip dhcp snooping Command View the DHCP snooping statistics with the show ip dhcp snooping command. Dell#show ip dhcp snooping IP IP IP IP DHCP DHCP DHCP DHCP Snooping Snooping Mac Verification Relay Information-option Relay Trust Downstream : : : : Enabled. Disabled. Disabled. Disabled.
IPv6 DHCP Snooping MAC-Address Verification Configure to enable verify source mac-address in the DHCP packet against the mac address stored in the snooping binding table. • Enable IPV6 DHCP snooping . CONFIGURATION mode ipv6 dhcp snooping verify mac-address Drop DHCP Packets on Snooped VLANs Only Binding table entries are deleted when a lease expires or the relay agent encounters a DHCPRELEASE. Line cards maintain a list of snooped VLANs.
packets addressed to the client to it. As a result, the attacker is able to sniff all packets to and from the client. Other attacks using ARP spoofing include: Broadcast An attacker can broadcast an ARP reply that specifies FF:FF:FF:FF:FF:FF as the gateway’s MAC address, resulting in all clients broadcasting all internet-bound packets. MAC flooding An attacker can send fraudulent ARP messages to the gateway until the ARP cache is exhausted, after which, traffic from the gateway is broadcast.
--------------------------------------------------------------------Internet 10.1.1.251 00:00:4d:57:f2:50 Te 1/2 Vl 10 CP Internet 10.1.1.252 00:00:4d:57:e6:f6 Te 1/1 Vl 10 CP Internet 10.1.1.253 00:00:4d:57:f8:e8 Te 1/3 Vl 10 CP Internet 10.1.1.254 00:00:4d:69:e8:f2 Te 1/5 Vl 10 CP Dell# To see how many valid and invalid ARP packets have been processed, use the show arp inspection statistics command.
Enabling IP Source Address Validation IP source address validation (SAV) prevents IP spoofing by forwarding only IP packets that have been validated against the DHCP binding table. A spoofed IP packet is one in which the IP source address is strategically chosen to disguise the attacker. For example, using ARP spoofing, an attacker can assume a legitimate client’s identity and receive traffic addressed to it. Then the attacker can spoof the client’s IP address to interact with other clients.
source address and MAC source address are a legitimate pair, rather than validating each attribute individually. You cannot configure IP+MAC SAV with IP SAV. 1. Allocate at least one FP block to the ipmacacl CAM region. CONFIGURATION mode cam-acl l2acl 2. Save the running-config to the startup-config. EXEC Privilege mode copy running-config startup-config 3. Reload the system. EXEC Privilege reload 4. Do one of the following. • Enable IP+MAC SAV.
deny vlan 10 count (0 packets) deny vlan 20 count (0 packets) Clearing the Number of SAV Dropped Packets To clear the number of SAV dropped packets, use the clear ip dhcp snooping source-addressvalidation discard-counters command. Dell>clear ip dhcp snooping source-address-validation discard-counters To clear the number of SAV dropped packets on a particular interface, use the clear ip dhcp snooping source-address-validation discard-counters interface interface command.
Equal Cost Multi-Path (ECMP) 15 Equal cost multi-path (ECMP) is supported on Dell Networking OS. ECMP for Flow-Based Affinity Flow-based affinity includes the following: • Link Bundle Monitoring Configuring the Hash Algorithm TeraScale has one algorithm that is used for link aggregation groups (LAGs), ECMP, and NH-ECMP, and ExaScale can use three different algorithms for each of these features. To adjust the ExaScale behavior to match TeraScale, use the following command.
Configuring the Hash Algorithm Seed Deterministic ECMP sorts ECMPs in order even though RTM provides them in a random order. However, the hash algorithm uses as a seed the lower 12 bits of the chassis MAC, which yields a different hash result for every chassis. This behavior means that for a given flow, even though the prefixes are sorted, two unrelated chassis can select different hops.
For link bundle monitoring with ECMP, the ecmp-group command is used to enable the link bundle monitoring feature. The ecmp-group with id 2, enabled for link bundle monitoring is user configured. This is different from the ecmp-group index 2 that is created by configuring routes and is automatically generated. These two ecmp-groups are not related in any way.
The range is from 1 to 64. 2. Add interfaces to the ECMP group bundle. CONFIGURATION ECMP-GROUP mode interface interface interface tengigabitethernet 1/1 interface port-channel 100 3. Enable the monitoring for the bundle. CONFIGURATION ECMP-GROUP mode link-bundle-monitor enable Modifying the ECMP Group Threshold You can customize the threshold percentage for monitoring ECMP group bundles. To customize the ECMP group bundle threshold and to view the changes, use the following commands.
FCoE Transit 16 The Fibre Channel over Ethernet (FCoE) Transit feature is supported on Ethernet interfaces. When you enable the switch for FCoE transit, the switch functions as a FIP snooping bridge. NOTE: FIP snooping is not supported on Fibre Channel interfaces or in a S4820T switch stack.
requirement for point-to-point connections by creating a unique virtual link for each connection between an FCoE end-device and an FCF via a transit switch. FIP provides functionality for discovering and logging into an FCF. After discovering and logging in, FIP allows FCoE traffic to be sent and received between FCoE end-devices (ENodes) and the FCF. FIP uses its own EtherType and frame format. The following illustration shows the communication that occurs between an ENode server and an FCoE switch (FCF).
Figure 39. FIP Discovery and Login Between an ENode and an FCF FIP Snooping on Ethernet Bridges In a converged Ethernet network, intermediate Ethernet bridges can snoop on FIP packets during the login process on an FCF. Then, using ACLs, a transit bridge can permit only authorized FCoE traffic to be transmitted between an FCoE end-device and an FCF. An Ethernet bridge that provides these functions is called a FIP snooping bridge (FSB).
FCoEgenerated ACLs These take precedence over user-configured ACLs. A user-configured ACL entry cannot deny FCoE and FIP snooping frames. The following illustration shows a switch used as a FIP snooping bridge in a converged Ethernet network. The top-of-rack (ToR) switch operates as an FCF for FCoE traffic. Converged LAN and SAN traffic is transmitted between the ToR switch and an S4820T switch.
• Allocate CAM resources for FCoE. • Perform FIP snooping (allowing and parsing FIP frames) globally on all VLANs or on a per-VLAN basis. • To assign a MAC address to an FCoE end-device (server ENode or storage device) after a server successfully logs in, set the FCoE MAC address prefix (FC-MAP) value an FCF uses. The FC-MAP value is used in the ACLs installed in bridge-to-bridge links on the switch.
• create the VLANs on the switch which handles FCoE traffic (use the interface vlan command). • configure each FIP snooping port to operate in Hybrid mode so that it accepts both tagged and untagged VLAN frames (use the portmode hybrid command). • configure tagged VLAN membership on each FIP snooping port that sends and receives FCoE traffic and has links with an FCF, ENode server, or another FIP snooping bridge (use the tagged port-type slot/port command).
fedgovacl : nlbclusteracl: 0 0 st-sjc-s5000-29# Enabling the FCoE Transit Feature The following sections describe how to enable FCoE transit. NOTE: FCoE transit is disabled by default. To enable this feature, you must follow the Configure FIP Snooping. As soon as you enable the FCoE transit feature on a switch-bridge, existing VLAN-specific and FIP snooping configurations are applied.
FCoE traffic is allowed on the port only after the switch learns the FC-MAP value associated with the specified FCF MAC address and verifies that it matches the configured FC-MAP value for the FCoE VLAN. Configure a Port for a Bridge-to-FCF Link If a port is directly connected to an FCF, configure the port mode as FCF. Initially, all FCoE traffic is blocked; only FIP frames are allowed to pass.
Configuring FIP Snooping You can enable FIP snooping globally on all FCoE VLANs on a switch or on an individual FCoE VLAN. By default, FIP snooping is disabled. To enable FCoE transit on the switch and configure the FCoE transit parameters on ports, follow these steps. 1. Configure FCoE. FCoE configuration: copy flash:/ CONFIG_TEMPLATE/ FCoE_DCB_Config running-config The configuration files are stored in the flash memory in the CONFIG_TEMPLATE file.
Command Output interface and MAC address, the FCF interface and MAC address, VLAN ID, FCoE MAC address and FCoE session ID number (FC-ID), worldwide node name (WWNN) and the worldwide port name (WWPN). show fip-snooping config Displays the FIP snooping status and configured FC-MAP values. show fip-snooping enode [enode-macaddress] Displays information on the ENodes in FIPsnooped sessions, including the ENode interface and MAC address, FCF MAC address, VLAN ID and FC-ID.
0e:fc:00:01:00:04 01:00:04 41:00:0e:fc:00:00:00:02 21:00:0e:fc:00:00:00:00 0e:fc:00:01:00:05 01:00:05 41:00:0e:fc:00:00:00:03 21:00:0e:fc:00:00:00:00 The following table describes the show fip-snooping sessions command fields. Table 25. show fip-snooping sessions Command Description Field Description ENode MAC MAC address of the ENode . ENode Interface Slot/port number of the interface connected to the ENode. FCF MAC MAC address of the FCF.
Field Description FC-ID Fibre Channel session ID assigned by the FCF. The following example shows the show fip-snooping fcf command. Dell# show fip-snooping fcf FCF MAC FCF Interface VLAN FC-MAP FKA_ADV_PERIOD No. of Enodes ------------------- ---- ------------------- ------------54:7f:ee:37:34:40 Po 22 100 0e:fc:00 4000 2 The following table describes the show fip-snooping fcf command fields. Table 27. show fip-snooping fcf Command Description Field Description FCF MAC MAC address of the FCF.
Dell# show fip-snooping statistics int tengigabitethernet 1/11 Number of Vlan Requests :1 Number of Vlan Notifications :0 Number of Multicast Discovery Solicits :1 Number of Unicast Discovery Solicits :0 Number of FLOGI :1 Number of FDISC :16 Number of FLOGO :0 Number of Enode Keep Alive :4416 Number of VN Port Keep Alive :3136 Number of Multicast Discovery Advertisement :0 Number of Unicast Discovery Advertisement :0 Number of FLOGI Accepts :0 Number of FLOGI Rejects :0 Number of FDISC Accepts :0 Number of
Field Description Number of Unicast Discovery Solicits Number of FIP-snooped unicast discovery solicit frames received on the interface. Number of FLOGI Number of FIP-snooped FLOGI request frames received on the interface. Number of FDISC Number of FIP-snooped FDISC request frames received on the interface. Number of FLOGO Number of FIP-snooped FLOGO frames received on the interface. Number of ENode Keep Alives Number of FIP-snooped ENode keep-alive frames received on the interface.
FCFs Enodes Sessions : 1 : 2 : 17 The following example shows the show fip-snooping vlan command. Dell# show fip-snooping vlan * = Default VLAN VLAN ---*1 100 FC-MAP -----0X0EFC00 FCFs ---1 Enodes -----2 Sessions -------17 FCoE Transit Configuration Example The following illustration shows a switch used as a FIP snooping bridge for FCoE traffic between an ENode (server blade) and an FCF (ToR switch). The ToR switch operates as an FCF and FCoE gateway. Figure 41.
The following example shows how to configure FIP snooping on FCoE VLAN 10, on an FCF-facing port (1/5), on an ENode server-facing port (1/1), and to configure the FIP snooping ports as tagged members of the FCoE VLAN enabled for FIP snooping.
Enabling FIPS Cryptography 17 This chapter describes how to enable FIPS cryptography requirements on Dell Networking platforms. This feature provides cryptographic algorithms conforming to various FIPS standards published by the National Institute of Standards and Technology (NIST), a non-regulatory agency of the US Department of Commerce. FIPS mode is also validated for numerous platforms to meet the FIPS-140-2 standard for a software-based cryptographic module.
Enabling FIPS Mode To enable or disable FIPS mode, use the console port. Secure the host attached to the console port against unauthorized access. Any attempts to enable or disable FIPS mode from a virtual terminal session are denied. When you enable FIPS mode, the following actions are taken: • If enabled, the SSH server is disabled. • All open SSH and Telnet sessions, as well as all SCP and FTP file transfers, are closed.
Monitoring FIPS Mode Status To view the status of the current FIPS mode (enabled/disabled), use the following commands. • Use either command to view the status of the current FIPS mode. show fips status show system Examples of the show fips status and show system Commands The following example shows the show fips status command. Dell#show fips status FIPS Mode : Enabled for the system using the show system command. The following example shows the show system command.
• New 1024–bit RSA and RSA1 host key-pairs are created. To disable FIPS mode, use the following command. • To disable FIPS mode from a console port. CONFIGURATION mode no fips mode enable The following Warning message displays: WARNING: Disabling FIPS mode will close all SSH/Telnet connections, restart those servers, and destroy all configured host keys.
18 Force10 Resilient Ring Protocol (FRRP) FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses. FRRP is similar to what can be achieved with the spanning tree protocol (STP), though even with optimizations, STP can take up to 50 seconds to converge (depending on the size of network and node of failure) may require 4 to 5 seconds to reconverge.
The Member VLAN is the VLAN used to transmit data as described earlier. The Control VLAN is used to perform the health checks on the ring. The Control VLAN can always pass through all ports in the ring, including the secondary port of the Master node. Ring Status The ring failure notification and the ring status checks provide two ways to ensure the ring remains up and active in the event of a switch or port failure.
Multiple FRRP Rings Up to 255 rings are allowed per system and multiple rings can be run on one system. More than the recommended number of rings may cause interface instability. You can configure multiple rings with a single switch connection; a single ring can have multiple FRRP groups; multiple rings can be connected with a common link. The platform supports up to 32 rings on a system (including stacked units).
Concept Explanation Control VLAN Each ring has a unique Control VLAN through which tagged ring health frames (RHF) are sent. Control VLANs are used only for sending RHF, and cannot be used for any other purpose. Member VLAN Each ring maintains a list of member VLANs. Member VLANs must be consistent across the entire ring. Port Role Each node has two ports for each ring: Primary and Secondary. The Master node Primary port generates RHFs. The Master node Secondary port receives the RHFs.
Concept Explanation There is no periodic transmission of TCRHFs. The TCRHFs are sent on triggered events of ring failure or ring restoration only. Implementing FRRP • FRRP is media and speed independent. • FRRP is a Dell proprietary protocol that does not interoperate with any other vendor. • You must disable the spanning tree protocol (STP) on both the Primary and Secondary interfaces before you can enable FRRP. • All ring ports must be Layer 2 ports.
Configuring the Control VLAN Control and member VLANS are configured normally for Layer 2. Their status as control or member is determined at the FRRP group commands. For more information about configuring VLANS in Layer 2 mode, refer to Layer 2. Be sure to follow these guidelines: • All VLANS must be in Layer 2 mode. • You can only add ring nodes to the VLAN. • A control VLAN can belong to one FRRP group only. • Tag control VLAN ports.
VLAN ID: The VLAN identification of the control VLAN. 4. Configure the Master node. CONFIG-FRRP mode. mode master 5. Identify the Member VLANs for this FRRP group. CONFIG-FRRP mode. member-vlan vlan-id {range} VLAN-ID, Range: VLAN IDs for the ring’s member VLANS. 6. Enable FRRP. CONFIG-FRRP mode. no disable Configuring and Adding the Member VLANs Control and member VLANS are configured normally for Layer 2. Their status as Control or Member is determined at the FRRP group commands.
interface primary interface slot/port secondary interface slot/port controlvlan vlan id Interface: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Slot/Port, Range: Slot and Port ID for the interface. Range is entered Slot/Port-PortSlot/Port. VLAN ID: Identification number of the Control VLAN. 4. Configure a Transit node. CONFIG-FRRP mode.
EXEC PRIVELEGED mode. clear frrp Viewing the FRRP Configuration To view the configuration for the FRRP group, use the following command. • Show the configuration for this FRRP group. CONFIG-FRRP mode. show configuration Viewing the FRRP Information To view general FRRP information, use one of the following commands. • Show the information for the identified FRRP group. EXEC or EXEC PRIVELEGED mode. show frrp ring-id • Ring ID: the range is from 1 to 255. Show the state of all FRRP groups.
switchport no shutdown ! interface TenGigabitEthernet 1/34 no ip address switchport no shutdown ! interface Vlan 101 no ip address tagged TenGigabitEthernet 1/24,34 no shutdown ! interface Vlan 201 no ip address tagged TenGigabitEthernet 1/24,34 no shutdown ! protocol frrp 101 interface primary TenGigabitEthernet 1/24 secondary TenGigabitEthernet 1/34 control-vlan 101 member-vlan 201 mode master no disable Example of R2 TRANSIT interface TenGigabitEthernet 2/14 no ip address switchport no shutdown ! interf
no shutdown ! interface Vlan 101 no ip address tagged TenGigabitEthernet 3/14,21 no shutdown ! interface Vlan 201 no ip address tagged TenGigabitEthernet 3/14,21 no shutdown ! protocol frrp 101 interface primary TenGigabitEthernet 3/21 secondary TenGigabitEthernet 3/14 control-vlan 101 member-vlan 201 mode transit no disable Force10 Resilient Ring Protocol (FRRP) 371
19 GARP VLAN Registration Protocol (GVRP) GARP VLAN registration protocol (GVRP) is supported on Dell Networking OS. Typical virtual local area network (VLAN) implementation involves manually configuring each Layer 2 switch that participates in a given VLAN. GVRP, defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches. GVRP-compliant switches use GARP to register and de-register attribute values, such as VLAN IDs, with each other.
Configure GVRP To begin, enable GVRP. To facilitate GVRP communications, enable GVRP globally on each switch. Then, GVRP configuration is per interface on a switch-by-switch basis. Enable GVRP on each port that connects to a switch where you want GVRP information exchanged. In the following example, that type of port is referred to as a VLAN trunk port, but it is not necessary to specifically identify to the Dell Networking OS that the port is a trunk port. Figure 42.
• Configure a GARP Timer Enabling GVRP Globally To configure GVRP globally, use the following command. • Enable GVRP for the entire switch. CONFIGURATION mode gvrp enable Example of Configuring GVRP Dell(conf)#protocol gvrp Dell(config-gvrp)#no disable Dell(config-gvrp)#show config ! protocol gvrp no disable Dell(config-gvrp)# To inspect the global configuration, use the show gvrp brief command. Enabling GVRP on a Layer 2 Interface To enable GVRP on a Layer 2 interface, use the following command.
not be unconfigured when it receives a Leave PDU. Therefore, the registration mode on that interface is FIXED. • Forbidden Mode — Disables the port to dynamically register VLANs and to propagate VLAN information except information about VLAN 1. A port with forbidden registration type thus allows only VLAN 1 to pass through even though the PDU carries information for more VLANs.
LeaveAll Timer Dell(conf)# 5000 Dell Networking OS displays this message if an attempt is made to configure an invalid GARP timer: Dell(conf)#garp timers join 300 % Error: Leave timer should be >= 3*Join timer. RPM Redundancy The current version of Dell Networking OS supports 1+1 hitless route processor module (RPM) redundancy. The primary RPM performs all routing, switching, and control operations while the standby RPM monitors the primary RPM.
20 High Availability (HA) High availability (HA) is supported on Dell Networking OS. HA is a collection of features that preserves system continuity by maximizing uptime and minimizing packet loss during system disruptions. To support all the features within the HA collection, you should have the latest boot code. The following table lists the boot code requirements as of this Dell Networking OS release. Table 29. Boot Code Requirements Component Boot Code S4820T 1 2.0.
• RPM Synchronization Boot the Chassis with a Single RPM You can boot the chassis with one RPM and later add a second RPM, which automatically becomes the standby RPM. Dell Networking OS displays the following message when the standby RPM is online. %RPM-2-MSG:CP0 %POLLMGR-2-ALT_RPM_STATE: Alternate RPM is present %IRC-6-IRC_COMMUP: Link to peer RPM is up %RAM-6-RAM_TASK: RPM1 is in Standby State.
* * This RPM -> 7.4.2.0 * Peer RPM -> 7.4.1.0 * ************************************************ 00:00:12: Different 00:00:12: 00:00:14: %RPM0-U:CP %IRC-4-IRC_VERSION: Current RPM 7.4.2.0 Peer RPM 7.4.1.0 software version detected %RPM0-U:CP %IRC-6-IRC_COMMUP: Link to peer RPM is up %RPM0-U:CP %RAM-6-ELECTION_ROLE: RPM0 is transitioning to Primary RPM. Example of Boot Failure on Standby RPM System failed to boot up.
Stack Unit Config: Start-up Config: Runtime Event Log: Running Config: ACL Mgr: LACP: STP: SPAN: no no no no no no no no block sync done block sync done block sync done block sync done block sync done block sync done block sync done block sync done Dell# Support for RPM Redundancy by Dell Networking OS Version Dell Networking OS supports increasing levels of RPM redundancy (warm and hot) as described in the table below. Table 31.
Forcing an Stack Unit Failover To force an Stack unit failover, use the following command. Use this feature when you are replacing a stack unit and when you are performing a warm upgrade. • To trigger a stack unit failover. EXEC Privilege mode redundancy force-failover stack-unit Example of the redundancy force-failover stack-unit Command Dell#redundancy force-failover stack-unit System configuration has been modified.
Online Insertion and Removal You can add, replace, or remove chassis components while the chassis is operating. This section contains the following sub-sections: • • RPM Online Insertion and Removal Linecard Online Insertion and Removal RPM Online Insertion and Removal Dell Networking systems are functional with only one RPM. If you insert a second RPM, it comes online as the standby RPM. To see SFM status information, use the show sfm all command.
0 online online [output omitted] E48VB E48VB 7-5-1-71 48 Dell(conf)#%RPM0-P:CP %CHMGR-2-CARD_DOWN: Line card 0 down - card removed Dell(conf)#do show linecard all -- Line cards -Slot Status NxtBoot ReqTyp CurTyp Version Ports --------------------------------------------------------------------------0 not present E48VB [output omitted] Pre-Configuring a Stack Unit Slot You may also pre-configure an empty stack unit slot with a logical stack unit.
Standby stack units such that, in the event of a stack unit failover, it is not necessary to notify the remote systems of a local state change. Hitless behavior is defined in the context of a stack unit failover only. • Only failovers via the CLI are hitless. The system is not hitless in any other scenario. Hitless protocols are compatible with other hitless and graceful restart protocols.
Failure and Event Logging Dell Networking systems provide multiple options for logging failures and events. Trace Log Developers interlace messages with software code to track the execution of a program. These messages are called trace messages and are primarily used for debugging and to provide lowerlevel information then event messages, which system administrators primarily use.
Process Restartability Process restartability is an extension to the Dell Networking OS high availability system component that enables application processes and system protocol tasks to be restarted. This extension increases system reliability and uptime by attempting to restart the crashed process on primary RPM before executing the failover procedure as a last resort. Currently, if a software exception occurs, Dell Networking OS executes a failover procedure.
forward. This means that the next time the crashed process does NOT restart but failover to the standby RPM if it is on a dual RPM environment and rebooted if it is on a single RPM.
Internet Group Management Protocol (IGMP) 21 Internet group management protocol (IGMP) is supported on Dell Networking OS. Multicast is premised on identifying many hosts by a single destination IP address; hosts represented by the same IP address are a multicast group. IGMP is a Layer 3 multicast protocol that hosts use to join or leave a multicast group.
Figure 43. IGMP Messages in IP Packets Join a Multicast Group There are two ways that a host may join a multicast group: it may respond to a general query from its querier or it may send an unsolicited report to its querier. Responding to an IGMP Query The following describes how a host can join a multicast group. 1. One router on a subnet is elected as the querier. The querier periodically multicasts (to all-multicastsystems address 224.0.0.1) a general query to all hosts on the subnet. 2.
response, the querier removes the group from the list associated with forwarding port and stops forwarding traffic for that group to the subnet. IGMP Version 3 Conceptually, IGMP version 3 behaves the same as version 2. However, there are differences. • Version 3 adds the ability to filter by multicast source, which helps multicast routing protocols avoid forwarding traffic to subnets where there are no interested receivers.
Figure 45. IGMP Version 3–Capable Multicast Routers Address Structure Joining and Filtering Groups and Sources The following illustration shows how multicast routers maintain the group and source information from unsolicited reports. 1. The first unsolicited report from the host indicates that it wants to receive traffic for group 224.1.1.1. 2. The host’s second report indicates that it is only interested in traffic from group 224.1.1.1, source 10.11.1.1.
Figure 46. Membership Reports: Joining and Filtering Leaving and Staying in Groups The following illustration shows how multicast routers track and refresh state changes in response to group-and-specific and general queries. 1. Host 1 sends a message indicating it is leaving group 224.1.1.1 and that the included filter for 10.11.1.1 and 10.11.1.2 are no longer necessary. 2.
Figure 47. Membership Queries: Leaving and Staying Configure IGMP Configuring IGMP is a two-step process. 1. Enable multicast routing using the ip multicast-routing command. 2. Enable a multicast routing protocol.
• Designating a Multicast Router Interface Viewing IGMP Enabled Interfaces Interfaces that are enabled with PIM-SM are automatically enabled with IGMP. To view IGMP-enabled interfaces, use the following command. • View IGMP-enabled interfaces. EXEC Privilege mode show ip igmp interface Example of the show ip igmp interface Command Dell#show ip igmp interface TenGigabitEthernet 3/10 Inbound IGMP access group is not set Internet address is 165.87.34.
IGMP querying router is 1.1.1.1 (this system) IGMP version is 3 Viewing IGMP Groups To view both learned and statically configured IGMP groups, use the following command. • View both learned and statically configured IGMP groups. EXEC Privilege mode show ip igmp groups Example of the show ip igmp groups Command Dell# show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface 225.1.1.1 TenGigabitEthernet 1/1 225.1.2.
INTERFACE mode • ip igmp query-interval Adjust the maximum response time. INTERFACE mode • ip igmp query-max-resp-time Adjust the last member query interval. INTERFACE mode ip igmp last-member-query-interval Enabling IGMP Immediate-Leave If the querier does not receive a response to a group-specific or group-and-source query, it sends another (querier robustness value). Then, after no response, it removes the group from the outgoing interface for the subnet.
• If IGMP snooping is enabled on a PIM-enabled VLAN interface, data packets using the router as an Layer 2 hop may be dropped. To avoid this scenario, Dell Networking recommends that users enable IGMP snooping on server-facing end-point VLANs only. Configuring IGMP Snooping Configuring IGMP snooping is a one-step process. To enable, view, or disable IGMP snooping, use the following commands. There is no specific configuration needed for IGMP snooping with virtual link trunking (VLT).
interface Vlan 100 no ip address ip igmp snooping fast-leave shutdown Dell(conf-if-vl-100)# Disabling Multicast Flooding If the switch receives a multicast packet that has an IP address of a group it has not learned (unregistered frame), the switch floods that packet out of all ports on the VLAN. When you configure the no ip igmp snooping flood command, the system drops the packets immediately. The system does not forward the frames on mrouter ports, even if they are present.
When enabled, IGMP snooping querier starts after one query interval in case no IGMP general query (with IP SA lower than its VLAN IP address) is received on any of its VLAN members. Adjusting the Last Member Query Interval To adjust the last member query interval, use the following command. When the querier receives a Leave message from a receiver, it sends a group-specific query out of the ports specified in the forwarding table. If no response is received, it sends another.
• Received in the management port with destination IP not equal to management IP address or management subnet broadcast address is dropped. Traffic (switch initiated management traffic or responses to switch-destined traffic with management port IP address as the source IP address) for user-specified management protocols must exit out of the management port.
Application Name Port Number Client Server 443 for secure httpd 8008 HTTP server port for confd application 8888 secure HTTP server port for confd application If you configure a source interface is for any EIS management application, EIS might not coexist with that interface and the behavior is undefined in such a case. You can configure the source interface for the following applications: FTP, ICMP (ping and traceroute utilities), NTP, RADIUS, TACACS, Telnet, TFTP, syslog, and SNMP traps.
• If SSH request is received on the management port destined to the management port IP address, the response to the request is sent out of the management port by performing a route lookup in the EIS routing table • If the SSH request is received on the front-end port destined for the front-end IP address, the response traffic is sent by doing a route lookup in the default routing table only. • If the management port is down or route lookup fails in the management EIS routing table, packets are dropped.
Handling of Switch-Initiated Traffic When the control processor (CP) initiates a control packet, the following processing occurs: • TCP/UDP port number is extracted from the sockaddr structure in the in_selectsrc call which is called as part of the connect system call or in the ip_output function.
response traffic and hence is sent out of the management port. In this case, the source IP address is a management port IP address only if the traffic was originally destined to the management port IP. • ICMP-based applications like ping and traceroute are exceptions to the preceding logic since we do not have TCP/UDP port number. So if source IP address of the packet matches the management port IP address EIS route lookup is done.
Table 33. Mapping of Management Applications and Traffic Type Traffic type / Application type Switch initiated traffic Switch-destined traffic Transit Traffic EIS Management Application Management is the preferred egress port selected based on route lookup in EIS table. If the management port is down or the route lookup fails, packets are dropped.
resolved, and so on), and if the destination is reachable through a data port, then the management application traffic is sent out through the front-end data port. This fallback mechanism is required. 2. Non-Management Applications (Applications that are not configured as management applications as defined by this feature): Non-management application traffic exits out of either front-end data port or management port based on routing table.
Behavior of Various Applications for Switch-Destined Traffic This section describes the different system behaviors that occur when traffic is terminated on the switch. Traffic has not originated from the switch and is not transiting the switch. Switch-destined traffic is applicable only for applications which act as server for the TCP session and also for ICMP-based applications like ping and traceroute. FTP, SSH, and Telnet are the applications that can function as servers for the TCP session.
VLT feature is for the front-end port only. Because this feature is specific to the management port, this feature can coexist with VLT and nothing specific needs to be done in this feature to handle VLT scenario. DHCP • If DHCP Client is enabled on the management port, a management default route is installed to the switch. • If management EIS is enabled, this default route is added to the management EIS routing table and the default routing table.
Interfaces 22 This chapter describes interface types, both physical and logical, and how to configure them with Dell Networking Operating System (OS). • 10 Gigabit Ethernet / 40 Gigabit Ethernet interfaces are supported on the S4820T platform.
Interface Types The following table describes different interface types.
Hardware is Force10Eth, address is 00:01:e8:05:f3:6a Current address is 00:01:e8:05:f3:6a Pluggable media present, XFP type is 10GBASE-LR. Medium is MultiRate, Wavelength is 1310nm XFP receive power reading is -3.7685 Interface index is 67436603 Internet address is 65.113.24.
interface TenGigabitEthernet 2/7 no ip address shutdown ! interface TenGigabitEthernet 2/8 no ip address shutdown ! interface TenGigabitEthernet 2/9 no ip address shutdown Enabling a Physical Interface After determining the type of physical interfaces available, to enable and configure the interfaces, enter INTERFACE mode by using the interface interface slot/port command. 1. Enter the keyword interface then the type of interface and slot/port information.
Configuration Task List for Physical Interfaces By default, all interfaces are operationally disabled and traffic does not pass through them.
Example of a Basic Layer 2 Interface Configuration Dell(conf-if)#show config ! interface Port-channel 1 no ip address switchport no shutdown Dell(conf-if)# Configuring Layer 2 (Interface) Mode To configure an interface in Layer 2 mode, use the following commands. • Enable the interface. INTERFACE mode • no shutdown Place the interface in Layer 2 (switching) mode. INTERFACE mode switchport To view the interfaces in Layer 2 mode, use the show interfaces switchport command in EXEC mode.
Dell(conf-if)#ip address 10.10.1.1 /24 % Error: Port is in Layer 2 mode Te 1/2. Dell(conf-if)# To determine the configuration of an interface, use the show config command in INTERFACE mode or the various show interface commands in EXEC mode. Configuring Layer 3 (Interface) Mode To assign an IP address, use the following commands. • Enable the interface. INTERFACE mode • no shutdown Configure a primary IP address and mask on the interface.
When you enable this feature, all management routes (connected, static, and default) are copied to the management EIS routing table. Use the management route command to add new management routes to the default and EIS routing tables. Use the show ip management-eis-route command to view the EIS routes. Important Points to Remember • • • • Deleting a management route removes the route from both the EIS routing table and the default routing table.
• The slot range is 0. Configure an IP address and mask on a Management interface. INTERFACE mode ip address ip-address mask – ip-address mask: enter an address in dotted-decimal format (A.B.C.D). The mask must be in / prefix format (/x). Viewing Two Global IPv6 Addresses Important Points to Remember — virtual-ip You can configure two global IPv6 addresses on the system in EXEC Privilege mode. To view the addresses, use the show interface managementethernet command, as shown in the following example.
CONFIGURATION mode command. When a virtual IP address is assigned to the system, the active management interface of the RPM is recognized by the virtual IP address — not by the actual interface IP address assigned to it. During an RPM failover, you do not have to remember the IP address of the new RPM’s management interface — the system still recognizes the virtual-IP address. • virtual-ip is a CONFIGURATION mode command.
Internet address is 10.11.131.240/23 [output omitted] Dell#show ip route Codes: C - connected, S - static, R - RIP, B - BGP, IN - internal BGP, EX - external BGP,LO - Locally Originated, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is 10.11.131.
! ip ip ip ip no ospf authentication-key force10 ospf cost 1 ospf dead-interval 60 ospf hello-interval 15 shutdown Loopback Interfaces A Loopback interface is a virtual interface in which the software emulates an interface. Packets routed to it are processed locally. Because this interface is not a physical interface, you can configure routing protocols on this interface to provide protocol stability. You can place Loopback interfaces in default Layer 3 mode.
• • • Port Channel Benefits Port Channel Implementation Configuration Tasks for Port Channel Interfaces Port Channel Definition and Standards Link aggregation is defined by IEEE 802.3ad as a method of grouping multiple physical interfaces into a single logical interface—a link aggregation group (LAG) or port channel. A LAG is “a group of links that appear to a MAC client as if they were a single link” according to IEEE 802.3ad. In Dell Networking OS, a LAG is referred to as a port channel interface.
at 1000 Mbps are kept up, and all 10/100/1000 interfaces that are not set to 1000 speed or auto negotiate are disabled. Dell Networking OS brings up 10/100/1000 interfaces that are set to auto negotiate so that their speed is identical to the speed of the first channel member in the port channel. 10/100/1000 Mbps Interfaces in Port Channels When both 10/100/1000 interfaces and GigE interfaces are added to a port channel, the interfaces must share a common speed.
Creating a Port Channel You can create up to 512 port channels with up to 16 port members per group on the platform. To configure a port channel, use the following commands. 1. Create a port channel. CONFIGURATION mode interface port-channel id-number 2. Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown After you enable the port channel, you can place it in Layer 2 or Layer 3 mode.
INTERFACE PORT-CHANNEL mode channel-member interface The interface variable is the physical interface type and slot/port information. 2. Double check that the interface was added to the port channel. INTERFACE PORT-CHANNEL mode show config Examples of the show interfaces port-channel Commands To view the port channel’s status and channel members in a tabular format, use the show interfaces port-channel brief command in EXEC Privilege mode, as shown in the following example.
sends protocol data units (PDUs). An asterisk in the show interfaces port-channel brief command indicates the primary port. As soon as a physical interface is added to a port channel, the properties of the port channel determine the properties of the physical interface. The configuration and status of the port channel are also applied to the physical interfaces within the port channel.
Dell(conf-if-po-3)#sho conf ! interface Port-channel 3 no ip address channel-member TenGigabitEthernet 1/8 shutdown Dell(conf-if-po-3)# Configuring the Minimum Oper Up Links in a Port Channel You can configure the minimum links in a port channel (LAG) that must be in “oper up” status to consider the port channel to be in “oper up” status. To set the “oper up” status of your links, use the following command. • Enter the number of links in a LAG that must be in “oper up” status.
VLT tagged Name: TenGigabitEthernet 1/1 802.1QTagged: True Vlan membership: Q Vlans T 2-5,100,4010 Dell# Assigning an IP Address to a Port Channel You can assign an IP address to a port channel and use port channels in Layer 3 routing protocols. To assign an IP address, use the following command. • Configure an IP address and mask on the interface. INTERFACE mode ip address ip-address mask [secondary] – ip-address mask: enter an address in dotted-decimal format (A.B.C.D).
NOTE: Hash-based load-balancing on multi-protocol label switching (MPLS) does not work when you enable packet-based hashing (load-balance ip-selection packet-based). Load-Balancing Method For LAG hashing on the source IP, destination IP, source transmission control protocol (TCP)/user datagram protocol (UDP) port, and destination TCP/UDP port are used for hash computation by default. For packets without a Layer 3 header, Dell Networking OS automatically uses load-balance mac source-dest-mac.
hash-algorithm | [ecmp{crc16|crc16cc|crc32LSB|crc32MSB|crc-upper|dest-ip |lsb |xor1| xor2| xor4| xor8| xor16}|lag{crc16|crc16cc|crc32LSB|crc32MSB|xor1| xor2|xor4|xor8|xor16}| seed ] • For more information about algorithm choices, refer to the command details in the IP Routing chapter of the Dell Networking OS Command Reference Guide. Change the Hash algorithm seed value to get better hash value Hash seed is used to compute the hash value. By default hash seed is chassis MAC 32 bits.
Bulk Configuration Bulk configuration allows you to determine if interfaces are present for physical interfaces or configured for logical interfaces. Interface Range An interface range is a set of interfaces to which other commands may be applied and may be created if there is at least one valid interface within the range. Bulk configuration excludes from configuration any non-existing interfaces from an interface range.
Create a Multiple-Range The following is an example of multiple range. Example of the interface range Command (Multiple Ranges) Dell(conf)#interface range tengigabitethernet 1/5 - 10 , tengigabitethernet 1/1 , vlan 1 Dell(conf-if-range-te-1/1,te-1/5-10,vl-1)# Exclude Duplicate Entries The following is an example showing how duplicate entries are omitted from the interface-range prompt.
Add Ranges The following example shows how to use commas to add VLAN and port-channel interfaces to the range. Example of Adding VLAN and Port-Channel Interface Ranges Dell(config-if-range-te-1/1-2)# interface range Vlan 2 – 100 , Port 1 – 25 Dell(config-if-range-te-1/1-2-so-5/1-vl-2-100-po-1-25)# no shutdown Defining Interface Range Macros You can define an interface-range macro to automatically select a range of interfaces for configuration.
Monitoring and Maintaining Interfaces Monitor interface statistics with the monitor interface command. This command displays an ongoing list of the interface status (up/down), number of packets, traffic statistics, and so on. To view the interface’s statistics, use the following command. • View the interface’s statistics. EXEC Privilege mode Enter the type of interface and slot/port information: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
Output throttles: m l T q - 0 Change mode Page up Increase refresh interval Quit 0 pps 0 c - Clear screen a - Page down t - Decrease refresh interval q Dell# Maintenance Using TDR The time domain reflectometer (TDR) is supported on all Dell Networking switch/routers. TDR is an assistance tool to resolve link issues that helps detect obvious open or short conditions within any of the four copper pairs. TDR sends a signal onto the physical cable and examines the reflection of the signal that returns.
To split a single 40G port into four 10G ports, use the following command. • Split a single 40G port into four 10G ports. CONFIGURATION mode stack-unit stack-unit port number portmode quad – stack-unit: enter the stack member unit identifier of the stack member to reset. The range is from 0 to 11 – number: enter the port number of the 40G port to be split. The range is from 0 to 47 for 10G ports and 48, 52, 56 and 60 for 40G ports.
NOTE: Although it is possible to configure the remaining three 10 Gigabit ports, the Link UP event does not occur for these ports leaving the lanes unusable. Dell Networking OS perceives these ports to be in a Link Down state. You must not try to use these remaining three 10 Gigabit ports for actual data transfer or for any other related configurations. NOTE: Trident2 chip sets do not work at 1G speeds with auto-negotiation enabled.
For these configurations, the following examples show the command output that the show interfaces tengigbitethernet transceiver, show interfaces tengigbitethernet, and show inventory media commands displays: Dell#show interfaces tengigabitethernet 0/0 transceiver SFP+ 0 Serial ID Base Fields SFP+ 0 Id = 0x0d SFP+ 0 Ext Id = 0x00 SFP+ 0 Connector = 0x23 SFP+ 0 Transceiver Code = 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00 SFP+ 0 Encoding = 0x00 ……………… ……………… SFP+ 0 Diagnostic Information ========================
SFP 0 Temp High Alarm threshold SFP 0 Voltage High Alarm threshold SFP 0 Bias High Alarm threshold = 0.000C = 0.000V = 0.000mA NOTE: In the following show interfaces tengigbitethernet transceiver commands, the ports 5,6, and 7 are inactive and no physical SFP or SFP+ connection actually exists on these ports. However, Dell Networking OS still perceives these ports as valid and the output shows that pluggable media (optical cables) is inserted into these ports.
QSFP 0 Encoding = 0x00 ……………… ……………… QSFP 0 Diagnostic Information =================================== QSFP 0 Rx Power measurement type = OMA =================================== QSFP 0 Temp High Alarm threshold = 0.000C QSFP 0 Voltage High Alarm threshold = 0.000V QSFP 0 Bias High Alarm threshold = 0.
Dell#show interfaces tengigabitethernet 0/6 gigabitethernet 0/0 is up, line protocol is down Hardware is DellEth, address is 90:b1:1c:f4:9a:fa Current address is 90:b1:1c:f4:9a:fa Pluggable media present, SFP type is 1GBASE …………………… LineSpeed 1000 Mbit Dell#show interfaces tengigabitethernet 0/7 gigabitethernet 0/0 is up, line protocol is down Hardware is DellEth, address is 90:b1:1c:f4:9a:fa Current address is 90:b1:1c:f4:9a:fa Pluggable media present, SFP type is 1GBASE …………………… LineSpeed 1000 Mbit Dell#s
Error-Disabled state and for all practical purposes of routing, the interface is deemed to be “down.” After the interface becomes stable and the penalty decays below a certain threshold, the interface comes up again and the routing protocols re-converge. Link dampening: • reduces processing on the CPUs by reducing excessive interface flapping. • improves network stability by penalizing misbehaving interfaces and redirecting traffic.
Clearing Dampening Counters To clear dampening counters and accumulated penalties, use the following command. • Clear dampening counters. clear dampening Example of the clear dampening Command Dell# clear dampening interface Te 1/1 Dell# show interfaces dampening TenGigabitEthernet1/1 InterfaceStateFlapsPenaltyHalf-LifeReuseSuppressMax-Sup Te 1/1Up00205001500300 Link Dampening Support for XML View the output of the following show commands in XML by adding | display xml to the end of the command.
The link bundle utilization is calculated as the total bandwidth of all links divided by the total bytes-persecond of all links. If you enable monitoring, the utilization calculation is performed when the utilization of the link-bundle (not a link within a bundle) exceeds 60%. To enable and view link bundle monitoring, use the following commands. • Enable link bundle monitoring. ecmp-group • View all LAG link bundles being monitored.
command, enable the interface using the no shutdown command, and use the show interface command to verify the changes. Enabling Pause Frames Enable Ethernet pause frames flow control on all ports on a chassis or a line card. If not, the system may exhibit unpredictable behavior. NOTE: Changes in the flow-control values may not be reflected automatically in the show interface output.
Layer 2 Overhead Difference Between Link MTU and IP MTU Untagged Packet with VLAN-Stack Header 22 bytes Tagged Packet with VLAN-Stack Header 26 bytes Link MTU and IP MTU considerations for port channels and VLANs are as follows. Port Channels: • All members must have the same link MTU value and the same IP MTU value. • The port channel link MTU and IP MTU must be less than or equal to the link MTU and IP MTU values configured on the channel members.
NOTE: As a best practice, Dell Networking recommends keeping auto-negotiation enabled. Only disable auto-negotiation on switch ports that attach to devices not capable of supporting negotiation or where connectivity issues arise from interoperability issues. For 10/100/1000 Ethernet interfaces, the negotiation auto command is tied to the speed command. Auto-negotiation is always enabled when the speed command is set to 1000 or auto.
Example of the show interfaces status Command to View Link Status NOTE: The show interfaces status command displays link status, but not administrative status. For both link and administrative status, use the show ip interface [interface | brief | linecard slot-number] [configuration] command.
forced-slave Force port to slave mode Dell(conf-if-te-1/1)# Dell(conf)# int gigabitethernet 1/1 Dell(conf-if-gi-1/1)#neg auto Dell(conf-if-gi-1/1)# ? end Exit from configuration mode exit Exit from autoneg configuration mode mode Specify autoneg mode no Negate a command or set its defaults show Show autoneg configuration information Dell(conf-if-gi-1/1)#mode ? forced-master Force port to master mode forced-slave Force port to slave mode Dell(conf-if-gi-1/1)# For details about the speed, duplex, and negotiat
In EXEC mode, the show interfaces switchport command displays only interfaces in Layer 2 mode and their relevant configuration information. The show interfaces switchport command displays the interface, whether it supports IEEE 802.1Q tagging or not, and the VLANs to which the interface belongs. Dell#show interfaces switchport Name: TenGigabitEthernet 3/1 802.1QTagged: True Vlan membership: Vlan 2 Name: TenGigabitEthernet 3/2 802.1QTagged: True Vlan membership: Vlan 2 Name: TenGigabitEthernet 3/3 802.
Input 0 IP Packets, 0 Vlans 0 MPLS 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts Received 0 input symbol errors, 0 runts, 0 giants, 0 throttles 0 CRC, 0 IP Checksum, 0 overrun, 0 discarded 0 packets output, 0 bytes, 0 underruns Output 0 Multicasts, 0 Broadcasts, 0 Unicasts 0 IP Packets, 0 Vlans, 0 MPLS 0 throttles, 0 discarded Rate info (interval 299 seconds): Input 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate Output 00.
• IP FLOW • IP ACL • IP FIB • L2 ACL • L2 FIB Clearing Interface Counters The counters in the show interfaces command are reset by the clear counters command. This command does not clear the counters any SNMP program captures. To clear the counters, use the following the command. • Clear the counters used in the show interface commands for all VRRP groups, VLANs, and physical interfaces or selected ones. Without an interface specified, the command clears all interface counters.
address-table static multicast-mac-address vlan vlan-id output-range interface command. Compressing Configuration Files The functionality to optimize and reduce the sizes of the configuration files is supported on the device. You can compress the running configuration by grouping all the VLANs and the physical interfaces with the same property.
shutdown ! ! Interface group TenGigabitEthernet 1/2 – 4 , TenGigabitEthernet 1/10 interface TenGigabitEthernet 1/2 no ip address shutdown ! interface TenGigabitEthernet 1/3 no ip address shutdown ! interface TenGigabitEthernet 1/4 no ip address shutdown ! interface TenGigabitEthernet 1/10 no ip address shutdown ! interface TenGigabitEthernet 1/34 ip address 2.1.1.1/16 shutdown ! interface Vlan 2 no ip address no shutdown no ip address shutdown ! interface TenGigabitEthernet 1/34 ip address 2.1.1.
! interface Vlan 4 tagged te 1/1 no ip address shutdown ! interface Vlan 5 tagged te 1/1 no ip address shutdown ! interface Vlan 100 no ip address no shutdown ! interface Vlan 1000 ip address 1.1.1.1/16 no shutdown Uncompressed config size – 52 lines write memory compressed The write memory compressed CLI will write the operating configuration to the startup-config file in the compressed mode. In stacking scenario, it will also take care of syncing it to all the standby and member units.
Internet Protocol Security (IPSec) 23 Internet protocol security (IPSec) is available on Dell Networking OS. IPSec is an end-to-end security scheme for protecting IP communications by authenticating and encrypting all packets in a communication session. Use IPSec between hosts, between gateways, or between hosts and gateways. IPSec is compatible with Telnet and FTP protocols. It supports two operational modes: Transport and Tunnel.
Configuring IPSec The following sample configuration shows how to configure FTP and telnet for IPSec. 1. Define the transform set. CONFIGURATION mode crypto ipsec transform-set myXform-seta esp-authentication md5 espencryption des 2. Define the crypto policy.
IPv4 Routing 24 IPv4 routing is supported on Dell Networking OS. The Dell Networking Operating System (OS) supports various IP addressing features. This chapter describes the basics of domain name service (DNS), address resolution protocol (ARP), and routing principles and their implementation in the Dell Networking OS.
• Assigning IP Addresses to an Interface (mandatory) • Configuring Static Routes (optional) • Configure Static Routes for the Management Interface (optional) For a complete listing of all commands related to IP addressing, refer to the Dell Networking OS Command Line Interface Reference Guide.
! no shutdown Configuring Static Routes A static route is an IP address that you manually configure and that the routing protocol does not learn, such as open shortest path first (OSPF). Often, static routes are used as backup routes in case other dynamically learned routes are unreachable. You can enter as many static IP addresses as necessary. To configure a static route, use the following command. • Configure a static IP address.
S 6.1.2.16/32 S 6.1.2.17/32 S 11.1.1.0/24 Direct, Lo 0 --More-- via 6.1.20.2, Te 5/1 via 6.1.20.2, Te 5/1 Direct, Nu 0 Dell#show ip route static Destination Gateway ----------------S 2.1.2.0/24 Direct, Nu 0 S 6.1.2.0/24 via 6.1.20.2, S 6.1.2.2/32 via 6.1.20.2, S 6.1.2.3/32 via 6.1.20.2, S 6.1.2.4/32 via 6.1.20.2, S 6.1.2.5/32 via 6.1.20.2, S 6.1.2.6/32 via 6.1.20.2, S 6.1.2.7/32 via 6.1.20.2, S 6.1.2.8/32 via 6.1.20.2, S 6.1.2.9/32 via 6.1.20.2, S 6.1.2.10/32 via 6.1.20.2, S 6.1.2.11/32 via 6.1.20.2, S 6.
address on subnet 2.2.2.0 and if 172.31.5.43 recursively resolves to 2.2.2.0, Dell Networking OS installs the static route. • When the interface goes down, Dell Networking OS withdraws the route. • When the interface comes up, Dell Networking OS re-installs the route. • When the recursive resolution is “broken,” Dell Networking OS withdraws the route. • When the recursive resolution is satisfied, Dell Networking OS re-installs the route.
two devices, mainly over a public network, depending on the network load and speed, and it is not a consistent value. The MTU size can also be different for various types of traffic sent from one host to the same endpoint. Path MTU discovery (PMTD) identifies the path MTU value between the sender and the receiver, and uses the determined value to transmit packets across the network. PMTD, as described in RFC 1191, denotes that the default byte size of an IP packet is 576.
Configuration mode to enable the ICMP error messages to be sent with the source interface IP address. This functionality is supported on loopback, VLAN, port channel, and physical interfaces for IPv4 and IPv6 messages. feature is not supported on tunnel interfaces. ICMP error relay, PATH MTU transmission, and fragmented packets are not supported for tunnel interfaces.
Resolution of Host Names Domain name service (DNS) maps host names to IP addresses. This feature simplifies such commands as Telnet and FTP by allowing you to enter a name instead of an IP address. Dynamic resolution of host names is disabled by default. Unless you enable the feature, the system resolves only host names entered into the host table with the ip host command. The following sections describe DNS and the resolution of host names.
Specifying the Local System Domain and a List of Domains If you enter a partial domain, Dell Networking OS can search different domains to finish or fully qualify that partial domain. A fully qualified domain name (FQDN) is any name that is terminated with a period/dot. Dell Networking OS searches the host table first to resolve the partial domain. The host table contains both statically configured and dynamically learnt host and IP addresses.
Dell#traceroute www.force10networks.com Translating "www.force10networks.com"...domain server (10.11.0.1) [OK] Type Ctrl-C to abort. ---------------------------------------------------------------------Tracing the route to www.force10networks.com (10.11.84.18), 30 hops max, 40 byte packets ---------------------------------------------------------------------TTL Hostname Probe1 Probe2 Probe3 1 10.11.199.190 001.000 ms 001.000 ms 002.000 ms 2 gwegress-sjc-02.force10networks.com (10.11.30.126) 005.000 ms 001.
Configuring Static ARP Entries ARP dynamically maps the MAC and IP addresses, and while most network host support dynamic mapping, you can configure an ARP entry (called a static ARP) for the ARP cache. To configure a static ARP entry, use the following command. • Configure an IP address and MAC address mapping for an interface. CONFIGURATION mode arp vrf vrf-name ip-address mac-address interface – vrf vrf-name: use the VRF option to configure a static ARP on that particular VRF.
EXEC privilege clear arp-cache [interface | ip ip-address] [no-refresh] – ip ip-address (OPTIONAL): enter the keyword ip then the IP address of the ARP entry you wish to clear. – no-refresh (OPTIONAL): enter the keywords no-refresh to delete the ARP entry from CAM. Or to specify which dynamic ARP entries you want to delete, use this option with interface or ip ip-address. – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
ARP Learning via ARP Request In Dell Networking OS versions prior to 8.3.1.0, Dell Networking OS learns via ARP requests only if the target IP specified in the packet matches the IP address of the receiving router interface. This is the case when a host is attempting to resolve the gateway address. If the target IP does not match the incoming interface, the packet is dropped. If there is an existing entry for the requesting host, it is updated. Figure 48.
requests increases. This time increase reduces the potential for the system to slow down while waiting for a multitude of ARP responses. To set and display ARP retries, use the following commands. • Set the number of ARP retries. CONFIGURATION mode arp retries number The default is 5. • The range is from 1 to 20. Set the exponential timer for resending unresolved ARPs. CONFIGURATION mode arp backoff-time The default is 30. • The range is from 1 to 3600.
• Set FTOS to create and send ICMP unreachable messages on the interface. INTERFACE mode ip unreachable To view if ICMP unreachable messages are sent on the interface, use the show config command in INTERFACE mode. If it is not listed in the show config command output, it is enabled. Only non-default information is displayed in the show config command output.
To view the interfaces and ports on which you enabled UDP helper, use the show ip udp-helper command from EXEC Privilege mode. Dell#show ip udp-helper -------------------------------------------------Port UDP port list -------------------------------------------------te 1/1 1000 Configuring a Broadcast Address To configure a broadcast address, use the following command. • Configure a broadcast address on an interface.
UDP Helper with Broadcast-All Addresses When the destination IP address of an incoming packet is the IP broadcast address, Dell Networking OS rewrites the address to match the configured broadcast address. In the following illustration: 1. Packet 1 is dropped at ingress if you did not configure UDP helper address. 2.
Packet 2 is sent from the host on VLAN 101. It has a broadcast MAC address and a destination IP address of 1.1.1.255. In this case, it is flooded on VLAN 101 in its original condition as the forwarding process is Layer 2. Figure 51. UDP Helper with Subnet Broadcast Addresses UDP Helper with Configured Broadcast Addresses Incoming packets with a destination IP address matching the configured broadcast address of any interface are forwarded to the matching interfaces.
UDP Helper with No Configured Broadcast Addresses The following describes UDP helper with no broadcast addresses configured. • If the incoming packet has a broadcast destination IP address, the unaltered packet is routed to all Layer 3 interfaces. • If the Incoming packet has a destination IP address that matches the subnet broadcast address of any interface, the unaltered packet is routed to the matching interfaces.
IPv6 Routing 25 Internet protocol version 6 (IPv6) routing is supported on Dell Networking OS. NOTE: The IPv6 basic commands are supported on all platforms. However, not all features are supported on all platforms, nor for all releases. To determine the Dell Networking Operating System (OS) version supporting which features and platforms, refer to Implementing IPv6 with Dell Networking OS. IPv6 is the successor to IPv4.
NOTE: As an alternative to stateless autoconfiguration, network hosts can obtain their IPv6 addresses using the dynamic host control protocol (DHCP) servers via stateful auto-configuration. NOTE: Dell Networking OS provides the flexibility to add prefixes on Router Advertisements (RA) to advertise responses to Router Solicitations (RS). By default, RA response messages are sent when an RS message is received. Dell Networking OS manipulation of IPv6 stateless autoconfiguration supports the router side only.
IPv6 Header Fields The 40 bytes of the IPv6 header are ordered, as shown in the following illustration. Figure 53. IPv6 Header Fields Version (4 bits) The Version field always contains the number 6, referring to the packet’s IP version. Traffic Class (8 bits) The Traffic Class field deals with any data that needs special handling. These bits define the packet priority and are defined by the packet Source. Sending and forwarding routers use this field to identify different IPv6 classes and priorities.
The following lists the Next Header field values. Value Description 0 Hop-by-Hop option header 4 IPv4 6 TCP 8 Exterior Gateway Protocol (EGP) 41 IPv6 43 Routing header 44 Fragmentation header 50 Encrypted Security 51 Authentication header 59 No Next Header 60 Destinations option header NOTE: This table is not a comprehensive list of Next Header field values. For a complete and current listing, refer to the Internet Assigned Numbers Authority (IANA) web page at .
However, if the Destination Address is a Hop-by-Hop options header, the Extension header is examined by every forwarding router along the packet’s route. The Hop-by-Hop options header must immediately follow the IPv6 header, and is noted by the value 0 (zero) in the Next Header field. Extension headers are processed in the order in which they appear in the packet header. Hop-by-Hop Options Header The Hop-by-Hop options header contains information that is examined by every router along the packet’s path.
of double colons is supported in a single address. Any number of consecutive 0000 groups may be reduced to two colons, as long as there is only one double colon used in an address. Leading and/or trailing zeros in a group can also be omitted (as in ::1 for localhost, 1:: for network addresses and :: for unspecified addresses). All the addresses in the following list are all valid and equivalent.
Implementing IPv6 with Dell Networking OS Dell Networking OS supports both IPv4 and IPv6 and both may be used simultaneously in your system. The following table lists the Dell Networking OS version in which an IPv6 feature became available for each platform. The sections following the table give greater detail about the feature. Feature and Functionality Dell Networking OS Release Introduction Documentation and Chapter Location S4820T Basic IPv6 Commands 8.3.
Feature and Functionality Dell Networking OS Release Introduction Documentation and Chapter Location S4820T IS-IS for IPv6 8.3.19 Intermediate System to Intermediate System IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. IS-IS for IPv6 support for redistribution 8.3.19 Intermediate System to Intermediate System IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. ISIS for IPv6 support for distribute lists and administrative distance 8.3.
Feature and Functionality Dell Networking OS Release Introduction Documentation and Chapter Location S4820T (outbound SSH) Layer 3 only Secure Shell (SSH) server support over IPv6 (inbound SSH) Layer 3 only 8.3.19 Secure Shell (SSH) Over an IPv6 Transport IPv6 Access Control Lists 8.3.19 IPv6 Access Control Lists in the Dell Networking OS Command Line Reference Guide. 8.3.19 IPv6 PIM in the Dell Networking OS Command Line Reference Guide.
Figure 54. Path MTU Discovery Process IPv6 Neighbor Discovery NDP is a top-level protocol for neighbor discovery on an IPv6 network. In lieu of address resolution protocol (ARP), NDP uses “Neighbor Solicitation” and “Neighbor Advertisement” ICMPv6 messages for determining relationships between neighboring nodes. Using these messages, an IPv6 device learns the link-layer addresses for neighbors known to reside on attached links, quickly purging cached values that become invalid.
Figure 55. NDP Router Redirect IPv6 Neighbor Discovery of MTU Packets You can set the MTU advertised through the RA packets to incoming routers, without altering the actual MTU setting on the interface. The ipv6 nd mtu command sets the value advertised to routers. It does not set the actual MTU rate. For example, if you set ipv6 nd mtu to 1280, the interface still passes 1500-byte packets, if that is what is set with the mtu command.
The DNS server address does not allow the following: • link local addresses • loopback addresses • prefix addresses • multicast addresses • invalid host addresses If you specify this information in the IPv6 RDNSS configuration, a DNS error is displayed. Example for Configuring an IPv6 Recursive DNS Server The following example configures a RDNNS server with an IPv6 address of 1000::1 and a lifetime of 1 second.
Displaying IPv6 RDNSS Information To display IPv6 interface information, including IPv6 RDNSS information, use the show ipv6 interface command in EXEC or EXEC Privilege mode. Examples of Displaying IPv6 RDNSS Information The following example displays IPv6 RDNSS information. The output in the last 3 lines indicates that the IPv6 RDNSS was correctly configured on interface te 1/1.
For SSH configuration details, refer to the Security chapter in the Dell Networking OS Command Line Interface Reference Guide. Configuration Tasks for IPv6 The following are configuration tasks for the IPv6 protocol.
• Provides information on FP groups allocated for the egress acl. CONFIGURATION mode show cam-acl-egress Allocate at least one group for L2ACL and IPv4 ACL. The total number of groups is 4. Assigning an IPv6 Address to an Interface Essentially, IPv6 is enabled in Dell Networking OS simply by assigning IPv6 addresses to individual router interfaces. You can use IPv6 and IPv4 together on a system, but be sure to differentiate that usage carefully.
– For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For a port channel interface, enter the keywords port-channel then a number. – For a Null interface, enter the keyword null then the Null interface number.
Example of show ipv6 Command Options Dell#show ipv6 ? accounting IPv6 accounting information cam IPv6 CAM Entries fib IPv6 FIB Entries interface IPv6 interface information mbgproutes MBGP routing table mld MLD information mroute IPv6 multicast-routing table neighbors IPv6 neighbor information ospf OSPF information pim PIM V6 information prefix-list List IPv6 prefix lists route IPv6 routing information rpf RPF table Dell# Showing an IPv6 Interface To view the IPv6 configuration for a specific interface, use
ff02::1:ff8b:386e ND MTU is 0 ICMP redirects are not sent DAD is enabled, number of DAD attempts: 3 ND reachable time is 32000 milliseconds ND base reachable time is 30000 milliseconds ND retransmit interval is 1000 milliseconds ND hop limit is 64 Showing IPv6 Routes To view the global IPv6 routing information, use the following command. • Show IPv6 routing information for the specified route type.
----------------------------------------------------C 600::/64 [0/0] Direct, Te 1/24, 00:34:42 C 601::/64 [0/0] Direct, Te 1/24, 00:34:18 C 912::/64 [0/0] Direct, Lo 2, 00:02:33 O IA 999::1/128 [110/2] via fe80::201:e8ff:fe8b:3166, Te 1/24, 00:01:30 L fe80::/10 [0/0] Direct, Nu 0, 00:34:42 Dell# The following example shows the show ipv6 route static command.
– *: all routes. – ipv6 address: the format is x:x:x:x::x. – mask: the prefix length is from 0 to 128. NOTE: IPv6 addresses are normally written as eight groups of four hexadecimal digits, where each group is separated by a colon (:). Omitting zeros is accepted as described in Addressing. Configuring IPv6 RA Guard The IPv6 Router Advertisement (RA) guard allows you to block or reject the unwanted router advertisement guard messages that arrive at the network device platform.
8. Enable verification of the advertised other configuration parameter. POLICY LIST CONFIGURATION mode other-config-flag {on | off} 9. Enable verification of the advertised default router preference value. The preference value must be less than or equal to the specified limit. POLICY LIST CONFIGURATION mode router-preference maximum {high | low | medium} 10. Set the router lifetime. POLICY LIST CONFIGURATION mode router—lifetime value The router lifetime range is from 0 to 9,000 seconds. 11.
other-config-flag on reachable-time 540 retrans-timer 101 router-preference maximum medium trusted-port Dell(conf-ra_guard_policy_list)# Configuring IPv6 RA Guard on an Interface 1. Configure the terminal to enter the Interface mode. CONFIGURATION mode interface interface-type slot/port 2. Apply the IPv6 RA guard to a specific interface. INTERFACE mode ipv6 nd ra-guard attach policy policy-name [vlan [vlan 1, vland 2, vlan 3.....]] 3.
iSCSI Optimization 26 iSCSI optimization is supported on Dell Networking OS. This chapter describes how to configure internet small computer system interface (iSCSI) optimization, which enables quality-of-service (QoS) treatment for iSCSI traffic.
• If you configure flow-control, iSCSI uses the current configuration. If you do not configure flowcontrol, iSCSI auto-configures flow control settings so that receive-only is enabled and transmit-only is disabled. . • iSCSI monitoring sessions — the switch monitors and tracks active iSCSI sessions in connections on the switch, including port information and iSCSI session information. • iSCSI QoS — A user-configured iSCSI class of service (CoS) profile is applied to all iSCSI traffic.
Monitoring iSCSI Traffic Flows The switch snoops iSCSI session-establishment and termination packets by installing classifier rules that trap iSCSI protocol packets to the CPU for examination. Devices that initiate iSCSI sessions usually use well-known TCP ports 3260 or 860 to contact targets. When you enable iSCSI optimization, by default the switch identifies IP packets to or from these ports as iSCSI traffic.
If more than 256 simultaneous sessions are logged continuously, the following message displays indicating the queue rate limit has been reached: %STKUNIT2-M:CP %iSCSI-5-ISCSI_OPT_MAX_SESS_EXCEEDED: New iSCSI Session Ignored: ISID 400001370000 InitiatorName - iqn.1991-05.com.microsoft:dt-brcd-cna-2 TargetName iqn.2001-05.com.equallogic:4-52aed6-b90d9446c-162466364804fa49-wj-v1 TSIH - 0" NOTE: If you are using EqualLogic or Compellent storage arrays, more than 256 simultaneous iSCSI sessions are possible.
Configuring Detection and Ports for Dell Compellent Arrays To configure a port connected to a Dell Compellent storage array, use the following command. • Configure a port connected to a Dell Compellent storage array. INTERFACE Configuration mode iscsi profile-compellent The command configures a port for the best iSCSI traffic conditions.
iSCSI optimization, which can turn on flow control again on reboot, use the no iscsi enable command and save the configuration. When you enable iSCSI on the switch, the following actions occur: • Link-level flow control is globally enabled, if it is not already enabled, and PFC is disabled. • iSCSI session snooping is enabled. • iSCSI LLDP monitoring starts to automatically detect EqualLogic arrays.
Parameter Default Value but can be removed as any other configured target. iSCSI session monitoring Disabled. The CAM allocation for iSCSI is set to zero (0). iSCSI Optimization Prerequisites The following are iSCSI optimization prerequisites. • iSCSI optimization requires LLDP on the switch. LLDP is enabled by default (refer to Link Layer Discovery Protocol (LLDP)). • iSCSI optimization requires configuring two ingress ACL groups The ACL groups are allocated after iSCSI Optimization is configured.
EXEC Privilege mode write memory 5. Reload the switch. EXEC Privilege mode reload After the switch is reloaded, DCB/ DCBx and iSCSI monitoring are enabled. 6. (Optional) Configure the iSCSI target ports and optionally the IP addresses on which iSCSI communication is monitored. CONFIGURATION mode [no] iscsi target port tcp-port-1 [tcp-port-2...tcp-port-16] [ip-address address] • tcp-port-n is the TCP port number or a list of TCP port numbers on which the iSCSI target listens to requests.
8. (Optional) Set the aging time for iSCSI session monitoring. CONFIGURATION mode [no] iscsi aging time time. The range is from 5 to 43,200 minutes. The default is 10 minutes. 9. (Optional) Configures DCBX to send iSCSI TLV advertisements. LLDP CONFIGURATION mode or INTERFACE LLDP CONFIGURATION mode [no] advertise dcbx-app-tlv iscsi. You can send iSCSI TLVs either globally or on a specified interface. The interface configuration takes priority over global configuration. The default is Enabled. 10.
Maximum number of connections is 256 -----------------------------------------------iSCSI Targets and TCP Ports: -----------------------------------------------TCP Port Target IP Address 3260 860 The following example shows the show iscsi session command. VLT PEER1 Dell#show iscsi session Session 0: ---------------------------------------------------------------------------------Target: iqn.2001-05.com.equallogic:0-8a0906-0e70c2002-10a0018426a48c94-iom010 Initiator: iqn.1991-05.com.
Intermediate System to Intermediate System 27 Intermediate system to intermediate system (Is-IS) is supported on Dell Networking OS. • • • • IS-IS is supported on the S4820T with Dell Networking OS 8.3(19.0). The IS-IS protocol is an interior gateway protocol (IGP) that uses a shortest-path-first algorithm. Dell Networking supports both IPv4 and IPv6 versions of IS-IS. The IS-IS protocol standards are listed in the Standards Compliance chapter.
The NET length is variable, with a maximum of 20 bytes and a minimum of 8 bytes. It is composed of the following: • area address — within your routing domain or area, each area must have a unique area value. The first byte is called the authority and format indicator (AFI). • system address — the router’s MAC address. • N-selector — this is always 0. The following illustration is an example of the ISO-style address to show the address format IS-IS uses. In this example, the first five bytes (47.0005.
Transition Mode All routers in the area or domain must use the same type of IPv6 support, either single-topology or multitopology. A router operating in multi-topology mode does not recognize the ability of the singletopology mode router to support IPv6 traffic, which leads to holes in the IPv6 topology.
A new TLV (the Restart TLV) is introduced in the IIH PDUs, indicating that the router supports graceful restart. Timers Three timers are used to support IS-IS graceful restart functionality. After you enable graceful restart, these timers manage the graceful restart process. There are three times, T1, T2, and T3. • The T1 timer specifies the wait time before unacknowledged restart requests are generated.
• Accepts external IPv6 information and advertises this information in the PDUs. The following table lists the default IS-IS values. Table 36.
Enabling IS-IS By default, IS-IS is not enabled. The system supports one instance of IS-IS. To enable IS-IS globally, create an IS-IS routing process and assign a NET address. To exchange protocol information with neighbors, enable IS-IS on an interface, instead of on a network as with other routing protocols. In IS-IS, neighbors form adjacencies only when they are same IS type. For example, a Level 1 router never forms an adjacency with a Level 2 router.
5. Enter an IPv6 Address. INTERFACE mode ipv6 address ipv6-address mask • • ipv6 address: x:x:x:x::x mask: The prefix length is from 0 to 128. The IPv6 address must be on the same subnet as other IS-IS neighbors, but the IP address does not need to relate to the NET address. 6. Enable IS-IS on the IPv4 interface. ROUTER ISIS mode ip router isis [tag] If you configure a tag variable, it must be the same as the tag variable assigned in step 1. 7. Enable IS-IS on the IPv6 interface.
IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: IS-IS: Dell# Level-2 LSPs sourced (new/refresh) : 0/0 Level-1 LSPs flooded (sent/rcvd) : 32/19 Level-2 LSPs flooded (sent/rcvd) : 32/17 Level-1 LSPs CSNPs (sent/rcvd) : 1538/0 Level-2 LSPs CSNPs (sent/rcvd) : 1534/0 Level-1 LSPs PSNPs (sent/rcvd) : 0/0 Level-2 LSPs PSNPs (sent/rcvd) : 0/0 Level-1 DR Elections : 2 Level-2 DR Elections : 2 Level-1 SPF Calculations : 29 Level-2 SPF Calculations : 29 LSP checksum errors receive
ROUTER ISIS AF IPV6 mode isis ipv6 metric metric-value [level-1 | level-2 | level-1-2] To configure wide or wide transition metric style, the cost can be between 0 and 16,777,215. Configuring IS-IS Graceful Restart To enable IS-IS graceful restart globally, use the following commands. Additionally, you can implement optional commands to enable the graceful restart settings. • Enable graceful restart on ISIS processes.
• Configure graceful restart timer T3 to set the time used by the restarting router as an overall maximum time to wait for database synchronization to complete. ROUTER-ISIS mode graceful-restart t3 {adjacency | manual seconds} – adjacency: the restarting router receives the remaining time value from its peer and adjusts its T3 value so if user has configured this option. – manual: allows you to specify a fixed value that the restarting router should use. The range is from 50 to 120 seconds.
Routing Protocol: IS-IS Circuit Type: Level-1-2 Interface Index 0x62cc03a, Local circuit ID 1 Level-1 Metric: 10, Priority: 64, Circuit ID: 0000.0000.000B.01 Hello Interval: 10, Hello Multiplier: 3, CSNP Interval: 10 Number of active level-1 adjacencies: 1 Level-2 Metric: 10, Priority: 64, Circuit ID: 0000.0000.000B.
Example of Viewing IS-IS Configuration (ROUTER ISIS Mode) To view the configuration, use the show config command in ROUTER ISIS mode or the show running-config isis command in EXEC Privilege mode. Dell#show running-config isis ! router isis lsp-refresh-interval 902 net 47.0005.0001.000C.000A.4321.00 net 51.0005.0001.000C.000A.4321.00 Dell# Configuring the IS-IS Metric Style All IS-IS links or interfaces are associated with a cost that is used in the shortest path first (SPF) calculations.
The default is narrow. The default is Level 1 and Level 2 (level-1–2) To view which metric types are generated and received, use the show isis protocol command in EXEC Privilege mode. The IS-IS matrixes settings are in bold. Example of Viewing IS-IS Metric Types Dell#show isis protocol IS-IS Router: System Id: EEEE.EEEE.EEEE IS-Type: level-1-2 Manual area address(es): 47.0004.004d.0001 Routing for area address(es): 21.2223.2425.2627.2829.3031.3233 47.0004.004d.
Metric Sytle Correct Value Range wide 0 to 16777215 narrow 0 to 63 wide transition 0 to 16777215 narrow transition 0 to 63 transition 0 to 63 To view the interface’s current metric, use the show config command in INTERFACE mode or the show isis interface command in EXEC Privilege mode. Configuring the Distance of a Route To configure the distance for a route, use the following command. • Configure the distance for a route.
eljefe.02-00 * 0x00000001 0x2E7F Force10.00-00 0x00000002 0xD1A7 IS-IS Level-2 Link State Database LSPID LSP Seq Num LSP Checksum B233.00-00 0x00000006 0xC38A eljefe.00-00 * 0x0000000D 0x51C6 eljefe.01-00 * 0x00000001 0x68DF eljefe.02-00 * 0x00000001 0x2E7F Force10.00-00 0x00000004 0xCDA9 1113 1102 0/0/0 0/0/0 LSP Holdtime 1124 1129 1122 1113 1107 ATT/P/OL 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 Dell# Controlling Routing Updates To control the source of IS-IS route information, use the following command.
– For a port channel interface, enter the keywords port-channel then a number. • – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. Apply a configured prefix list to all outgoing IPv4 IS-IS routes. ROUTER ISIS mode distribute-list prefix-list-name out [bgp as-number | connected | ospf process-id | rip | static] You can configure one of the optional parameters: – connected: for directly connected routes. – ospf process-id: for OSPF routes only. – rip: for RIP routes only.
– static: for user-configured routes. • – bgp: for BGP routes only. Deny RTM download for pre-existing redistributed IPv6 routes. ROUTER ISIS-AF IPV6 mode distribute-list redistributed-override in Redistributing IPv4 Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the IS-IS process. With the redistribute command syntax, you can include BGP, OSPF, RIP, static, or directly connected routes in the IS-IS process.
Redistributing IPv6 Routes To add routes from other routing instances or protocols, use the following commands. NOTE: These commands apply to IPv6 IS-IS only. To apply prefix lists to IPv4 routes, use the ROUTER ISIS mode previously shown. • Include BGP, directly connected, RIP, or user-configured (static) routes in IS-IS.
area-password [hmac-md5] password FTOS supports HMAC-MD5 authentication. • This password is inserted in Level 1 LSPs, Complete SNPs, and Partial SNPs. Set the authentication password for a routing domain. ROUTER ISIS mode domain-password [encryption-type | hmac-md5] password FTOS supports both DES and HMAC-MD5 authentication methods. This password is inserted in Level 2 LSPs, Complete SNPs, and Partial SNPs.
B233.00-00 eljefe.00-00 * eljefe.01-00 * eljefe.02-00 * Force10.00-00 Dell# 0x00000006 0x0000000E 0x00000001 0x00000001 0x00000004 0xC38A 0x53BF 0x68DF 0x2E7F 0xCDA9 1110 1196 1108 1099 1093 0/0/0 0/0/1 0/0/0 0/0/0 0/0/0 Debugging IS-IS To debug IS-IS processes, use the following commands. • View all IS-IS information. EXEC Privilege mode • debug isis View information on all adjacency-related activity (for example, hello packets that are sent and received).
– interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only. Dell Networking OS displays debug messages on the console. To view which debugging commands are enabled, use the show debugging command in EXEC Privilege mode. To disable a specific debug command, enter the keyword no then the debug command. For example, to disable debugging of IS-IS updates, use the no debug isis updates-packets command.
Maximum Values in the Routing Table IS-IS metric styles support different cost ranges for the route. The cost range for the narrow metric style is 0 to 1023, while all other metric styles support a range of 0 to 0xFE000000. Change the IS-IS Metric Style in One Level Only By default, the IS-IS metric style is narrow. When you change from one IS-IS metric style to another, the IS-IS metric value (configured with the isis metric command) could be affected.
Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value wide transition wide original value wide transition narrow default value (10) if the original value is greater than 63. A message is sent to the console. wide transition narrow transition default value (10) if the original value is greater than 63. A message is sent to the console.
Level-1 Metric Style Level-2 Metric Style Resulting Metric Value narrow narrow transition original value narrow transition original value wide narrow truncated value wide narrow transition truncated value wide wide transition original value wide transition truncated value narrow transition wide original value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value transition wide original value t
• Multi-topology — You must configure the IPv6 address. Configuring the IPv4 address is optional. You must enable the ipv6 router isis command on the interface. If you configure IPv4, also enable the router isis command. In router isis configuration mode, enable multi-topology under address-family ipv6 unicast. • Multi-topology Transition — You must configure the IPv6 address. Configuring the IPv4 address is optional. You must enable the ipv6 router isis command on the interface.
Dell (conf-if-te-3/17)#show config ! interface TenGigabitEthernet 3/17 ipv6 address 24:3::1/76 ipv6 router isis no shutdown Dell (conf-if-te-3/17)# Dell (conf-router_isis)#show config ! router isis net 34.0000.0000.AAAA.
28 Link Aggregation Control Protocol (LACP) Link aggregation control protocol (LACP) is supported on Dell Networking OS. Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic. The benefits and constraints are basically the same, as described in Port Channel Interfaces in the Interfaces chapter.
• There is a difference between the shutdown and no interface port-channel commands: – The shutdown command on LAG “xyz” disables the LAG and retains the user commands. However, the system does not allow the channel number “xyz” to be statically created. – The no interface port-channel channel-number command deletes the specified LAG, including a dynamically created LAG. This command removes all LACP-specific commands on the member interfaces.
• Configure LACP mode. LACP mode [no] port-channel number mode [active | passive | off] – number: cannot statically contain any links. • The default is LACP active. Configure port priority. LACP mode [no] lacp port-priority priority-value The range is from 1 to 65535 (the higher the number, the lower the priority). The default is 32768. LACP Configuration Tasks The following are LACP configuration tasks.
Configuring the LAG Interfaces as Dynamic After creating a LAG, configure the dynamic LAG interfaces. To configure the dynamic LAG interfaces, use the following command. • Configure the dynamic LAG interfaces. CONFIGURATION mode port-channel-protocol lacp Example of the port-channel-protocol lacp Command Dell(conf)#interface Gigabitethernet 3/15 Dell(conf-if-gi-3/15)#no shutdown Dell(conf-if-gi-3/15)#port-channel-protocol lacp Dell(conf-if-gi-3/15-lacp)#port-channel 32 mode active ...
Dell(conf-if-po-32)#switchport Dell(conf-if-po-32)#lacp long-timeout Dell(conf-if-po-32)#end Dell# show lacp 32 Port-channel 32 admin up, oper up, mode lacp Actor System ID: Priority 32768, Address 0001.e800.a12b Partner System ID: Priority 32768, Address 0001.e801.
Figure 59. Shared LAG State Tracking To avoid packet loss, redirect traffic through the next lowest-cost link (R3 to R4). Dell Networking OS has the ability to bring LAG 2 down if LAG 1 fails, so that traffic can be redirected. This redirection is what is meant by shared LAG state tracking. To achieve this functionality, you must group LAG 1 and LAG 2 into a single entity, called a failover group. Configuring Shared LAG State Tracking To configure shared LAG state tracking, you configure a failover group.
As shown in the following illustration, LAGs 1 and 2 are members of a failover group. LAG 1 fails and LAG 2 is brought down after the failure. This effect is logged by Message 1, in which a console message declares both LAGs down at the same time. Figure 60.
• • If a LAG that is part of a failover group is deleted, the failover group is deleted. If a LAG moves to the Down state due to this feature, its members may still be in the Up state. LACP Basic Configuration Example The screenshots in this section are based on the following example topology. Two routers are named ALPHA and BRAVO, and their hostname prompts reflect those names. Figure 61. LACP Basic Configuration Example Configure a LAG on ALPHA The following example creates a LAG on ALPHA.
ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:02:11 Queueing strategy: fifo Input statistics: 132 packets, 163668 bytes 0 Vlans 0 64-byte pkts, 12 over 64-byte pkts, 120 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 132 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics 136 packets, 16718 bytes, 0 underruns 0 64-byte pkts, 15 over 64-byte pkts, 121 over 127-byte pkts 0 over 255-by
Figure 63.
Figure 64.
interface GigabitEthernet 2/31 no ip address Summary of the LAG Configuration on Bravo Bravo(conf-if-gi-3/21)#int port-channel 10 Bravo(conf-if-po-10)#no ip add Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config ! interface Port-channel 10 no ip address switchport no shutdown ! Bravo(conf-if-po-10)#exit Bravo(conf)#int gig 3/21 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-gi-3/21)#port-channel-protocol lacp Bravo(conf-if-gi-3/2
Figure 65.
Figure 66.
Figure 67. Inspecting the LAG Status Using the show lacp command The point-to-point protocol (PPP) is a connection-oriented protocol that enables layer two links over various different physical layer connections. It is supported on both synchronous and asynchronous lines, and can operate in Half-Duplex or Full-Duplex mode. It was designed to carry IP traffic but is general enough to allow any type of network layer datagram to be sent over a PPP connection.
Layer 2 29 Layer 2 features are supported on Dell Networking OS. Manage the MAC Address Table Dell Networking OS provides the following management activities for the MAC address table. • Clearing the MAC Address Table • Setting the Aging Time for Dynamic Entries • Configuring a Static MAC Address • Displaying the MAC Address Table Clearing the MAC Address Table You may clear the MAC address table of dynamic entries. To clear a MAC address table, use the following command.
The range is from 10 to 1000000. Configuring a Static MAC Address A static entry is one that is not subject to aging. Enter static entries manually. To create a static MAC address entry, use the following command. • Create a static MAC address entry in the MAC address table. CONFIGURATION mode mac-address-table static Displaying the MAC Address Table To display the MAC address table, use the following command. • Display the contents of the MAC address table.
interface) before the system verifies that sufficient CAM space exists. If the CAM check fails, a message is displayed: %E90MH:5 %ACL_AGENT-2-ACL_AGENT_LIST_ERROR: Unable to apply access-list MacLimit on TenGigabitEthernet 4/24 In this case, the configuration is still present in the running-config and show output. Remove the configuration before re-applying a MAC learning limit with a lower value. Also, ensure that you can view the Syslog messages on your session.
mac learning-limit mac-address-sticky Using sticky MAC addresses allows you to associate a specific port with MAC addresses from trusted devices. If you enable sticky MAC, the specified port retains any dynamically-learned addresses and prevents them from being transferred or learned on other ports. If you configure mac-learning-limit and you enabled sticky MAC, all dynamically-learned addresses are converted to sticky MAC addresses for the selected port.
switchport mac learning-limit 1 dynamic no-station-move mac learning-limit station-move-violation log no shutdown Learning Limit Violation Actions To configure the system to take an action when the MAC learning limit is reached on an interface and a new address is received using one the following options with the mac learning-limit command, use the following commands. • Generate a system log message when the MAC learning limit is exceeded.
Recovering from Learning Limit and Station Move Violations After a learning-limit or station-move violation shuts down an interface, you must manually reset it. To reset the learning limit, use the following commands. NOTE: Alternatively, you can reset the interface by shutting it down using the shutdown command and then re-enabling it using the no shutdown command. • Reset interfaces in the ERR_Disabled state caused by a learning limit violation or station move violation.
When you use NIC teaming, consider that the server MAC address is originally learned on Port 0/1 of the switch (shown in the following) and Port 0/5 is the failover port. When the NIC fails, the system automatically sends an ARP request for the gateway or host NIC to resolve the ARP and refresh the egress interface. When the ARP is resolved, the same MAC address is learned on the same port where the ARP is resolved (in the previous example, this location is Port 0/5 of the switch).
Apply all other configurations to each interface in the redundant pair such that their configurations are identical, so that transition to the backup interface in the event of a failure is transparent to rest of the network. Figure 70. Configuring Redundant Layer 2 Pairs without Spanning Tree You configure a redundant pair by assigning a backup interface to a primary interface with the switchport backup interface command.
LACP) port-channel interface as either the primary or backup link in a redundant pair with a physical interface. To ensure that existing network applications see no difference when a primary interface in a redundant pair transitions to the backup interface, be sure to apply identical configurations of other traffic parameters to each interface.
inactive: Vl 1 00:24:55: %RPM0-P:CP %IFMGR-5-OSTATE_UP: Changed interface state to up: Te 3/42 00:24:55: %RPM0-P:CP %IFMGR-5-ACTIVE: Changed Vlan interface state to active: Vl 1 00:24:55: %RPM0-P:CP %IFMGR-5-STATE_STBY_ACT: Changed interface state from standby to active: Te 3/42 Dell(conf-if-te-3/41)#do show ip int brief | find 3/41 TenGigabitEthernet 3/41 unassigned NO Manual administratively down down TenGigabitEthernet 3/42 unassigned YES Manual up up [output omitted] Example of Configuring Redundant Pai
Figure 71. Configuring Far-End Failure Detection The report consists of several packets in SNAP format that are sent to the nearest known MAC address. In the event of a far-end failure, the device stops receiving frames and, after the specified time interval, assumes that the far-end is not available. The connecting line protocol is brought down so that upper layer protocols can detect the neighbor unavailability faster. FEFD State Changes FEFD has two operational modes, Normal and Aggressive.
4. If the FEFD enabled system is configured to use FEFD in Normal mode and neighboring echoes are not received after three intervals, (you can set each interval can be set between 3 and 300 seconds) the state changes to unknown. 5. If the FEFD system has been set to Aggressive mode and neighboring echoes are not received after three intervals, the state changes to Err-disabled.
To report interval frequency and mode adjustments, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Activate the necessary ports administratively. INTEFACE mode no shutdown 3. Enable fefd globally. CONFIGURATION mode fefd {interval | mode} Example of the show fefd Command To display information about the state of each interface, use the show fefd command in EXEC privilege mode.
To set up and activate two or more connected interfaces, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Activate the necessary ports administratively. INTERFACE mode no shutdown 3.
Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port(Te 1/1) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Te 4/1) Sender hold time -- 3 (second) 2w1d22h : FEFD packet received on interface Te 4/1 Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port(Te 1/1) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Te 4/1) Sender hold time -- 3 (second) An RPM Failover In the event that an RPM failover occurs, FEFD becomes operationally down
Link Layer Discovery Protocol (LLDP) 30 The link layer discovery protocol (LLDP) is supported on Dell Networking OS. 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices.
Table 42. Type, Length, Value (TLV) Types Type TLV Description 0 End of LLDPDU Marks the end of an LLDPDU. 1 Chassis ID An administratively assigned name that identifies the LLDP agent. 2 Port ID An administratively assigned name that identifies a port through which TLVs are sent and received. 3 Time to Live An administratively assigned name that identifies a port through which TLVs are sent and received.
Figure 74. Organizationally Specific TLV IEEE Organizationally Specific TLVs Eight TLV types have been defined by the IEEE 802.1 and 802.3 working groups as a basic part of LLDP; the IEEE OUI is 00-80-C2. You can configure the Dell Networking system to advertise any or all of these TLVs. Table 43. Optional TLV Types Type TLV Description 4 Port description A user-defined alphanumeric string that describes the port. Dell Networking OS does not currently support this TLV.
Type TLV Description 127 Protocol Identity Indicates the protocols that the port can process. Dell Networking OS does not currently support this TLV. 127 MAC/PHY Configuration/Status Indicates the capability and current setting of the duplex status and bit rate, and whether the current settings are the result of auto-negotiation. This TLV is not available in the Dell Networking OS implementation of LLDP, but is available and mandatory (non-configurable) in the LLDP-MED implementation.
Regarding connected endpoint devices, LLDP-MED provides network connectivity devices with the ability to: • manage inventory • manage Power over Ethernet (PoE) • identify physical location • identify network policy LLDP-MED is designed for, but not limited to, VoIP endpoints. TIA Organizationally Specific TLVs The Dell Networking system is an LLDP-MED Network Connectivity Device (Device Type 4).
Type SubType TLV Description None or all TLVs must be supported. Dell Networking OS does not currently support these TLVs. 127 5 Inventory — Hardware Revision Indicates the hardware revision of the LLDPMED device. 127 6 Inventory — Firmware Revision Indicates the firmware revision of the LLDPMED device. 127 7 Inventory — Software Revision Indicates the software revision of the LLDPMED device. 127 8 Inventory — Serial Number Indicates the device serial number of the LLDP-MED device.
Figure 75. LLDP-MED Capabilities TLV Table 45. Dell Networking OS LLDP-MED Capabilities Bit Position TLV Dell Networking OS Support 0 LLDP-MED Capabilities Yes 1 Network Policy Yes 2 Location Identification Yes 3 Extended Power via MDI-PSE Yes 4 Extended Power via MDI-PD No 5 Inventory No 6–15 reserved No Table 46.
NOTE: As shown in the following table, signaling is a series of control packets that are exchanged between an endpoint device and a network connectivity device to establish and maintain a connection. These signal packets might require a different network policy than the media packets for which a connection is made. In this case, configure the signaling application. Table 47.
Extended Power via MDI TLV The extended power via MDI TLV enables advanced PoE management between LLDP-MED endpoints and network connectivity devices. Advertise the extended power via MDI on all ports that are connected to an 802.3af powered, LLDP-MED endpoint device. • Power Type — there are two possible power types: power source entity (PSE) or power device (PD). The Dell Networking system is a PSE, which corresponds to a value of 0, based on the TIA-1057 specification.
Important Points to Remember • LLDP is enabled by default. • Dell Networking systems support up to eight neighbors per interface. • Dell Networking systems support a maximum of 8000 total neighbors per system. If the number of interfaces multiplied by eight exceeds the maximum, the system does not configure more than 8000. • INTERFACE level configurations override all CONFIGURATION level configurations. • LLDP is not hitless.
Enabling LLDP LLDP is enabled by default. Enable and disable LLDP globally or per interface. If you enable LLDP globally, all UP interfaces send periodic LLDPDUs. To enable LLDP, use the following command. 1. Enter Protocol LLDP mode. CONFIGURATION or INTERFACE mode protocol lldp 2. Enable LLDP. PROTOCOL LLDP mode no disable Disabling and Undoing LLDP To disable or undo LLDP, use the following command. • Disable LLDP globally or for an interface.
• For TIA-1057 TLVs: – guest-voice – guest-voice-signaling – location-identification – power-via-mdi – softphone-voice – streaming-video – video-conferencing – video-signaling – voice – voice-signaling In the following example, LLDP is enabled globally. R1 and R2 are transmitting periodic LLDPDUs that contain management, 802.1, and 802.3 TLVs. Figure 78. Configuring LLDP Viewing the LLDP Configuration To view the LLDP configuration, use the following command. • Display the LLDP configuration.
no disable Dell(conf-lldp)# Dell(conf-lldp)#exit Dell(conf)#interface tengigabitethernet 1/31 Dell(conf-if-te-1/31)#show config ! interface TenGigabitEthernet 1/31 no ip address switchport no shutdown Dell(conf-if-te-1/31)#protocol lldp Dell(conf-if-te-1/31-lldp)#show config ! protocol lldp Dell(conf-if-te-1/31-lldp)# Viewing Information Advertised by Adjacent LLDP Agents To view brief information about adjacent devices or to view all the information that neighbors are advertising, use the following comman
Information valid for next 120 seconds Time since last information change of this neighbor: 01:50:16 Remote MTU: 1554 Remote System Desc: Dell Networks Real Time Operating System Software Dell Operating System Version: 1.0. Dell Application Software Version: 9.4.0.0.
Configuring Transmit and Receive Mode After you enable LLDP, Dell Networking systems transmit and receive LLDPDUs by default. To configure the system to transmit or receive only and return to the default, use the following commands. • Transmit only. CONFIGURATION mode or INTERFACE mode • mode tx Receive only. CONFIGURATION mode or INTERFACE mode • mode rx Return to the default setting.
Configuring a Time to Live The information received from a neighbor expires after a specific amount of time (measured in seconds) called a time to live (TTL). The TTL is the product of the LLDPDU transmit interval (hello) and an integer called a multiplier. The default multiplier is 4, which results in a default TTL of 120 seconds. • Adjust the TTL value. CONFIGURATION mode or INTERFACE mode. • multiplier Return to the default multiplier value. CONFIGURATION mode or INTERFACE mode.
Figure 79. The debug lldp detail Command — LLDPDU Packet Dissection Relevant Management Objects Dell Networking OS supports all IEEE 802.1AB MIB objects. The following tables list the objects associated with: • received and transmitted TLVs • the LLDP configuration on the local agent • IEEE 802.1AB Organizationally Specific TLVs • received and transmitted LLDP-MED TLVs Table 48.
MIB Object Category Basic TLV Selection LLDP Variable LLDP MIB Object Description msgTxInterval lldpMessageTxInterval Transmit Interval value. rxInfoTTL lldpRxInfoTTL Time to live for received TLVs. txInfoTTL lldpTxInfoTTL Time to live for transmitted TLVs. mibBasicTLVsTxEnable lldpPortConfigTLVsTxEnabl e Indicates which management TLVs are enabled for system ports.
Table 49.
TLV Type TLV Name TLV Variable System interface numbering Local subtype interface number OID LLDP MIB Object lldpLocManAddrIfSu btype Remote lldpRemManAddrIfS ubtype Local lldpLocManAddrIfId Remote lldpRemManAddrIfId Local lldpLocManAddrOID Remote lldpRemManAddrOI D Table 50. LLDP 802.
Table 51.
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object 3 Location Data Format Local lldpXMedLocLocatio nSubtype Remote lldpXMedRemLocati onSubtype Local lldpXMedLocLocatio nInfo Remote lldpXMedRemLocati onInfo Local lldpXMedLocXPoED eviceType Remote lldpXMedRemXPoED eviceType Local lldpXMedLocXPoEPS EPowerSource Location Identifier Location ID Data 4 Extended Power via MDI Power Device Type Power Source lldpXMedLocXPoEP DPowerSource Remote lldpXMedRemXPoEP SEPowerSource lld
Microsoft Network Load Balancing 31 This functionality is supported on Dell Networking OS. Network Load Balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems. NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group.
• With NLB feature enabled, after learning the NLB ARP entry, all the subsequent traffic is flooded on all ports in VLAN1. With NLB, the data frame is forwarded to all the servers for them to perform load-balancing. NLB Multicast Mode Scenario Consider a sample topology in which four servers, namely S1 through S4, are configured as a cluster or a farm. This set of servers is connected to a Layer 3 switch, which in turn is connected to the end-clients.
flooded out of all member ports. Since all the servers in the cluster receive traffic, failover and balancing are preserved. Enable and Disable VLAN Flooding • The older ARP entries are overwritten whenever newer NLB entries are learned. • All ARP entries, learned after the feature is enabled, are deleted when the feature is disabled, and RP2 triggers an ARP resolution. The feature is disabled with the no ip vlan-flooding command.
Multicast Source Discovery Protocol (MSDP) 32 Multicast source discovery protocol (MSDP) is supported on Dell Networking OS. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
Figure 80. Multicast Source Discovery Protocol (MSDP) RPs advertise each (S,G) in its domain in type, length, value (TLV) format. The total number of TLVs contained in the SA is indicated in the “Entry Count” field. SA messages are transmitted every 60 seconds, and immediately when a new source is detected. Figure 81.
Anycast RP Using MSDP, anycast RP provides load sharing and redundancy in PIM-SM networks. Anycast RP allows two or more rendezvous points (RPs) to share the load for source registration and the ability to act as hot backup routers for each other. Anycast RP allows you to configure two or more RPs with the same IP address on Loopback interfaces. The Anycast RP Loopback address are configured with a 32-bit mask, making it a host address.
• Accept Source-Active Messages that Fail the RFP Check • Specifying Source-Active Messages • Limiting the Source-Active Cache • Preventing MSDP from Caching a Local Source • Preventing MSDP from Caching a Remote Source • Preventing MSDP from Advertising a Local Source • Terminating a Peership • Clearing Peer Statistics • Debugging MSDP • MSDP with Anycast RP • MSDP Sample Configurations Figure 82.
Figure 83.
Figure 84.
Figure 85. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. 1. Enable MSDP. CONFIGURATION mode ip multicast-msdp 2. Peer PIM systems in different administrative domains.
Examples of Configuring and Viewing MSDP R3_E600(conf)#ip multicast-msdp R3_E600(conf)#ip msdp peer 192.168.0.1 connect-source Loopback 0 R3_E600(conf)#do show ip msdp summary Peer Addr Description Local Addr State Source SA Up/Down To view details about a peer, use the show ip msdp peer command in EXEC privilege mode. Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache).
Limiting the Source-Active Cache Set the upper limit of the number of active sources that the Dell Networking OS caches. The default active source limit is 500K messages. When the total number of active sources reaches the specified limit, subsequent active sources are dropped even if they pass the reverse path forwarding (RPF) and policy check. To limit the number of sources that SA cache stores, use the following command. • Limit the number of sources that can be stored in the SA cache.
Figure 86.
Figure 87.
Figure 88.
Figure 89. MSDP Default Peer, Scenario 4 Specifying Source-Active Messages To specify messages, use the following command. • Specify the forwarding-peer and originating-RP from which all active sources are accepted without regard for the RPF check. CONFIGURATION mode ip msdp default-peer ip-address list If you do not specify an access list, the peer accepts all sources that peer advertises. All sources from RPs that the ACL denies are subject to the normal RPF check.
Dell(conf)#ip access-list standard fifty Dell(conf)#seq 5 permit host 200.0.0.50 Dell#ip msdp sa-cache MSDP Source-Active Cache - 3 entries GroupAddr SourceAddr RPAddr LearnedFrom 229.0.50.2 24.0.50.2 200.0.0.50 10.0.50.2 229.0.50.3 24.0.50.3 200.0.0.50 10.0.50.2 229.0.50.4 24.0.50.4 200.0.0.50 10.0.50.2 Dell#ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 3 rejected SAs received, cache-size 32766 UpTime GroupAddr SourceAddr RPAddr 00:33:18 229.0.50.64 24.0.50.64 200.0.1.50 00:33:18 229.0.50.65 24.0.50.
Example of Verifying the System is not Caching Local Sources When you apply this filter, the SA cache is not affected immediately. When sources that are denied by the ACL time out, they are not refreshed. Until they time out, they continue to reside in the cache. To apply the redistribute filter to entries already present in the SA cache, first clear the SA cache. You may optionally store denied sources in the rejected SA cache. R1_E600(conf)#do show run msdp ! ip multicast-msdp ip msdp peer 192.168.0.
R3_E600(conf)#do show ip msdp sa-cache R3_E600(conf)# R3_E600(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 0.0.0.0(639) Connect Source: Lo 0 State: Listening Up/Down Time: 00:01:19 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 0/0 SAs learned from this peer: 0 SA Filtering: Input (S,G) filter: myremotefilter Output (S,G) filter: none Preventing MSDP from Advertising a Local Source To prevent MSDP from advertising a local source, use the following command.
Logging Changes in Peership States To log changes in peership states, use the following command. • Log peership state changes. CONFIGURATION mode ip msdp log-adjacency-changes Terminating a Peership MSDP uses TCP as its transport protocol. In a peering relationship, the peer with the lower IP address initiates the TCP session, while the peer with the higher IP address listens on port 639. • Terminate the TCP connection with a peer.
Example of the clear ip msdp peer Command and Verifying Statistics are Cleared R3_E600(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.3(639) Connect Source: Lo 0 State: Established Up/Down Time: 00:04:26 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 5/0 SAs learned from this peer: 0 SA Filtering: Input (S,G) filter: myremotefilter Output (S,G) filter: none R3_E600(conf)#do clear ip msdp peer 192.168.0.
technique is less effective as traffic increases because preemptive load balancing requires prior knowledge of traffic distributions. • lack of scalable register decasulation: With only a single RP per group, all joins are sent to that RP regardless of the topological distance between the RP, sources, and receivers, and data is transmitted to the RP until the SPT switch threshold is reached.
Configuring Anycast RP To configure anycast RP, use the following commands. 1. In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback 2. Make this address the RP for the group. CONFIGURATION mode ip pim rp-address 3. In each routing domain that has multiple RPs serving a group, create another Loopback interface on each RP serving the group with a unique IP address.
CONFIGURATION mode ip msdp originator-id Examples of R1, R2, and R3 Configuration for MSDP with Anycast RP The following example shows an R1 configuration for MSDP with Anycast RP. ip multicast-routing ! interface TenGigabitEthernet 1/1 ip pim sparse-mode ip address 10.11.3.1/24 no shutdown ! interface TenGigabitEthernet 1/2 ip address 10.11.2.1/24 no shutdown ! interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.1.12/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.
no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.1/32 no shutdown ! interface Loopback 1 ip address 192.168.0.22/32 no shutdown ! router ospf 1 network 10.11.1.0/24 area 0 network 10.11.4.0/24 area 0 network 192.168.0.22/32 area 0 redistribute static redistribute connected redistribute bgp 100 ! router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.3 ebgp-multihop 255 neighbor 192.168.0.3 no shutdown ! ip multicast-msdp ip msdp peer 192.168.0.
neighbor neighbor neighbor neighbor ! ip ip ip ip ! ip ip ! ip 192.168.0.22 192.168.0.22 192.168.0.22 192.168.0.22 remote-as 100 ebgp-multihop 255 update-source Loopback 0 no shutdown multicast-msdp msdp peer 192.168.0.11 connect-source Loopback 0 msdp peer 192.168.0.22 connect-source Loopback 0 msdp sa-filter out 192.168.0.22 route 192.168.0.1/32 10.11.0.23 route 192.168.0.22/32 10.11.0.23 pim rp-address 192.168.0.3 group-address 224.0.0.
MSDP Sample Configuration: R1 Running-Config MSDP Sample Configuration: R2 Running-Config MSDP Sample Configuration: R3 Running-Config MSDP Sample Configuration: R4 Running-Config ip multicast-routing ! interface TenGigabitEthernet 1/1 ip pim sparse-mode ip address 10.11.3.1/24 no shutdown ! interface TenGigabitEthernet 1/2 ip address 10.11.2.1/24 no shutdown ! interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.1.12/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.
network 192.168.0.2/32 area 0 redistribute static redistribute connected redistribute bgp 100 ! router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.3 ebgp-multihop 255 neighbor 192.168.0.3 update-source Loopback 0 neighbor 192.168.0.3 no shutdown ! ip route 192.168.0.3/32 10.11.0.32 ! ip pim rp-address 192.168.0.1 group-address 224.0.0.0/4 ip multicast-routing ! interface TenGigabitEthernet 3/21 ip pim sparse-mode ip address 10.11.0.
! interface TenGigabitEthernet 4/22 ip address 10.10.42.1/24 no shutdown ! interface TenGigabitEthernet 4/31 ip pim sparse-mode ip address 10.11.6.43/24 no shutdown ! interface Loopback 0 ip address 192.168.0.4/32 no shutdown ! router ospf 1 network 10.11.5.0/24 area 0 network 10.11.6.0/24 area 0 network 192.168.0.4/32 area 0 ! ip pim rp-address 192.168.0.3 group-address 224.0.0.
33 Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) is supported on Dell Networking OS. Protocol Overview MSTP — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves on per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances.
Spanning Tree Variations The Dell Networking OS supports four variations of spanning tree, as shown in the following table. Table 52. Spanning Tree Variations Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information The following describes the MSTP implementation information.
• Prevent Network Disruptions with BPDU Guard • Enabling SNMP Traps for Root Elections and Topology Changes • Configuring Spanning Trees as Hitless Enable Multiple Spanning Tree Globally MSTP is not enabled by default. To enable MSTP globally, use the following commands. When you enable MSTP, all physical, VLAN, and port-channel interfaces that are enabled and in Layer 2 mode are automatically part of the MSTI 0. • Within an MSTI, only one path from any bridge to any other bridge is enabled.
PROTOCOL MSTP mode msti Specify the keyword vlan then the VLANs that you want to participate in the MSTI. Examples of Configuring and Viewing MSTI The following examples shows the msti command. Dell(conf)#protocol spanning-tree mstp Dell(conf-mstp)#msti 1 vlan 100 Dell(conf-mstp)#msti 2 vlan 200-300 Dell(conf-mstp)#show config ! protocol spanning-tree mstp no disable MSTI 1 VLAN 100 MSTI 2 VLAN 200-300 All bridges in the MSTP region must have the same VLAN-to-instance mapping.
BPDU (MRecords): sent 39291, received 7547 The port is not in the Edge port mode Influencing MSTP Root Selection MSTP determines the root bridge, but you can assign one bridge a lower priority to increase the probability that it becomes the root bridge. To change the bridge priority, use the following command. • Assign a number as the bridge priority. PROTOCOL MSTP mode msti instance bridge-priority priority A lower number increases the probability that the bridge becomes the root bridge.
Dell Networking OS equipment that participates in MSTP, ensure these values match on all the equipment. NOTE: Some non-Dell Networking OS equipment may implement a non-null default region name. SFTOS, for example, uses the Bridge ID, while others may use a MAC address. Changing the Region Name or Revision To change the region name or revision, use the following commands. • Change the region name. PROTOCOL MSTP mode • name name Change the region revision number.
The range is from 4 to 30. The default is 15 seconds. 2. Change the hello-time parameter. PROTOCOL MSTP mode hello-time seconds NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. The default is 2 seconds. 3. Change the max-age parameter. PROTOCOL MSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. 4. Change the max-hops parameter.
Modifying the Interface Parameters You can adjust two interface parameters to increase or decrease the probability that a port becomes a forwarding port. • • Port cost is a value that is based on the interface type. The greater the port cost, the less likely the port is selected to be a forwarding port. Port priority influences the likelihood that a port is selected to be a forwarding port in case that several ports have the same port cost.
you implement only bpduguard, although the interface is placed in an Error Disabled state when receiving the BPDU, the physical interface remains up and spanning-tree drops packets in the hardware after a BPDU violation. BPDUs are dropped in the software after receiving the BPDU violation. This feature is the same as PortFast mode in spanning tree. CAUTION: Configure EdgePort only on links connecting to an end station. EdgePort can cause loops if you enable it on an interface connected to a network.
To view the enable status of this feature, use the show running-config spanning-tree mstp command from EXEC Privilege mode. MSTP Sample Configurations The running-configurations support the topology shown in the following illustration. The configurations are from Dell Networking OS systems. Figure 92. MSTP with Three VLANs Mapped to Two Spanning Tree Instances Router 1 Running-Configuration This example uses the following steps: 1.
! (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 1/21,31 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 1/21,31 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/21,31 no shutdown Router 2 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3.
Router 3 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
(Step 2) interface 1/0/31 no shutdown spanning-tree port mode enable switchport protected 0 exit interface 1/0/32 no shutdown spanning-tree port mode enable switchport protected 0 exit (Step 3) interface vlan 100 tagged 1/0/31 tagged 1/0/32 exit interface vlan 200 tagged 1/0/31 tagged 1/0/32 exit interface vlan 300 tagged 1/0/31 tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. • Display BPDUs.
– Does the debug log indicate that packets are coming from a “Different Region”? If so, one of the key parameters is not matching. • MSTP Region Name and Revision. – The configured name and revisions must be identical among all the routers. – Is the Region name blank? That may mean that a name was configured on one router and but was not configured or was configured differently on another router (spelling and capitalization counts). • MSTP Instances.
The following example shows viewing the debug log of an unsuccessful MSTP configuration. 4w0d4h : MSTP: Received BPDU on Te 2/21 : ProtId: 0, Ver: 3, Bpdu Type: MSTP, Flags 0x78Different Region (Indicates MSTP routers are in different regions and are not communicating with each other.) CIST Root Bridge Id: 32768:0001.e806.953e, Ext Path Cost: 0 Regional Bridge Id: 32768:0001.e806.
Multicast Features 34 Multicast features are supported on Dell Networking OS. NOTE: Multicast is supported on secondary IP addresses on the S4820T platform. NOTE: Multicast routing for IPv6 is not supported. NOTE: Multicast routing is supported across default and non-default VRFs.
Protocol Ethernet Address 01:00:5e:00:00:06 RIP 01:00:5e:00:00:09 NTP 01:00:5e:00:01:01 VRRP 01:00:5e:00:00:12 PIM-SM 01:00:5e:00:00:0d • The Dell Networking OS implementation of MTRACE is in accordance with IETF draft draft-fennertraceroute-ipm. • Multicast is not supported on secondary IP addresses. • Egress L3 ACL is not applied to multicast data traffic if you enable multicast routing. Multicast Policies Dell Networking OS offers parallel multicast features for IPv4.
Route learning will begin. To limit the number of multicast routes, use the following command. • Limit the total number of multicast routes on the system. CONFIGURATION mode ip multicast-limit The range if from 1 to 16000. The default is 4000. NOTE: The IN-L3-McastFib CAM partition is used to store multicast routes and is a separate hardware limit that exists per port-pipe. Any software-configured limit may supersede by this hardware space limitation.
Figure 93. Preventing a Host from Joining a Group Table 54. Preventing a Host from Joining a Group — Description Location Description 1/21 • • • • Interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31 • • • Interface TenGigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.
Location Description • no shutdown 2/1 • • • • Interface TenGigabitEthernet 2/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface TenGigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1 • • • • Interface TenGigabitEthernet 3/1 ip pim sparse-mode ip address 10.11.5.
Preventing a PIM Router from Forming an Adjacency To prevent a router from participating in PIM (for example, to configure stub multicast routing), use the following command. • Prevent a router from participating in protocol independent multicast (PIM). INTERFACE mode ip pim neighbor-filter Preventing a Source from Registering with the RP To prevent the PIM source DR from sending register packets to RP for the specified multicast source and group, use the following command.
Figure 94. Preventing a Source from Transmitting to a Group Table 55. Preventing a Source from Transmitting to a Group — Description Location Description 1/21 • • • • Interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31 • • • Interface TenGigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.
Location Description • no shutdown 2/1 • • • • Interface TenGigabitEthernet 2/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface TenGigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1 • • • • Interface TenGigabitEthernet 3/1 ip pim sparse-mode ip address 10.11.5.
Preventing a PIM Router from Processing a Join To permit or deny PIM Join/Prune messages on an interface using an extended IP access list, use the following command. NOTE: Dell Networking recommends not using the ip pim join-filter command on an interface between a source and the RP router. Using this command in this scenario could cause problems with the PIM-SM source registration process resulting in excessive traffic being sent to the CPU of both the RP and PIM DR of the source.
Object Tracking 35 IPv4/IPv6 object tracking is available on Dell Networking OS. Object tracking allows the Dell Networking Operating System (OS) client processes, such as virtual router redundancy protocol (VRRP), to monitor tracked objects (for example, interface or link status) and take appropriate action when the state of an object changes. NOTE: In Dell Networking OS release version 8.4.1.0, object tracking is supported only on VRRP.
Figure 95. Object Tracking Example When you configure a tracked object, such as an IPv4/IPv6 a route or interface, you specify an object number to identify the object. Optionally, you can also specify: • UP and DOWN thresholds used to report changes in a route metric. • A time delay before changes in a tracked object’s state are reported to a client. Track Layer 2 Interfaces You can create an object to track the line-protocol state of a Layer 2 interface.
Track IPv4 and IPv6 Routes You can create an object that tracks an IPv4 or IPv6 route entry in the routing table. Specify a tracked route by its IPv4/IPv6 address and prefix-length, and optionally, by a virtual routing and forwarding (VRF) instance name if the route to be tracked is part of a VRF. The next-hop address is not part of the definition of the tracked object. A tracked route matches a route in the routing table only if the exact address and prefix length match an entry in the routing table.
• For OSPF, you can set the resolution in the range from 1 to 1592, where the default is 1. • The resolution value used to map static routes is not configurable. By default, Dell Networking OS assigns a metric of 0 to static routes. • The resolution value used to map router information protocol (RIP) routes is not configurable. The RIP hop-count is automatically multiplied by 16 to scale it; a RIP metric of 16 (unreachable) scales to 256, which considers the route to be DOWN.
• 10 Gigabit Ethernet: Enter tengigabitethernet slot/port. • Port channel: Enter port-channel number, where valid port-channel numbers are: – For the C-Series and S-Series, from 1 to 128. – For the E-Series, from 1 to 255 (TeraScale and ExaScale) • SONET: Enter sonet slot/port. • VLAN: Enter vlan vlan-id, where valid VLAN IDs are from 1 to 4094 A line-protocol object only tracks the link-level (UP/DOWN) status of a specified interface.
Tracking a Layer 3 Interface You can create an object that tracks the routing status of an IPv4 or IPv6 Layer 3 interface. You can track the routing status of any of the following Layer 3 interfaces: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. • For a port channel interface, enter the keywords port-channel then a number. • For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.
EXEC Privilege mode show track object-id Example of Configuring Object Tracking (IPv4 Interface) Example of Configuring Object Tracking (IPv6 Interface) Dell(conf)#track 101 interface tengigabitethernet 7/2 ip routing Dell(conf-track-101)#delay up 20 Dell(conf-track-101)#description NYC metro Dell(conf-track-101)#end Dell#show track 101 Track 101 Interface TenGigabitEthernet 7/2 ip routing Description: NYC metro Dell(conf)#track 103 interface tengigabitethernet 7/11 ipv6 routing Dell(conf-track-103)#descrip
To provide a common tracking interface for different clients, route metrics are scaled in the range from 0 to 255, where 0 is connected and 255 is inaccessible. The scaled metric value communicated to a client always considers a lower value to have priority over a higher value.
The default is 0. 3. (Optional) Identify the tracked object with a text description. OBJECT TRACKING mode description text The text string can be up to 80 characters. 4. (Optional) Display the tracking configuration and the tracked object’s status. EXEC Privilege mode show track object-id Example of the track ip route reachability Command Example of the track ipv6 route reachability Command Dell(conf)#track 104 ip route 10.0.0.
2. • OSPF routes - 1 to 1592. The efault is 1. Configure object tracking on the metric of an IPv4 or IPv6 route. CONFIGURATION mode track object-id {ip route ip-address/prefix-len | ipv6 route ipv6-address/ prefix-len} metric threshold [vrf vrf-name] Valid object IDs are from 1 to 65535. Enter an IPv4 address in dotted decimal format. Valid IPv4 prefix lengths are from /0 to /32. Enter an IPv6 address in X:X:X:X::X format. Valid IPv6 prefix lengths are from /0 to /128.
Dell(conf-track-6)#threshold metric down 40 Dell(conf-track-6)#threshold metric up 40 Dell(conf-track-6)#exit Dell(conf)#track 10 ip route 3.1.1.0/24 metric threshold vrf vrf1 Dell(conf)#track 8 ipv6 route 2::/64 metric threshold Dell(conf-track-8)#threshold metric up 30 Dell(conf-track-8)#threshold metric down 40 Displaying Tracked Objects To display the currently configured objects used to track Layer 2 and Layer 3 interfaces, and IPv4 and IPv6 routes, use the following show commands.
Interface GigabitEthernet 13/4 ip routing IP routing is Up 3 changes, last change 00:03:30 Tracked by: Router# show track brief ResId State 1 Resource LastChange IP route reachability Parameter 10.16.0.0/16 Dell#show track resolution IP Route Resolution ISIS 1 OSPF 1 IPv6 Route Resolution ISIS 1 Dell#show track vrf red Track 5 IP route 192.168.0.
Open Shortest Path First (OSPFv2 and OSPFv3) 36 Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on Dell Networking OS. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell Networking Operating System (OS). NOTE: The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same between OSPFv2 and OSPFv3.
Areas allow you to further organize your routers within in the AS. One or more areas are required within the AS. Areas are valuable in that they allow sub-networks to "hide" within the AS, thus minimizing the size of the routing tables on all routers. An area within the AS may not see the details of another area’s topology. AS areas are known by their area number or the router’s IP address. Figure 96. Autonomous System Areas Area Types The backbone of the network is Area 0. It is also called Area 0.0.0.
The backbone is the only area with a default area number. All other areas can have their Area ID assigned in the configuration. In the previous example, Routers A, B, C, G, H, and I are the Backbone. • A stub area (SA) does not receive external route information, except for the default route. These areas do receive information from inter-area (IA) routes. NOTE: Configure all routers within an assigned stub area as stubby, and not generate LSAs that do not apply.
Figure 97. OSPF Routing Examples Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example. Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone.
An ABR can connect to many areas in an AS, and is considered a member of each area it connects to. Autonomous System Border Router (ASBR) The autonomous system border area router (ASBR) connects to more than one AS and exchanges information with the routers in other ASs. Generally, the ASBR connects to a non-interior gate protocol (IGP) such as BGP or uses static routes.
available. An ABR floods the information for the router (for example, the ASBR where the Type 5 advertisement originated. The link-state ID for Type 4 LSAs is the router ID of the described ASBR). • Type 5: LSA — These LSAs contain information imported into OSPF from other routing processes. They are flooded to all areas, except stub areas. The link-state ID of the Type 5 LSA is the external network number.
Router Priority and Cost Router priority and cost is the method the system uses to “rate” the routers. For example, if not assigned, the system selects the router with the highest priority as the DR. The second highest priority is the BDR. • • Priority is a numbered rating 0 to 255. The higher the number, the higher the priority. Cost is a numbered rating 1 to 65535. The higher the number, the greater the cost. The cost assigned reflects the cost should the router fail.
Dell Networking OS supports stub areas, totally stub (no summary) and not so stubby areas (NSSAs) and supports the following LSAs, as described earlier.
• Helper-reject role in which OSPF does not participate in the graceful restart of a neighbor. OSPFv2 supports helper-only and restarting-only roles. By default, both helper and restarting roles are enabled. OSPFv2 supports the helper-reject role globally on a router. OSPFv3 supports helper-only and restarting-only roles. The helper-only role is enabled by default. To enable the restarting role in addition to the helper-only role, configure a grace period.
Each OSPFv2 process has a unique process ID and must have an associated router ID. There must be an equal number of interfaces and must be in Layer-3 mode for the number of processes created. For example, if you create five OSPFv2 processes on a system, there must be at least five interfaces assigned in Layer 3 mode. Each OSPFv2 process is independent. If one process loses adjacency, the other processes continue to function.
LSType:Type-5 AS External(5) Age:1 Seq:0x8000000c id:170.1.1.0 Adv:6.1.0.0 Netmask:255.255.255.0 fwd:0.0.0.0 E2, tos:0 metric:0 LSType:Type-5 AS External(5) Age:1 Seq:0x8000000c id:170.1.2.0 Adv:6.1.0.0 Netmask:255.255.255.0 fwd:0.0.0.0 E2, tos:0 metric:0 To confirm that you enabled RFC-2328–compliant OSPF flooding, use the show ip ospf command. Dell#show ip ospf Routing Process ospf 1 with ID 2.2.2.
Timer intervals configured, Hello 20, Dead 80, Wait 20, Retransmit 5 Hello due in 00:00:04 Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 1.1.1.1 (Backup Designated Router) Dell (conf-if-te-2/2)# Configuration Information The interfaces must be in Layer-3 mode (assigned an IP address) and enabled so that they can send and receive traffic. The OSPF process must know about these interfaces. To make the OSPF process aware of these interfaces, they must be assigned to OSPF areas.
Enabling OSPFv2 To enable Layer 3 routing, assign an IP address to an interface (physical or Loopback). By default, OSPF, similar to all routing protocols, is disabled. You must configure at least one interface for Layer 3 before enabling OSPFv2 globally. If implementing multi-process OSPF, create an equal number of Layer 3 enabled interfaces and OSPF process IDs. For example, if you create four OSPFv2 process IDs, you must have four interfaces with Layer 3 enabled. 1. Assign an IP address to an interface.
• Disable OSPF. CONFIGURATION mode • no router ospf process-id Reset the OSPFv2 process. EXEC Privilege mode • clear ip ospf process-id View the current OSPFv2 status. EXEC mode show ip ospf process-id Example of Viewing the Current OSPFv2 Status Dell#show ip ospf 55555 Routing Process ospf 55555 with ID 10.10.10.
If you try to enable more OSPF processes than available Layer 3 interfaces, the following message displays: C300(conf)#router ospf 1 % Error: No router ID available. Assigning an OSPFv2 Area After you enable OSPFv2, assign the interface to an OSPF area. Set up OSPF areas and enable OSPFv2 on an interface with the network command. You must have at least one AS area: Area 0. This is the backbone area. If your OSPF network contains more than one area, configure a backbone area (Area ID 0.0.0.0).
Dell(conf)#router ospf 1 Dell(conf-router_ospf-1)#network 1.2.3.4/24 area 0 Dell(conf-router_ospf-1)#network 10.10.10.10/24 area 1 Dell(conf-router_ospf-1)#network 20.20.20.20/24 area 2 Dell(conf-router_ospf-1)# Dell# Dell Networking recommends using the interface IP addresses for the OSPFv2 router ID for easier management and troubleshooting. To view the configuration, use the show config command in CONFIGURATION ROUTER OSPF mode.
Loopback 0 is up, line protocol is up Internet Address 10.168.253.2/32, Area 0.0.0.1 Process ID 1, Router ID 10.168.253.2, Network Type LOOPBACK, Cost: 1 Loopback interface is treated as a stub Host. Dell# Configuring Stub Areas OSPF supports different types of LSAs to help reduce the amount of router processing within the areas. Type 5 LSAs are not flooded into stub areas; the ABR advertises a default route into the stub area to which it is attached.
Enabling Passive Interfaces A passive interface is one that does not send or receive routing information. Enabling passive interface suppresses routing updates on an interface. Although the passive interface does not send or receive routing updates, the network on that interface is still included in OSPF updates sent via other interfaces. To suppress the interface’s participation on an OSPF interface, use the following command. This command stops the router from sending updates on that interface.
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 No Hellos (Passive interface) Neighbor Count is 0, Adjacent neighbor count is 0 Loopback 45 is up, line protocol is up Internet Address 10.1.1.23/24, Area 2.2.2.2 Process ID 34, Router ID 10.1.2.100, Network Type LOOPBACK, Cost: 1 Enabling Fast-Convergence The fast-convergence CLI sets the minimum origination and arrival LSA parameters to zero (0), allowing rapid route calculation.
Routing Process ospf 1 with ID 192.168.67.2 Supports only single TOS (TOS0) routes SPF schedule delay 5 secs, Hold time between two SPFs 10 secs Convergence Level 0 Min LSA origination 5 secs, Min LSA arrival 1 secs Number of area in this router is 0, normal 0 stub 0 nssa 0 Dell# Changing OSPFv2 Parameters on Interfaces In Dell Networking OS, you can modify the OSPF settings on the interfaces. Some interface parameter values must be consistent across all interfaces to avoid routing errors.
• Change the priority of the interface, which is used to determine the Designated Router for the OSPF broadcast network. CONFIG-INTERFACE mode ip ospf priority number • – number: the range is from 0 to 255 (the default is 1). Change the retransmission interval between LSAs. CONFIG-INTERFACE mode ip ospf retransmit-interval seconds – seconds: the range is from 1 to 65535 (the default is 5 seconds). • The retransmit interval must be the same on all routers in the OSPF network.
Enabling OSPFv2 Authentication To enable or change various OSPF authentication parameters, use the following commands. • Set a clear text authentication scheme on the interface. CONFIG-INTERFACE mode ip ospf authentication-key key Configure a key that is a text string no longer than eight characters. • All neighboring routers must share password to exchange OSPF information. Set the authentication change wait time in seconds between 0 and 300 for the interface.
This setting is the time that an OSPFv2 router’s neighbors advertises it as fully adjacent, regardless of the synchronization state, during a graceful restart. OSPFv2 terminates this process when the grace period ends. 2. Enter the Router ID of the OSPFv2 helper router from which the router does not accept graceful restart assistance. CONFIG-ROUTEROSPF- id mode graceful-restart helper-reject router-id • • Planned-only — the OSPFv2 router supports graceful-restart for planned restarts only.
network 10.0.2.0/24 area 0 Dell# Creating Filter Routes To filter routes, use prefix lists. OSPF applies prefix lists to incoming or outgoing routes. Incoming routes must meet the conditions of the prefix lists. If they do not, OSPF does not add the route to the routing table. Configure the prefix list in CONFIGURATION PREFIX LIST mode prior to assigning it to the OSPF process. • Create a prefix list and assign it a unique name.
redistribute {bgp | connected | isis | rip | static} [metric metric-value | metric-type type-value] [route-map map-name] [tag tag-value] Configure the following required and optional parameters: – bgp, connected, isis, rip, static: enter one of the keywords to redistribute those routes. – metric metric-value: the range is from 0 to 4294967295. – metric-type metric-type: 1 for OSPF external route type 1. 2 for OSPF external route type 2. – route-map map-name: enter a name of a configured route map.
EXEC Privilege mode • show running-config ospf View the summary information of the IP routes. EXEC Privilege mode • show ip route summary View the summary information for the OSPF database. EXEC Privilege mode • show ip ospf database View the configuration of OSPF neighbors connected to the local router. EXEC Privilege mode • show ip ospf neighbor View the LSAs currently in the queue. EXEC Privilege mode • show ip ospf timers rate-limit View debug messages.
router ospf 90 area 2 virtual-link 4.4.4.4 area 2 virtual-link 90.90.90.90 retransmit-interval 300 ! ipv6 router ospf 999 default-information originate always router-id 10.10.10.10 Dell# Sample Configurations for OSPFv2 The following configurations are examples for enabling OSPFv2. These examples are not comprehensive directions. They are intended to give you some guidance with typical configurations. You can copy and paste from these examples to your CLI.
no shutdown ! interface Loopback 10 ip address 192.168.100.100/24 no shutdown OSPF Area 0 — Te 3/1 and 3/2 router ospf 33333 network 192.168.100.0/24 area 0 network 10.0.13.0/24 area 0 network 10.0.23.0/24 area 0 ! interface Loopback 30 ip address 192.168.100.100/24 no shutdown ! interface TenGigabitEthernet 3/1 ip address 10.1.13.3/24 no shutdown ! interface TenGigabitEthernet 3/2 ip address 10.2.13.3/24 no shutdown OSPF Area 0 — Te 2/1 and 2/2 router ospf 22222 network 192.168.100.
command to create the OSPF process, then the network area command to enable OSPF on an interface. NOTE: The OSPFv2 network area command enables OSPF on multiple interfaces with the single command. Use the OSPFv3 ipv6 ospf area command on each interface that runs OSPFv3. All IPv6 addresses on an interface are included in the OSPFv3 process that is created on the interface. Enable OSPFv3 for IPv6 by specifying an OSPF process ID and an area in INTERFACE mode.
• Assign the OSPFv3 process and an OSPFv3 area to this interface. CONF-INT-type slot/port mode ipv6 ospf process-id area area-id – process-id: the process ID number assigned. – area-id: the area ID for this interface. Assigning OSPFv3 Process ID and Router ID Globally To assign, disable, or reset OSPFv3 globally, use the following commands. • Enable the OSPFv3 process globally and enter OSPFv3 mode. CONFIGURATION mode ipv6 router ospf {process ID} • The range is from 0 to 65535.
– number: the IPv4 address. The format is A.B.C.D. NOTE: Enter the router-id for an OSPFv3 router as an IPv4 IP address. • Disable OSPF. CONFIGURATION mode • no ipv6 router ospf process-id vrf {vrf-name} Reset the OSPFv3 process. EXEC Privilege mode clear ipv6 ospf [vrf vrf-name] process Configuring Stub Areas To configure IPv6 stub areas, use the following command. • Configure the area as a stub area.
Redistributing Routes You can add routes from other routing instances or protocols to the OSPFv3 process. With the redistribute command, you can include RIP, static, or directly connected routes in the OSPF process. Route redistribution is also supported between OSPF Routing process IDs. To add redistributing routes, use the following command. • Specify which routes are redistributed into the OSPF process.
OSPFv3 restarting expects its OSPFv3 neighbors to help when it restarts by not advertising the broken link. When you enable the helper-reject role on an interface using the ipv6 ospf graceful-restart helper-reject command, you reconfigure OSPFv3 graceful restart to function in a restarting-only role. OSPFv3 does not participate in the graceful restart of a neighbor. NOTE: Enter the ipv6 ospf graceful-restart helper-reject command in Interface configuration mode.
• show ipv6 ospf [vrf vrf-name] database grace-lsa Display the currently configured OSPFv3 parameters for graceful restart (shown in the following example). EXEC Privilege mode show ipv6 ospf database [vrf vrf-name] database-summary Examples of the Graceful Restart show Commands The following example shows the show run ospf command. Dell#show run ospf ! router ospf 1 router-id 200.1.1.1 log-adjacency-changes graceful-restart grace-period 180 network 20.1.1.0/24 area 0 network 30.1.1.
LS Age Link State ID Advertising Router LS Seq Number Checksum Length Associated Interface Restart Interval Restart Reason : : : : : : : : : 10 6.16.192.66 100.1.1.1 0x80000001 0x1DF1 36 Te 5/3 180 Switch to Redundant Processor OSPFv3 Authentication Using IPsec OSPFv3 uses IPsec to provide authentication for OSPFv3 packets. IPsec authentication ensures security in the transmission of OSPFv3 packets between IPsec-enabled routers.
OSPFv3 Authentication Using IPsec: Configuration Notes OSPFv3 authentication using IPsec is implemented according to the specifications in RFC 4552. • To use IPsec, configure an authentication (using AH) or encryption (using ESP) security policy on an interface or in an OSPFv3 area. Each security policy consists of a security policy index (SPI) and the key used to validate OSPFv3 packets. After IPsec is configured for OSPFv3, IPsec operation is invisible to the user.
Configuring IPsec Authentication on an Interface To configure, remove, or display IPsec authentication on an interface, use the following commands. Prerequisite: Before you enable IPsec authentication on an OSPFv3 interface, first enable IPv6 unicast routing globally, configure an IPv6 address and enable OSPFv3 on the interface, and assign it to an area (refer to Configuration Task List for OSPFv3 (OSPF for IPv6)).
INTERFACE mode ipv6 ospf encryption {null | ipsec spi number esp encryption-algorithm [keyencryption-type] key authentication-algorithm [key-authentication-type] key} – null: causes an encryption policy configured for the area to not be inherited on the interface. – ipsec spi number: is the security policy index (SPI) value. The range is from 256 to 4294967295. – esp encryption-algorithm: specifies the encryption algorithm used with ESP. The valid values are 3DES, DES, AES-CBC, and NULL.
CONF-IPV6-ROUTER-OSPF mode area-id authentication ipsec spi number {MD5 | SHA1} [key-encryption-type] key – area area-id: specifies the area for which OSPFv3 traffic is to be authenticated. For area-id, enter a number or an IPv6 prefix. – spi number: is the SPI value. The range is from 256 to 4294967295. – MD5 | SHA1: specifies the authentication type: message digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1). – key-encryption-type: (optional) specifies if the key is encrypted.
– key: specifies the text string used in the encryption. All neighboring OSPFv3 routers must share the same key to decrypt information. The required lengths of a non-encrypted or encrypted key are: 3DES - 48 or 96 hex digits; DES - 16 or 32 hex digits; AES-CBC - 32 or 64 hex digits for AES-128 and 48 or 96 hex digits for AES-192. – key-encryption-type: (optional) specifies if the key is encrypted. Valid values: 0 (key is not encrypted) or 7 (key is encrypted).
Crypto IPSec client security policy data Policy name Policy refcount Inbound ESP SPI Outbound ESP SPI Inbound ESP Auth Key Outbound ESP Auth Key Inbound ESP Cipher Key Outbound ESP Cipher Key Transform set : : : : : : : : : OSPFv3-1-502 1 502 (0x1F6) 502 (0x1F6) 123456789a123456789b123456789c12 123456789a123456789b123456789c12 123456789a123456789b123456789c123456789d12345678 123456789a123456789b123456789c123456789d12345678 esp-3des esp-md5-hmac Crypto IPSec client security policy data Policy name : OSPFv
outbound esp sas Interface: TenGigabitEthernet 1/2 Link Local address: fe80::201:e8ff:fe40:4d11 IPSecv6 policy name: OSPFv3-1-600 inbound ah sas outbound ah sas inbound esp sas spi : 600 (0x258) transform : esp-des esp-sha1-hmac in use settings : {Transport, } replay detection support : N STATUS : ACTIVE outbound esp sas spi : 600 (0x258) transform : esp-des esp-sha1-hmac in use settings : {Transport, } replay detection support : N STATUS : ACTIVE Troubleshooting OSPFv3 Dell Networking OS has several tools
• show ipv6 route [vrf vrf-name] summary View the summary information for the OSPFv3 database. EXEC Privilege mode • show ipv6 ospf [vrf vrf-name] database View the configuration of OSPFv3 neighbors. EXEC Privilege mode • show ipv6 ospf [vrf vrf-name] neighbor View debug messages for all OSPFv3 interfaces. EXEC Privilege mode debug ipv6 ospf [vrf vrf-name] [event | packet] {type slot/port} – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
Policy-based Routing (PBR) 37 Policy-based Routing (PBR) allows a switch to make routing decisions based on policies applied to an interface.
To enable a PBR, you create a redirect list. Redirect lists are defined by rules, or routing policies.
a tunnel interface user needs to provide tunnel id mandatory. Instead if user provides the tunnel destination IP as next hop, that would be treated as IPv4 next hop and not tunnel next hop. PBR with Multiple Tacking Option: Policy based routing with multiple tracking option extends and introduces the capabilities of object tracking to verify the next hop IP address before forwarding the traffic to the next hop. The verification method is made transparent to the user.
Use the following command in CONFIGURATION mode: Command Syntax Command Mode ip redirect-list redirect-list- CONFIGURATION name Purpose Create a redirect list by entering the list name. Format: 16 characters Delete the redirect list with the no ip redirect-list command. The following example creates a redirect list by the name of “xyz.
destination ip-address or any or host ip-address is the Destination’s IP address FORMAT: A.B.C.D/NN, or ANY or HOST IP address Delete a rule with the no redirect command.
Creating multiple rules for a redirect-list: Dell(conf)#ip redirect-list test Dell(conf-redirect-list)#seq 10 redirect Dell(conf-redirect-list)#seq 15 redirect Dell(conf-redirect-list)#seq 20 redirect Dell(conf-redirect-list)#show config ! ip redirect-list test seq 10 redirect 10.1.1.2 ip 20.1.1.0/24 seq 15 redirect 10.1.1.3 ip 20.1.1.0/25 seq 20 redirect 10.1.1.3 ip 20.1.1.0/24 Dell(conf-redirect-list)# 10.1.1.2 ip 20.1.1.0/24 any 10.1.1.3 ip 20.1.1.0/25 any 10.1.1.3 ip 20.1.1.
NOTE: When you apply a redirect-list on a port-channel, when traffic is redirected to the next hop and the destination port-channel is shut down, the traffic is dropped. However, on the S-Series, the traffic redirected to the destination port-channel is sometimes switched. Use the following command inINTERFACE mode to apply a redirect list to an interface. Multiple redirectlists can be applied to a redirect-group.
To view the configuration redirect list configuration, use the following command in EXEC mode: Command Syntax Command Mode Purpose show ip redirect-list redirect-list-name EXEC View the redirect list configuration and the associated interfaces. show cam pbr View the redirect list entries programmed in the CAM. EXEC show cam-usage List the redirect list configuration using the show ip redirect-list redirect-list-name command. The noncontiguous mask is displayed in dotted format (x.x.x.x).
NOTE: If, the redirect-list is applied to an interface, the output of show ip redirect-list redirect-listname command displays reachability status for the specified next-hop.
Create the Redirect-List GOLD EDGE_ROUTER(conf-if-Te-2/23)#ip redirect-list GOLD EDGE_ROUTER(conf-redirect-list)#description Route GOLD traffic to ISP_GOLD. EDGE_ROUTER(conf-redirect-list)#direct 10.99.99.254 ip 192.168.1.0/24 any EDGE_ROUTER(conf-redirect-list)#redirect 10.99.99.254 ip 192.168.2.0/24 any EDGE_ROUTER(conf-redirect-list)# seq 15 permit ip any any EDGE_ROUTER(conf-redirect-list)#show config ! ip redirect-list GOLD description Route GOLD traffic to ISP_GOLD. seq 5 redirect 10.99.99.254 ip 192.
View Redirect-List GOLD EDGE_ROUTER#show ip redirect-list IP redirect-list GOLD: Defined as: seq 5 redirect 10.99.99.254 ip 192.168.1.0/24 any, Next-hop reachable (via Te 3/23) seq 10 redirect 10.99.99.254 ip 192.168.2.
Verify the Applied Redirect Rules: Dell#show ip redirect-list redirect_list_with_track IP redirect-list redirect_list_with_track Defined as: seq 5 redirect 42.1.1.2 track 3 tcp 155.55.2.0/24 222.22.2.0/24, Track 3 [up], Next-hop reachable (via Vl 20) seq 10 redirect 42.1.1.2 track 3 tcp any any, Track 3 [up], Next-hop reachable (via Vl 20) seq 15 redirect 42.1.1.2 track 3 udp 155.55.0.0/16 host 144.144.144.144, Track 3 [up], Next-hop reachable (via Vl 20) seq 20 redirect 42.1.1.2 track 3 udp any host 144.
Create a Redirect-list with Track Objects pertaining to Tunnel Interfaces: Dell#configure terminal Dell(conf)#ip redirect-list explicit_tunnel Dell(conf-redirect-list)#redirect tunnel 1 track 222.22.2.0/24 Dell(conf-redirect-list)#redirect tunnel 1 track Dell(conf-redirect-list)#redirect tunnel 1 track 144.144.144.144 Dell(conf-redirect-list)#redirect tunnel 2 track 222.22.2.0/24 Dell(conf-redirect-list)#redirect tunnel 2 track Dell(conf-redirect-list)#end Dell# 1 tcp 155.55.2.0/24 1 tcp any any 1 udp 155.
PIM Sparse-Mode (PIM-SM) 38 Protocol-independent multicast sparse-mode (PIM-SM) is supported on Dell Networking OS. PIM-SM is a multicast protocol that forwards multicast traffic to a subnet only after a request using a PIM Join message; this behavior is the opposite of PIM-Dense mode, which forwards multicast traffic to all subnets until a request to stop. Implementation Information Be aware of the following PIM-SM implementation information.
received becomes the outgoing interface associated with the (*,G) entry. This process constructs an RPT branch to the RP. 3. If a host on the same subnet as another multicast receiver sends an IGMP report for the same multicast group, the gateway takes no action.
Important Point to Remember If you use a Loopback interface with a /32 mask as the RP, you must enable PIM Sparse-mode on the interface. Configuring PIM-SM Configuring PIM-SM is a three-step process. 1. Enable multicast routing (refer to the following step). 2. Select a rendezvous point. 3. Enable PIM-SM on an interface. Enable multicast routing. CONFIGURATION mode ip multicast-routing Related Configuration Tasks The following are related PIM-SM configuration tasks.
NOTE: You can influence the selection of the Rendezvous Point by enabling PIM-Sparse mode on a Loopback interface and assigning a low IP address. To display PIM neighbors for each interface, use the show ip pim neighbor command EXEC Privilege mode. Dell#show ip Neighbor Address 127.87.5.5 127.87.3.5 127.87.50.
The default is 210. 2. Set the expiry time for a specific (S,G) entry (as shown in the following example). CONFIGURATION mode ip pim sparse-mode sg-expiry-timer seconds sg-list access-list-name The range is from 211 to 86,400 seconds. The default is 210.
Overriding Bootstrap Router Updates PIM-SM routers must know the address of the RP for each group for which they have (*,G) entry. This address is obtained automatically through the bootstrap router (BSR) mechanism or a static RP configuration. Use the following command if you have configured a static RP for a group. If you do not use the override option with the following command, the RPs advertised in the BSR updates take precedence over any statically configured RPs.
Creating Multicast Boundaries and Domains A PIM domain is a contiguous set of routers that all implement PIM and are configured to operate within a common boundary defined by PIM multicast border routers (PMBRs). PMBRs connect each PIM domain to the rest of the Internet. Create multicast boundaries and domains by filtering inbound and outbound bootstrap router (BSR) messages per interface. The following command is applied to the subsequent inbound and outbound updates.
PIM Source-Specific Mode (PIM-SSM) 39 PIM source-specific mode (PIM-SSM) is supported on Dell Networking OS. PIM-SSM is a multicast protocol that forwards multicast traffic from a single source to a subnet. In the other versions of protocol independent multicast (PIM), a receiver subscribes to a group only. The receiver receives traffic not just from the source in which it is interested but from all sources sending to that group.
Configure PIM-SMM Configuring PIM-SSM is a two-step process. 1. Configure PIM-SMM. 2. Enable PIM-SSM for a range of addresses. Related Configuration Tasks • Use PIM-SSM with IGMP Version 2 Hosts Enabling PIM-SSM To enable PIM-SSM, follow these steps. 1. Create an ACL that uses permit rules to specify what range of addresses should use SSM. CONFIGURATION mode ip access-list standard name 2. Enter the ip pim ssm-range command and specify the ACL you created.
• • • When you remove the mapping configuration, Dell Networking OS removes the corresponding (S,G) states that it created and re-establishes the original (*,G) states. You may enter multiple ssm-map commands for different access lists. You may also enter multiple ssm-map commands for the same access list, as long as they use different source addresses. When an extended ACL is associated with this command, Dell Networking OS displays an error message.
Router mode Last reporter Group source list Source address 165.87.32.21 INCLUDE 165.87.34.100 Expires Never R1(conf)#do show run pim ! ip pim rp-address 10.11.12.2 group-address 224.0.0.0/4 ip pim ssm-range ssm R1(conf)#do show run acl ! ip access-list standard map seq 5 permit host 239.0.0.2 ! ip access-list standard ssm seq 5 permit host 239.0.0.2 R1(conf)#ip igmp ssm-map map 10.11.5.
40 Port Monitoring Port monitoring is supported on Dell Networking OS. Mirroring is used for monitoring Ingress or Egress or both Ingress and Egress traffic on a specific port(s). This mirrored traffic can be sent to a port where a network sniffer can connect and monitor the traffic.
Port Monitoring The S4820T supports multiple source-destination statements in a single monitor session. The maximum number of source ports that can be supported in a session is 128. The maximum number of destination ports that can be supported is 4 per port pipe. In the following examples, ports 1/13, 1/14, 1/15, and 1/16 all belong to the same port-pipe. They are pointing to four different destinations (1/1, 1/2, 1/3, and 1/37).
Example of Viewing a Monitoring Session In the example below, 0/25 and 0/26 belong to Port-pipe 1. This port-pipe has the same restriction of only four destination ports, new or used.
show interface 2. Create a monitoring session using the command monitor session from CONFIGURATION mode, as shown in the following example. CONFIGURATION mode monitor session monitor session type rpm/erpm type is an optional keyword, required only for rpm and erpm 3. Specify the source and destination port and direction of traffic, as shown in the following example.
Figure 101. Port Monitoring Example Enabling Flow-Based Monitoring Flow-based monitoring is supported only on the S-Series platform. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead of all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You can specify traffic using standard or extended access-lists. 1.
Example of the flow-based enable Command To view an access-list that you applied to an interface, use the show ip accounting access-list command from EXEC Privilege mode. Dell(conf)#monitor session 0 Dell(conf-mon-sess-0)#flow-based enable Dell(conf)#ip access-list ext testflow Dell(config-ext-nacl)#seq 5 permit icmp any any count bytes monitor Dell(config-ext-nacl)#seq 10 permit ip 102.1.1.
source session uses a separate reserved VLAN to transmit mirrored packets (mirrored source-session traffic is shown with an orange or green circle with a blue border). The reserved VLANs transport the mirrored traffic in sessions (blue pipes) to the destination analyzers in the local network. Two destination sessions are shown: one for the reserved VLAN that transports orange-circle traffic; one for the reserved VLAN that transports green-circle traffic.
• Mirrored traffic is transported across the network using 802.1Q-in-802.1Q tunneling. The source address, destination address and original VLAN ID of the mirrored packet are preserved with the tagged VLAN header. Untagged source packets are tagged with the reserve VLAN ID. • The RPM VLAN can’t be a Private VLAN. • The RPM VLAN can be used as GVRP VLAN. • The L3 interface configuration should be blocked for RPM VLAN.
Restrictions When you configure remote port mirroring, the following restrictions apply: • • • • • • You can configure the same source port to be used in multiple source sessions. You cannot configure a source port channel or source VLAN in a source session if the port channel or VLAN has a member port that is configured as a destination port in a remote-port mirroring session.
destination switches), and a destination session (destination ports connected to analyzers on destination switches). Configuration Steps for RPM Step Command Purpose 1 configure terminal Enter global configuration mode. 2 monitor session type rpm The needs to be unique and not already defined in the box specifying type as 'rpm' defines a RPM session.
Dell(conf)#inte te 1/30 Dell(conf-if-te-1/30)#no shutdown Dell(conf-if-te-1/30)#switchport Dell(conf-if-te-1/30)#exit Dell(conf)#interface vlan 30 Dell(conf-if-vl-30)#mode remote-port-mirroring Dell(conf-if-vl-30)#tagged te 1/30 Dell(conf-if-vl-30)#exit Dell(conf)#interface port-channel 10 Dell(conf-if-po-10)#channel-member te 1/28-29 Dell(conf-if-po-10)#no shutdown Dell(conf-if-po-10)#exit Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source port-channel 10 dest remote-vlan 30 dir both Dell(c
Dell(conf)#monitor session 1 type rpm Dell(conf-mon-sess-1)#source remote-vlan 10 dest te 1/4 Dell(conf-mon-sess-1)#exit Dell(conf)#monitor session 2 type rpm Dell(conf-mon-sess-2)#source remote-vlan 20 destination te 1/5 Dell(conf-mon-sess-2)#tagged destination te 0/4 Dell(conf-mon-sess-2)#exit Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source remote-vlan 30 destination te 1/6 Dell(conf-mon-sess-3)#tagged destination te 1/6 Dell(conf-mon-sess-3)#end Dell# Dell#show monitor session SessID S
Configuring the Encapsulated Remote Port Mirroring The ERPM session copies traffic from the source ports/lags or source VLANs and forwards the traffic using routable GRE-encapsulated packets to the destination ip address specified in the session. Important: The steps to be followed for the ERPM Encapsulation : • Dell Networking OS supports ERPM Source session only. The Encapsulated packets terminate at the destination ip or at the analyzer.
4 direction Specify rx, tx or both in case to monitor ingress/egress or both ingress and egress packets on the specified port.. 5 erpm source-ip dest-ip Specify the source ip address and the destination ip where the packet needs to be sent. 6 flow-based enable Specify flow-based enable for mirroring on a flow by flow basis and also for vlan as source. 7 no enable (Optional) No disable command is mandatory in order for a erpm session to be active.
ERPM Behavior on a typical Dell Networking OS The Dell Networking OS is designed to support only the Encapsulation of the data received / transmitted at the specified source port (Port A). An ERPM destination session / decapsulation of the ERPM packets at the destination Switch are not supported. As seen in the above figure, the packets received/transmitted on Port A will be encapsulated with an IP/GRE header plus a new L2 header and sent to the destination ip address (Port D’s ip address) on the sniffer.
39th byte in a given ERPM packet. The first 38/42 bytes of the header needs to be ignored/ chopped off. – Some tools support options to edit the capture file. We can make use of such features (for example: editcap ) and chop the ERPM header part and save it to a new trace file. This new file (i.e. the original mirrored packet) can be converted back into stream and fed to any egress interface. b.
Private VLANs (PVLAN) 41 The private VLAN (PVLAN) feature is supported on Dell Networking OS. For syntax details about the commands described in this chapter, refer to the Private VLANs commands chapter in the Dell Networking OS Command Line Reference Guide. Private VLANs extend the Dell Networking OS security suite by providing Layer 2 isolation between ports within the same virtual local area network (VLAN).
– A switch can have one or more primary VLANs, and it can have none. – A primary VLAN has one or more secondary VLANs. – A primary VLAN and each of its secondary VLANs decrement the available number of VLAN IDs in the switch. – A primary VLAN has one or more promiscuous ports. – A primary VLAN might have one or more trunk ports, or none. • Secondary VLAN — a subdomain of the primary VLAN. – There are two types of secondary VLAN — community VLAN and isolated VLAN.
• Map secondary VLANs to the selected primary VLAN. INTERFACE VLAN mode • [no] private-vlan mapping secondary-vlan vlan-list Display type and status of PVLAN interfaces. EXEC mode or EXEC Privilege mode • show interfaces private-vlan [interface interface] Display PVLANs and/or interfaces that are part of a PVLAN. EXEC mode or EXEC Privilege mode • show vlan private-vlan [community | interface | isolated | primary | primary_vlan | interface interface] Display primary-secondary VLAN mapping.
switchport 4. Select the PVLAN mode. INTERFACE mode switchport mode private-vlan {host | promiscuous | trunk} • host (isolated or community VLAN port) • promiscuous (intra-VLAN communication port) • trunk (inter-switch PVLAN hub port) Example of the switchport mode private-vlan Command For interface details, refer to Enabling a Physical Interface in the Interfaces chapter. NOTE: You cannot add interfaces that are configured as PVLAN ports to regular VLANs.
4. Map secondary VLANs to the selected primary VLAN. INTERFACE VLAN mode private-vlan mapping secondary-vlan vlan-list The list of secondary VLANs can be: 5. • Specified in comma-delimited (VLAN-ID,VLAN-ID) or hyphenated-range format (VLAN-IDVLAN-ID). • Specified with this command even before they have been created. • Amended by specifying the new secondary VLAN to be added to the list. Add promiscuous ports as tagged or untagged interfaces.
4. Add one or more host ports to the VLAN. INTERFACE VLAN mode tagged interface or untagged interface You can enter the interfaces singly or in range format, either comma-delimited (slot/ port,port,port) or hyphenated (slot/ port-port). You can only add host (isolated) ports to the VLAN. Creating an Isolated VLAN An isolated VLAN is a secondary VLAN of a primary VLAN. An isolated VLAN port can only talk with the promiscuous ports in that primary VLAN. 1.
Dell(conf-vlan-100)# private-vlan mode isolated Dell(conf-vlan-100)# untagged Te 2/2 Private VLAN Configuration Example The following example shows a private VLAN topology. Figure 102. Sample Private VLAN Topology The following configuration is based on the example diagram for the Z9500: • Te 1/1 and Te 1/23 are configured as promiscuous ports, assigned to the primary VLAN, VLAN 4000. • Te 1/25 is configured as a PVLAN trunk port, also assigned to the primary VLAN 4000.
• The ports in isolated VLAN 4003 can only communicate with the promiscuous ports in the primary VLAN 4000. • All the ports in the secondary VLANs (both community and isolated VLANs) can only communicate with ports in the other secondary VLANs of that PVLAN over Layer 3, and only when the ip localproxy-arp command is invoked in the primary VLAN.
• The following examples show the results of using this command without the command options on the C300 and S50V switches in the topology diagram previously shown. Display the primary-secondary VLAN mapping. The following example shows the output from the S50V. show vlan private-vlan mapping This command is specific to the PVLAN feature. Examples of Viewing a Private VLAN using the show Commands The show arp and show vlan commands are revised to display PVLAN data.
! interface TenGigabitEthernet 1/5 no ip address switchport switchport mode private-vlan host no shutdown ! interface TenGigabitEthernet 1/6 no ip address switchport switchport mode private-vlan host no shutdown ! interface TenGigabitEthernet 1/25 no ip address switchport switchport mode private-vlan trunk no shutdown ! interface Vlan 4000 private-vlan mode primary private-vlan mapping secondary-vlan 4001-4003 no ip address tagged TenGigabitEthernet 1/3,25 no shutdown ! interface Vlan 4001 private-vlan mode
Per-VLAN Spanning Tree Plus (PVST+) 42 Per-VLAN spanning tree plus (PVST+) is supported on Dell Networking OS. Protocol Overview PVST+ is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN). For more information about spanning tree, refer to the Spanning Tree Protocol (STP) chapter. Figure 103.
Table 56. Spanning Tree Variations Dell Networking OS Supports Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information • The Dell Networking OS implementation of PVST+ is based on IEEE Standard 802.1w. • The Dell Networking OS implementation of PVST+ uses IEEE 802.
protocol spanning-tree pvst 2. Enable PVST+. PROTOCOL PVST mode no disable Disabling PVST+ To disable PVST+ globally or on an interface, use the following commands. • Disable PVST+ globally. PROTOCOL PVST mode • disable Disable PVST+ on an interface, or remove a PVST+ parameter configuration. INTERFACE mode no spanning-tree pvst Example of Viewing PVST+ Configuration To display your PVST+ configuration, use the show config command from PROTOCOL PVST mode.
Figure 104. Load Balancing with PVST+ The bridge with the bridge value for bridge priority is elected root. Because all bridges use the default priority (until configured otherwise), the lowest MAC address is used as a tie-breaker. To increase the likelihood that a bridge is selected as the STP root, assign bridges a low non-default value for bridge priority. To assign a bridge priority, use the following command. • Assign a bridge priority.
Root Identifier has priority 4096, Address 0001.e80d.b6d6 Root Bridge hello time 2, max age 20, forward delay 15 Bridge Identifier has priority 4096, Address 0001.e80d.b6d6 Configured hello time 2, max age 20, forward delay 15 We are the root of VLAN 100 Current root has priority 4096, Address 0001.e80d.b6d6 Number of topology changes 5, last change occurred 00:34:37 ago on Te 1/32 Port 375 (TenGigabitEthernet 1/22) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.
PROTOCOL PVST mode vlan max-age The range is from 6 to 40. The default is 20 seconds. The values for global PVST+ parameters are given in the output of the show spanning-tree pvst command. Modifying Interface PVST+ Parameters You can adjust two interface parameters (port cost and port priority) to increase or decrease the probability that a port becomes a forwarding port. • Port cost — a value that is based on the interface type.
The range is from 0 to 240, in increments of 16. The default is 128. The values for interface PVST+ parameters are given in the output of the show spanning-tree pvst command, as previously shown. Configuring an EdgePort The EdgePort feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner. In this mode an interface forwards frames by default until it receives a BPDU that indicates that it should behave otherwise; it does not go through the Learning and Listening states.
PVST+ in Multi-Vendor Networks Some non-Dell Networking systems which have hybrid ports participating in PVST+ transmit two kinds of BPDUs: an 802.1D BPDU and an untagged PVST+ BPDU. Dell Networking systems do not expect PVST+ BPDU (tagged or untagged) on an untagged port. If this situation occurs, Dell Networking OS places the port in an Error-Disable state. This behavior might result in the network not converging.
Example of Viewing the Extend System ID in a PVST+ Configuration Dell(conf-pvst)#do show spanning-tree pvst vlan 5 brief VLAN 5 Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32773, Address 0001.e832.73f7 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32773 (priority 32768 sys-id-ext 5), Address 0001.e832.
no ip address tagged TenGigabitEthernet 2/12,32 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 2/12,32 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 2/12,32 no shutdown ! protocol spanning-tree pvst no disable vlan 200 bridge-priority 4096 Example of PVST+ Configuration (R3) interface TenGigabitEthernet 3/12 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/22 no ip address switchport no shutdown ! interface Vlan 100 no ip address tag
43 Quality of Service (QoS) Quality of service (QoS) is supported on Dell Networking OS. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 58.
Feature Direction Configure a Scheduler to Queue Egress Specify WRED Drop Precedence Egress Create Policy Maps Ingress + Egress Create Input Policy Maps Ingress Honor DSCP Values on Ingress Packets Ingress Honoring dot1p Values on Ingress Packets Ingress Create Output Policy Maps Egress Specify an Aggregate QoS Policy Egress Create Output Policy Maps Egress Enabling QoS Rate Adjustment Enabling StrictPriority Queueing Weighted Random Early Detection Egress Create WRED Profiles Egress
Figure 106. Dell Networking QoS Architecture Implementation Information The Dell Networking QoS implementation complies with IEEE 802.1p User Priority Bits for QoS Indication.
• Configuring Port-Based Rate Policing • Configuring Port-Based Rate Shaping Setting dot1p Priorities for Incoming Traffic Dell Networking OS places traffic marked with a priority in a queue based on the following table. If you set a dot1p priority for a port-channel, all port-channel members are configured with the same value. You cannot assign a dot1p value to an individual interface in a port-channel. Table 59.
Example of Configuring an Interface to Honor dot1p Priorities on Ingress Traffic Dell#configure terminal Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#service-class dynamic dot1p Dell(conf-if-te-1/1)#end Priority-Tagged Frames on the Default VLAN Priority-tagged frames are 802.1Q tagged frames with VLAN ID 0. For VLAN classification, these packets are treated as untagged. However, the dot1p value is still honored when you configure service-class dynamic dot1p or trust dot1p.
QoS Policy mode rate-shape Example of rate shape Command Dell#configure terminal Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#rate shape 500 50 Dell(conf-if-te-1/1)#end Policy-Based QoS Configurations Policy-based QoS configurations consist of the components shown in the following example. Figure 107.
Classify Traffic Class maps differentiate traffic so that you can apply separate quality of service policies to different types of traffic. For both class maps, Layer 2 and Layer 3, Dell Networking OS matches packets against match criteria in the order that you configure them. Creating a Layer 3 Class Map A Layer 3 class map differentiates ingress packets based on the DSCP value or IP precedence, and characteristics defined in an IP ACL.
Dell(conf)#policy-map-input pmap Dell(conf-policy-map-in)#service-queue 3 class-map cmap1 Dell(conf-policy-map-in)#service-queue 1 class-map cmap2 Dell(conf-policy-map-in)#exit Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#service-policy input pmap Examples of Creating a Layer 3 IPv6 Class Map The following example matches IPv6 traffic with a DSCP value of 40.
ACLs acl1 and acl2 have overlapping rules because the address range 20.1.1.0/24 is within 20.0.0.0/8. Therefore (without the keyword order), packets within the range 20.1.1.0/24 match positive against cmap1 and are buffered in queue 7, though you intended for these packets to match positive against cmap2 and be buffered in queue 4. In cases such as these, where class-maps with overlapping ACL rules are applied to different queues, use the keyword order.
seq 10 deny ip any any ! ip access-list extended AF2 seq 5 permit ip host 23.64.0.5 any seq 10 deny ip any any Dell# show cam layer3-qos interface tengigabitethernet 2/4 Cam Port Dscp Proto Tcp Src Dst SrcIp DstIp DSCP Queue Index Flag Port Port Marking ----------------------------------------------------------------------20416 1 18 IP 0x0 0 0 23.64.0.5/32 0.0.0.0/0 20 2 20417 1 18 IP 0x0 0 0 0.0.0.0/0 0.0.0.0/0 0 20418 1 0 IP 0x0 0 0 23.64.0.2/32 0.0.0.0/0 10 1 20419 1 0 IP 0x0 0 0 0.0.0.0/0 0.0.0.
NOTE: To avoid issues misconfiguration causes, Dell Networking recommends configuring either DCBX or Egress QoS features, but not both simultaneously. If you enable both DCBX and Egress QoS at the same time, the DCBX configuration is applied and unexpected behavior occurs on the Egress QoS. Creating an Input QoS Policy To create an input QoS policy, use the following steps. 1. Create a Layer 3 input QoS policy.
Configuring Policy-Based Rate Shaping To configure policy-based rate shaping, use the following command. • Configure rate shape egress traffic. QOS-POLICY-OUT mode rate-shape Allocating Bandwidth to Queue Schedule packets for egress based on Deficit Round Robin (DRR). These strategies both offer a guaranteed data rate. The following table lists the default bandwidth weights for each queue, and their equivalent percentage which is derived by dividing the bandwidth weight by the sum of all queue weights.
Applying an Input QoS Policy to an Input Policy Map Honoring DSCP Values on Ingress Packets Honoring dot1p Values on Ingress Packets 3. Apply the input policy map to an interface. Applying a Class-Map or Input QoS Policy to a Queue To apply a class-map or input QoS policy to a queue, use the following command. • Assign an input QoS policy to a queue.
Honoring dot1p Values on Ingress Packets Dell Networking OS honors dot1p values on ingress packets with the Trust dot1p feature. The following table specifies the queue to which the classified traffic is sent based on the dot1p value. Table 62. Default dot1p to Queue Mapping dot1p Queue ID 0 2 1 0 2 1 3 3 4 4 5 5 6 6 7 7 Table 63. Default dot1p to Queue Mapping dot1p Queue ID 0 0 1 0 2 0 3 1 4 2 5 3 6 3 7 3 The dot1p value is also honored for frames on the default VLAN.
• Create service classes. INTERFACE mode service-class dynamic dot1p Guaranteeing Bandwidth to dot1p-Based Service Queues To guarantee bandwidth to dot1p-based service queues, use the following command. Apply this command in the same way as the bandwidth-percentage command in an output QoS policy (refer to Allocating Bandwidth to Queue). The bandwidth-percentage command in QOSPOLICY-OUT mode supersedes the service-class bandwidth-percentage command. • Guarantee a minimum bandwidth to queues globally.
INTERFACE mode service-queue Specifying an Aggregate QoS Policy To specify an aggregate QoS policy, use the following command. • Specify an aggregate QoS policy. POLICY-MAP-OUT mode policy-aggregate Applying an Output Policy Map to an Interface To apply an output policy map to an interface, use the following command. • Apply an input policy map to an interface.
• Each color map can only have one list of DSCP values for each color; any DSCP values previously listed for that color that are not in the new DSCP list are colored green. • If you configured a DSCP color map on an interface that does not exist or you delete a DSCP color map that is configured on an interface, that interface uses an all green color policy. To create a DSCP color map: 1. Create the color-aware map QoS DSCP color map. CONFIGURATION mode qos dscp-color-map color-map-name 2.
Display a specific DSCP color map. Dell# show qos dscp-color-map mapTWO Dscp-color-map mapTWO yellow 16,55 Displaying a DSCP Color Policy Configuration To display the DSCP color policy configuration for one or all interfaces, use the show qos dscpcolor-policy {summary [interface] | detail {interface}} command in EXEC mode. summary: Displays summary information about a color policy on one or more interfaces.
QoS rate adjustment is disabled by default. • Specify the number of bytes of packet overhead to include in rate limiting, policing, and shaping calculations. CONFIGURATION mode qos-rate-adjust overhead-bytes For example, to include the Preamble and SFD, type qos-rate-adjust 8. For variable length overhead fields, know the number of bytes you want to include. The default is disabled. The range is from 1 to 31.
Figure 108. Packet Drop Rate for WRED You can create a custom WRED profile or use one of the five pre-defined profiles. Table 64. Pre-Defined WRED Profiles Default Profile Name Minimum Threshold Maximum Threshold Maximum Drop Rate wred_drop 0 0 100 wred_teng_y 467 4671 100 wred_teng_g 467 4671 50 wred_fortyg_y 467 4671 50 wred_fortyg_g 467 4671 25 Creating WRED Profiles To create WRED profiles, use the following commands. 1. Create a WRED profile.
Applying a WRED Profile to Traffic After you create a WRED profile, you must specify to which traffic Dell Networking OS should apply the profile. Dell Networking OS assigns a color (also called drop precedence) — red, yellow, or green — to each packet based on it DSCP value before queuing it. DSCP is a 6–bit field. Dell Networking uses the first three bits (LSB) of this field (DP) to determine the drop precedence. • DP values of 110 and 100, 101 map to yellow; all other values map to green.
Out of Profile 0 Dell# Pre-Calculating Available QoS CAM Space Before Dell Networking OS version 7.3.1, there was no way to measure the number of CAM entries a policy-map would consume (the number of CAM entries that a rule uses is not predictable; from 1 to 16 entries might be used per rule depending upon its complexity). Therefore, it was possible to apply to an interface a policy-map that requires more entries than are available.
test cam-usage Example of the test cam-usage Command Dell# test cam-usage service-policy input pmap_l2 port-set 0 Port-pipe | CAM Partition | Available CAM | Estimated CAM | Status ===================================================================== 0 L2ACL 500 200 Allowed(2) Configuring Weights and ECN for WRED The WRED congestion avoidance functionality drops packets to prevent buffering resources from being consumed. Traffic is a mixture of various kinds of packets.
Global Service Pools With WRED and ECN Settings Support for global service pools is now available. You can configure global service pools that are shared buffer pools accessed by multiple queues when the minimum guaranteed buffers for the queue are consumed. S4820T platform support four global service-pools in the egress direction. Two service pools are used– one for loss-based queues and the other for lossless (priority-based flow control (PFC)) queues.
Queue Configuration Service-Pool Configuration WRED Threshold Relationship Q threshold = QT, Service pool threshold = SP-T Expected Functionality SP-T < Q-T SP based WRED, No ECN marking 1 1 0 X X 1 X Q-T < SP-T SP-T < Q-T Queue-based ECN marking above queue threshold. ECN marking to shared buffer limits of the service-pool and then packets are tail dropped. Same as above but ECN marking starts above SP-T.
mode Dell(conf) #service-pool wred green pool0 thresh-1 pool1 thresh-2 Dell(conf) #service-pool wred yellow pool0 thresh-3 pool1 thresh-4 Dell(conf) #service-pool wred weight pool0 11 pool1 4 5. Create a service class and associate the threshold weight of the shared buffer with each of the queues per port in the egress direction.
Sample configuration to mark non-ecn packets as “yellow” with Multiple traffic class Consider the example where there are no different traffic classes that is all the packets are egressing on the default ‘queue0’. Dell Networking OS can be configured as below to mark the non-ecn packets as yellow packets.
Until Release 9.3(0.0), support is available for classifying traffic based on the 6-bit DSCP field of the IPv4 packet. As a part of this feature, the 2-bit ECN field of the IPv4 packet will also be available to be configured as one of the match qualifier. This way the entire 8-bit ToS field of the IPv4 header shall be used to classify traffic. The Dell Networking OS Release 9.3(0.0) supports the following QOS actions in the ingress policy based QOS: 1. Rate Policing 2. Queuing 3.
• Classification based on ECN and DSCP concurrently You can now use the set-color yellow keyword with the match ip access-group command to mark the color of the traffic as ‘yellow’ would be added in the ‘match ip’ sequence of the class-map configuration. By default, all packets are considered as ‘green’ (without the rate-policer and trust-diffserve configuration) and hence support would be provided to mark the packets as ‘yellow’ alone will be provided.
match ip access-group dscp_40_non_ecn set-color yellow match ip access-group dscp_40 ! class-map match-any class_dscp_50 match ip access-group dscp_50_non_ecn set-color yellow match ip access-group dscp_50 ! policy-map-input pmap_dscp_40_50 service-queue 2 class-map class_dscp_40 service-queue 3 class-map class_dscp_50 Approach with explicit ECN match qualifiers for ECN packets: ! ip access-list standard dscp_50_ecn seq 5 permit any dscp 50 ecn 1 seq 10 permit any dscp 50 ecn 2 seq 15 permit any dscp 50 ec
Dell(conf)# interface fo 1/4 INTERFACE mode Dell(conf-if-fo-1/4)# ip address 90.1.1.1/16 2. Configure a Layer 2 QoS policy with Layer 2 (Dot1p or source MAC-based) match criteria. CONFIGURATION mode Dell(conf)# policy-map-input l2p layer2 3. Apply the Layer 2 policy on a Layer 3 interface.
6. Create an input policy map. CONFIGURATION mode Dell(conf)#policy-map-input pp_policmap 7. Create a service queue to associate the class map and QoS policy map.
Routing Information Protocol (RIP) 44 Routing information protocol (RIP) is supported on Dell Networking OS. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter. Protocol Overview RIP is the oldest interior gateway protocol. There are two versions of RIP: RIP version 1 (RIPv1) and RIP version 2 (RIPv2).
Implementation Information Dell Networking OS supports both versions of RIP and allows you to configure one version globally and the other version on interfaces or both versions on the interfaces. The following table lists the defaults for RIP in Dell Networking OS. Table 66.
Enabling RIP Globally By default, RIP is not enabled in Dell Networking OS. To enable RIP globally, use the following commands. 1. Enter ROUTER RIP mode and enable the RIP process on Dell Networking OS. CONFIGURATION mode router rip 2. Assign an IP network address as a RIP network to exchange routing information.
192.162.2.0/24 [120/1] via 29.10.10.12, 00:01:21, Fa 1/4 192.162.2.0/24 auto-summary 192.161.1.0/24 [120/1] via 29.10.10.12, 00:00:27, Fa 1/4 192.161.1.0/24 auto-summary 192.162.3.0/24 [120/1] via 29.10.10.12, 00:01:22, Fa 1/4 192.162.3.0/24 auto-summary Dell#show ip rip database Total number of routes in RIP database: 978 160.160.0.0/16 [120/1] via 29.10.10.12, 00:00:26, Fa 1/49 160.160.0.0/16 auto-summary 2.0.0.0/8 [120/1] via 29.10.10.12, 00:01:22, Fa 1/49 2.0.0.0/8 auto-summary 4.0.0.0/8 [120/1] via 29.
Controlling RIP Routing Updates By default, RIP broadcasts routing information out all enabled interfaces, but you can configure RIP to send or to block RIP routing information, either from a specific IP address or a specific interface. To control which devices or interfaces receive routing updates, configure a direct update to one router and configure interfaces to block RIP updates from other sources. To control the source of RIP route information, use the following commands.
redistribute {connected | static} [metric metric-value] [route-map map-name] – metric-value: the range is from 0 to 16. • – map-name: the name of a configured route map. Include IS-IS routes in RIP. ROUTER RIP mode redistribute isis [level-1 | level-1-2 | level-2] [metric metric-value] [route-map map-name] – metric-value: the range is from 0 to 16. • – map-name: the name of a configured route map. Include specific OSPF routes in RIP.
The following example shows the RIP configuration after the ROUTER RIP mode version command is set to RIPv2. When you set the ROUTER RIP mode version command, the interface (TenGigabitEthernet 1/1) participating in the RIP process is also set to send and receive RIPv2 (shown in bold). To view the routing protocols configuration, use the show ip protocols command in EXEC mode.
Dell# Generating a Default Route Traffic is forwarded to the default route when the traffic’s network is not explicitly listed in the routing table. Default routes are not enabled in RIP unless specified. Use the default-information originate command in ROUTER RIP mode to generate a default route into RIP. In Dell Networking OS, default routes received in RIP updates from other routes are advertised if you configure the defaultinformation originate command.
• Apply a weight to all routes or a specific route and ACL. ROUTER RIP mode distance weight [ip-address mask [access-list-name]] Configure the following parameters: – weight: the range is from 1 to 255. The default is 120. – ip-address mask: the IP address in dotted decimal format (A.B.C.D), and the mask in slash format (/x). • – access-list-name: the name of a configured IP ACL. Apply an additional number to the incoming or outgoing route metrics.
• • • RIP Configuration on Core 3 Core 3 RIP Output RIP Configuration Summary Figure 109. RIP Topology Example RIP Configuration on Core2 The following example shows how to configure RIPv2 on a host named Core2. Example of Configuring RIPv2 on Core 2 Core2(conf-if-te-2/3)# Core2(conf-if-te-2/3)#router rip Core2(conf-router_rip)#ver 2 Core2(conf-router_rip)#network 10.200.10.0 Core2(conf-router_rip)#network 10.300.10.0 Core2(conf-router_rip)#network 10.11.10.0 Core2(conf-router_rip)#network 10.11.20.
10.0.0.0/8 auto-summary 192.168.1.0/24 [120/1] via 10.11.20.1, 00:00:03, TenGigabitEthernet 2/3 192.168.1.0/24 auto-summary 192.168.2.0/24 [120/1] via 10.11.20.1, 00:00:03, TenGigabitEthernet 2/3 192.168.2.0/24 auto-summary Core2# The following example shows the show ip route command to show the RIP setup on Core 2.
Gateway 10.11.20.1 Distance 120 Last Update 00:00:12 Distance: (default is 120) Core2# RIP Configuration on Core3 The following example shows how to configure RIPv2 on a host named Core3. Example of Configuring RIPv2 on Core3 Core3(conf-if-te-3/21)#router rip Core3(conf-router_rip)#version 2 Core3(conf-router_rip)#network 192.168.1.0 Core3(conf-router_rip)#network 192.168.2.0 Core3(conf-router_rip)#network 10.11.30.0 Core3(conf-router_rip)#network 10.11.20.
O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Dist/Metric Last Change ----------- ------- --------------------R 10.11.10.0/24 via 10.11.20.2, Te 3/21 120/1 00:01:14 C 10.11.20.0/24 Direct, Te 3/21 0/0 00:01:53 C 10.
ip address 10.11.20.2/24 no shutdown ! interface TenGigabitEthernet 2/4 ip address 10.200.10.1/24 no shutdown ! interface TenGigabitEthernet 2/5 ip address 10.250.10.1/24 no shutdown router rip version 2 10.200.10.0 10.300.10.0 10.11.10.0 10.11.20.0 The following example shows viewing the RIP configuration on Core 3. ! interface TenGigabitEthernet 3/1 ip address 10.11.30.1/24 no shutdown ! interface TenGigabitEthernet 3/2 ip address 10.11.20.
45 Remote Monitoring (RMON) Remote monitoring (RMON) is supported on Dell Networking OS. RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell Networking Ethernet interfaces. RMON operates with the simple network management protocol (SNMP) and monitors all nodes on a local area network (LAN) segment.
• RPM Down, RPM Failover — Master and standby route processor modules (RPMs) run the RMON sampling process in the background. Therefore, when an RPM goes down, the other RPM maintains the sampled data — the new master RPM provides the same sampled data as did the old master — as long as the master RPM had been running long enough to sample all the data. NMS backs up all the long-term data collection and displays the failover downtime from the performance graph.
– owner string: (Optional) specifies an owner for the alarm, this setting is the alarmOwner object in the alarmTable of the RMON MIB. Default is a null-terminated string. Example of the rmon alarm Command To disable the alarm, use the no form of the command. The following example configures RMON alarm number 10. The alarm monitors the MIB variable 1.3.6.1.2.1.2.2.1.20.1 (ifEntry.ifOutErrors) once every 20 seconds until the alarm is disabled, and checks the rise or fall of the variable.
Configuring RMON Collection Statistics To enable RMON MIB statistics collection on an interface, use the RMON collection statistics command in INTERFACE CONFIGURATION mode. • Enable RMON MIB statistics collection. CONFIGURATION INTERFACE (config-if) mode [no] rmon collection statistics {controlEntry integer} [owner ownername] – controlEntry: specifies the RMON group of statistics using a value. – integer: a value from 1 to 65,535 that identifies the RMON Statistics Table.
The following command example enables an RMON MIB collection history group of statistics with an ID number of 20 and an owner of john, both the sampling interval and the number of buckets use their respective defaults.
Rapid Spanning Tree Protocol (RSTP) 46 Rapid spanning tree protocol (RSTP) is supported on Dell Networking OS. Protocol Overview RSTP is a Layer 2 protocol — specified by IEEE 802.1w — that is essentially the same as spanning-tree protocol (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). The Dell Networking OS supports three other variations of spanning tree, as shown in the following table. Table 67.
Important Points to Remember • RSTP is disabled by default. • Dell Networking OS supports only one Rapid Spanning Tree (RST) instance. • All interfaces in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the RST topology. • Adding a group of ports to a range of VLANs sends multiple messages to the rapid spanning tree protocol (RSTP) task, avoid using the range command.
INTERFACE mode no shutdown Example of Verifying an Interface is in Layer 2 Mode and Enabled To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. The bold lines indicate that the interface is in Layer 2 mode. Enabling Rapid Spanning Tree Protocol Globally Enable RSTP globally on all participating bridges; it is not enabled by default.
Figure 110. Rapid Spanning Tree Enabled Globally To view the interfaces participating in RSTP, use the show spanning-tree rstp command from EXEC privilege mode. If a physical interface is part of a port channel, only the port channel is listed in the command output. Dell#show spanning-tree rstp Root Identifier has priority 32768, Address 0001.e801.cbb4 Root Bridge hello time 2, max age 20, forward delay 15, max hops 0 Bridge Identifier has priority 32768, Address 0001.e801.
BPDU : sent 121, received 2 The port is not in the Edge port mode Port 379 (TenGigabitEthernet 2/3) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.379 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.
Modifying Global Parameters You can modify RSTP parameters. The root bridge sets the values for forward-delay, hello-time, and max-age and overwrites the values set on other bridges participating in the Rapid Spanning Tree group. • Forward-delay — the amount of time an interface waits in the Listening state and the Learning state before it transitions to the Forwarding state. • Hello-time — the time interval in which the bridge sends RSTP BPDUs.
NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • The default is 2 seconds. Change the max-age parameter. PROTOCOL SPANNING TREE RSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree rstp command from EXEC privilege mode.
To view the current values for interface parameters, use the show spanning-tree rstp command from EXEC privilege mode. Enabling SNMP Traps for Root Elections and Topology Changes To enable SNMP traps collectively, use this command. Enable SNMP traps for RSTP, MSTP, and PVST+ collectively. snmp-server enable traps xstp Influencing RSTP Root Selection RSTP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it is selected as the root bridge.
• If the interface to be shut down is a port channel, all the member ports are disabled in the hardware. • When you add a physical port to a port channel already in the Error Disable state, the new member port is also disabled in the hardware. • When you remove a physical port from a port channel in the Error Disable state, the error disabled state is cleared on this physical port (the physical port is enabled in the hardware).
The range is from 50 to 950 milliseconds. Example of Verifying Hello-Time Interval Dell(conf-rstp)#do show spanning-tree rstp brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 0, Address 0001.e811.2233 Root Bridge hello time 50 ms, max age 20, forward delay 15 Bridge ID Priority 0, Address 0001.e811.2233 We are the root Configured hello time 50 ms, max age 20, forward delay 15 NOTE: The hello time is encoded in BPDUs in increments of 1/256ths of a second.
Software-Defined Networking (SDN) 47 Dell Networking operating software supports Software-Defined Networking (SDN). For more information, refer to the SDN Deployment Guide.
Security 48 Security features are supported on Dell Networking OS. This chapter describes several ways to provide security to the Dell Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell Networking OS Command Reference Guide. AAA Accounting Accounting, authentication, and authorization (AAA) accounting is part of the AAA security model.
– system: sends accounting information of any other AAA configuration. – exec: sends accounting information when a user has logged in to EXEC mode. – command level: sends accounting of commands executed at the specified privilege level. – suppress: Do not generate accounting records for a specific type of user. – default | name: enter the name of a list of accounting methods.
CONFIG-LINE-VTY mode accounting commands 15 com15 accounting exec execAcct Example of Enabling AAA Accounting with a Named Method List Dell(config-line-vty)# accounting commands 15 com15 Dell(config-line-vty)# accounting exec execAcct Monitoring AAA Accounting Dell Networking OS does not support periodic interim accounting because the periodic command can cause heavy congestion when many users are logged in to the network. No specific show command exists for TACACS+ accounting.
NOTE: RADIUS and TACACS servers support VRF-awareness functionality. You can create RADIUS and TACACS groups and then map multiple servers to a group. The group to which you map multiple servers is bound to a single VRF. Configuration Task List for AAA Authentication The following sections provide the configuration tasks.
3. Assign a method-list-name or the default list to the terminal line. LINE mode login authentication {method-list-name | default} To view the configuration, use the show config command in LINE mode or the show runningconfig in EXEC Privilege mode. NOTE: Dell Networking recommends using the none method only as a backup. This method does not authenticate users. The none and enable methods do not work with secure shell (SSH). You can create multiple method lists and assign them to different terminal lines.
The following example shows enabling authentication from the RADIUS server. Dell(config)# aaa authentication enable default radius tacacs Radius and TACACS server has to be properly setup for this. Dell(config)# radius-server host x.x.x.x key Dell(config)# tacacs-server host x.x.x.x key To use local authentication for enable secret on the console, while using remote authentication on VTY lines, issue the following commands.
Example of Obscuring Password and Keys Dell(config)# service obscure-passwords AAA Authorization Dell Networking OS enables AAA new-model by default. You can set authorization to be either local or remote. Different combinations of authentication and authorization yield different results. By default, Dell Networking OS sets both to local. Privilege Levels Overview Limiting access to the system is one method of protecting the system and your network.
• Specifying LINE Mode Password and Privilege (optional) • Enabling and Disabling Privilege Levels (optional) For a complete listing of all commands related to Dell Networking OS privilege levels and passwords, refer to the Security chapter in the Dell Networking OS Command Reference Guide. Configuring a Username and Password In Dell Networking OS, you can assign a specific username to limit user access to the system. To configure a username and password, use the following command.
In custom-configured privilege levels, the enable command is always available. No matter what privilege level you entered Dell Networking OS, you can enter the enable 15 command to access and configure all CLIs. Configuring Custom Privilege Levels In addition to assigning privilege levels to the user, you can configure the privilege levels of commands so that they are visible in different privilege levels. Within Dell Networking OS, commands have certain privilege levels.
• mode: enter a keyword for the modes (exec, configure, interface, line, route-map, or router) • • level level: the range is from 0 to 15. Levels 0, 1, and 15 are pre-configured. Levels 2 to 14 are available for custom configuration. command: an Dell Networking OS CLI keyword (up to five keywords allowed). • reset: return the command to its default privilege mode. Examples of Privilege Level Commands To view the configuration, use the show running-config command in EXEC Privilege mode.
show terminal traceroute Dell#confi Dell(conf)#? end exit no snmp-server Dell(conf)# Show running system information Set terminal line parameters Trace route to destination Exit from Configuration mode Exit from Configuration mode Reset a command Modify SNMP parameters Specifying LINE Mode Password and Privilege You can specify a password authentication of all users on different terminal lines.
Resetting a Z9000 Password To reset a password on a Z9000 system, follow these steps. 1. Connect to the Z9000 system using a console. 2. Disconnect and reconnect the power cord on the system to cycle the power. 3. During system boot, press ESC when prompted to display the Grub Menu (see Example 1). 4. During system boot, press ESC when prompted during the countdown to stop the auto-boot process (see Example 2). 5. Press C to access the Grub boot loader command line prompt. 6.
RADIUS Remote authentication dial-in user service (RADIUS) is a distributed client/server protocol. This protocol transmits authentication, authorization, and configuration information between a central RADIUS server and a RADIUS client (the Dell Networking system). The system sends user information to the RADIUS server and requests authentication of the user and password. The RADIUS server returns one of the following responses: • Access-Accept — the RADIUS server authenticates the user.
Auto-Command You can configure the system through the RADIUS server to automatically execute a command when you connect to a specific line. The auto-command command is executed when the user is authenticated and before the prompt appears to the user. • Automatically execute a command. auto-command Privilege Levels Through the RADIUS server, you can configure a privilege level for the user to enter into when they connect to a session. This value is configured on the client system. • Set a privilege level.
• Create a method list with RADIUS and TACACS+ as authorization methods. CONFIGURATION mode aaa authorization exec {method-list-name | default} radius tacacs+ Typical order of methods: RADIUS, TACACS+, Local, None. If RADIUS denies authorization, the session ends (RADIUS must not be the last method specified). Applying the Method List to Terminal Lines To enable RADIUS AAA login authentication for a method list, apply it to a terminal line.
To specify multiple RADIUS server hosts, configure the radius-server host command multiple times. If you configure multiple RADIUS server hosts, Dell Networking OS attempts to connect with them in the order in which they were configured. When Dell Networking OS attempts to authenticate a user, the software connects with the RADIUS server hosts one at a time, until a RADIUS server host responds with an accept or reject response.
Monitoring RADIUS To view information on RADIUS transactions, use the following command. • View RADIUS transactions to troubleshoot problems. EXEC Privilege mode debug radius TACACS+ Dell Networking OS supports terminal access controller access control system (TACACS+ client, including support for login authentication. Configuration Task List for TACACS+ The following list includes the configuration task for TACACS+ functions.
4. Assign the method-list to the terminal line. LINE mode login authentication {method-list-name | default} Example of a Failed Authentication To view the configuration, use the show config in LINE mode or the show running-config tacacs + command in EXEC Privilege mode. If authentication fails using the primary method, Dell Networking OS employs the second method (or third method, if necessary) automatically.
TACACS+ Remote Authentication When configuring a TACACS+ server host, you can set different communication parameters, such as the key password. Example of Specifying a TACACS+ Server Host Dell(conf)# Dell(conf)#aaa authentication login tacacsmethod tacacs+ Dell(conf)#aaa authentication exec tacacsauthorization tacacs+ Dell(conf)#tacacs-server host 25.1.1.
Command Authorization The AAA command authorization feature configures Dell Networking OS to send each configuration command to a TACACS server for authorization before it is added to the running configuration. By default, the AAA authorization commands configure the system to check both EXEC mode and CONFIGURATION mode commands. Use the no aaa authorization config-commands command to enable only EXEC mode command checking.
Specifying an SSH Version The following example uses the ip ssh server version 2 command to enable SSH version 2 and the show ip ssh command to confirm the setting. Dell(conf)#ip ssh server version 2 Dell(conf)#do show ip ssh SSH server : enabled. SSH server version : v2. SSH server vrf : default. SSH server ciphers : 3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,aes128ctr,aes192-ctr,aes256-ctr. SSH server macs : hmac-md5,hmac-md5-96,hmac-sha1,hmac-sha1-96,hmacsha2-256,hmac-sha2-256-96.
Configuring When to Re-generate an SSH Key You can configure the time-based or volume-based rekey threshold for an SSH session. If both threshold types are configured, the session rekeys when either one of the thresholds is reached. To configure the time or volume rekey threshold at which to re-generate the SSH key during an SSH session, use the ip ssh rekey [time rekey-interval] [volume rekey-limit] command. CONFIGURATION mode.
The following example shows you how to configure a key exchange algorithm. Dell(conf)# ip ssh server hellman-group14-sha1 kex diffie-hellman-group-exchange-sha1 diffie- Configuring the HMAC Algorithm for the SSH Server To configure the HMAC algorithm for the SSH server, use the ip ssh server mac hmac-algorithm command in CONFIGURATION mode. hmac-algorithm: Enter a space-delimited list of keyed-hash message authentication code (HMAC) algorithms supported by the SSH server.
• aes192-cbc • aes256-cbc • aes128-ctr • aes192-ctr • aes256-ctr The default cipher list is 3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,aes128-ctr,aes192-ctr,aes256-ctr Example of Configuring a Cipher List The following example shows you how to configure a cipher list. Dell(conf)#ip ssh server cipher 3des-cbc aes128-cbc aes128-ctr Secure Shell Authentication Secure Shell (SSH) is enabled by default using the SSH Password Authentication method.
Using RSA Authentication of SSH The following procedure authenticates an SSH client based on an RSA key using RSA authentication. This method uses SSH version 2. 1. On the SSH client (Unix machine), generate an RSA key, as shown in the following example. 2. Copy the public key id_rsa.pub to the Dell Networking system. 3. Disable password authentication if enabled. CONFIGURATION mode no ip ssh password-authentication enable 4. Bind the public keys to RSA authentication.
CONFIGURATION mode ip ssh hostbased-authentication enable 7. Bind shosts and rhosts to host-based authentication. CONFIGURATION mode ip ssh pub-key-file flash://filename or ip ssh rhostsfile flash://filename Examples of Creating shosts and rhosts The following example shows creating shosts. admin@Unix_client# cd /etc/ssh admin@Unix_client# ls moduli sshd_config ssh_host_dsa_key.pub ssh_host_key.pub ssh_host_rsa_key.
Troubleshooting SSH To troubleshoot SSH, use the following information. You may not bind id_rsa.pub to RSA authentication while logged in via the console. In this case, this message displays:%Error: No username set for this term. Enable host-based authentication on the server (Dell Networking system) and the client (Unix machine). The following message appears if you attempt to log in via SSH and host-based is disabled on the client.
• • VTY Line Local Authentication and Authorization VTY Line Remote Authentication and Authorization VTY Line Local Authentication and Authorization Dell Networking OS retrieves the access class from the local database. To use this feature: 1. Create a username. 2. Enter a password. 3. Assign an access class. 4. Enter a privilege level. You can assign line authentication on a per-VTY basis; it is a simple password authentication, using an access-class as authorization.
Example of Configuring VTY Authorization Based on Access Class Retrieved from the Line (Per Network Address) Dell(conf)#ip access-list standard deny10 Dell(conf-ext-nacl)#permit 10.0.0.0/8 Dell(conf-ext-nacl)#deny any Dell(conf)# Dell(conf)#aaa authentication login tacacsmethod tacacs+ Dell(conf)#tacacs-server host 256.1.1.
• Role Accounting • Configuring AAA Authentication for Roles • Configuring AAA Authorization for Roles • Configuring an Accounting for Roles • Applying an Accounting Method to a Role • Displaying Active Accounting Sessions for Roles • Configuring TACACS+ and RADIUS VSA Attributes for RBAC • Displaying User Roles • Displaying Accounting for User Roles • Displaying Information About Roles Logged into the Switch • Display Role Permissions Assigned to a Command Overview of RBAC With Role-B
Configuring Role-based Only AAA Authorization You can configure authorization so that access to commands is determined only by the user’s role. If the user has no user role, access to the system is denied as the user will not be able to login successfully.
line vty 0 login authentication test authorization exec test line vty 1 login authentication test authorization exec test To enable role-based only AAA authorization: Dell(conf)#aaa authorization role-only System-Defined RBAC User Roles By default, the Dell Networking OS provides 4 system defined user roles. You can create up to 8 additional user roles. NOTE: You cannot delete any system defined roles.
• Modifying Command Permissions for Roles • Adding and Deleting Users from a Role Creating a New User Role Instead of using the system defined user roles, you can create a new user role that best matches your organization. When you create a new user role, you can first inherit permissions from one of the system defined roles. Otherwise you would have to create a user role’s command permissions from scratch. You then restrict commands or add commands to that role.
Authorization Mode: role or privilege Role Inheritance Modes netoperator netadmin secadmin sysadmin Protocol MAC.
Example: Allow Security Administrator to Access Interface Mode The following example allows the security administrator (secadmin) to access Interface mode.
By default, the system defined role, secadmin, is not allowed to configure protocols. The following example first grants the secadmin role to configure protocols and then removes access to configure protocols. Dell(conf)#role configure addrole secadmin protocol Dell(conf)#role configure deleterole secadmin protocol Example: Resets Only the Security Administrator role to its original setting. The following example resets only the secadmin role to its original setting.
When role-based only AAA authorization is enabled, the enable, line, and none methods are not available. Each of these three methods allows users to be verified with either a password that is not specific to their user ID or with no password at all. Because of the lack of security these methods are not available for role only mode. When the system is in role-only mode, users that have only privilege levels are denied access to the system because they do not have a role.
aaa accounting commands role netadmin ucraaa start-stop tacacs+ ! The following configuration example applies a method list other than default to each VTY line. NOTE: Note that the methods were not applied to the console so the default methods (if configured) are applied there.
“attribute” and “value” are an attribute-value (AV) pair defined in the Dell Network OS TACACS+ specification, and “sep” is “=”. These attributes allow the full set of features available for TACACS+ authorization and are authorized with the same attributes for RADIUS. Example for Configuring a VSA Attribute for a Privilege Level 15 The following example configures an AV pair which allows a user to login from a network access server with a privilege level of 15, to have access to EXEC commands.
Applying an Accounting Method to a Role To apply an accounting method list to a role executed by a user with that user role, use the accounting command in LINE mode. accounting {exec | commands {level | role role-name}} method-list Example of Applying an Accounting Method to a Role The following example applies the accounting default method to the user role secadmin (security administrator).
Protocol MAC testadmin netadmin Protocol MAC Exec Config Interface Line Router IP Routemap Displaying Role Permissions Assigned to a Command To display permissions assigned to a command, use the show role command in EXEC Privilege mode. The output displays the user role and or permission level.
Service Provider Bridging 49 Service provider bridging is supported on Dell Networking OS. VLAN Stacking VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.1Q architecture to offer separate VLANs to customers with no coordination between customers, and minimal coordination between customers and the provider. Using only 802.
Figure 111. VLAN Stacking in a Service Provider Network Important Points to Remember • Interfaces that are members of the Default VLAN and are configured as VLAN-Stack access or trunk ports do not switch untagged traffic. To switch traffic, add these interfaces to a non-default VLANStack-enabled VLAN. • Dell Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN.
Configure VLAN Stacking Configuring VLAN-Stacking is a three-step process. 1. Creating Access and Trunk Ports 2. Assign access and trunk ports to a VLAN (Creating Access and Trunk Ports). 3. Enabling VLAN-Stacking for a VLAN.
interface TenGigabitEthernet 1/2 no ip address switchport vlan-stack trunk no shutdown Enable VLAN-Stacking for a VLAN To enable VLAN-Stacking for a VLAN, use the following command. • Enable VLAN-Stacking for the VLAN. INTERFACE VLAN mode vlan-stack compatible Example of Viewing VLAN Stack Member Status To display the status and members of a VLAN, use the show vlan command from EXEC Privilege mode. Members of a VLAN-Stacking-enabled VLAN are marked with an M in column Q.
To configure trunk ports, use the following commands. 1. Configure a trunk port to carry untagged, single-tagged, and double-tagged traffic by making it a hybrid port. INTERFACE mode portmode hybrid NOTE: You can add a trunk port to an 802.1Q VLAN as well as a Stacking VLAN only when the TPID 0x8100. 2. Add the port to a 802.1Q VLAN as tagged or untagged.
Example of Debugging a VLAN and its Ports The port notations are as follows: • MT — stacked trunk • MU — stacked access port • T — 802.1Q trunk port • U — 802.
untagged traffic and maps each to the appropriate VLAN, as shown by the packet originating from Building A. Therefore, a mismatched TPID results in the port not differentiating between tagged and untagged traffic. Figure 112.
Figure 113.
Figure 114. Single and Double-Tag TPID Mismatch The following table details the outcome of matched and mismatched TPIDs in a VLAN-stacking network with the S-Series. Table 70. Behaviors for Mismatched TPID Network Position Incoming Packet TPID System TPID Match Type Pre-Version 8.2.1.0 Version 8.2.1.
Network Position Core Egress Access Point Incoming Packet TPID System TPID Match Type Pre-Version 8.2.1.0 Version 8.2.1.
• Make packets eligible for dropping based on their DEI value. CONFIGURATION mode dei enable By default, packets are colored green, and DEI is marked 0 on egress. Honoring the Incoming DEI Value To honor the incoming DEI value, you must explicitly map the DEI bit to an Dell Networking OS drop precedence. Precedence can have one of three colors. Precedence Description Green High-priority packets that are the least preferred to be dropped. Yellow Lower-priority packets that are treated as best-effort.
Example of Viewing DEI-Marking Configuration To display the DEI-marking configuration, use the show interface dei-mark [interface slot/ port | linecard number port-set number] in EXEC Privilege mode.
configuration, the queue selected by Dynamic Mode CoS takes precedence. However, rate policing for the queue is determined by QoS configuration. For example, the following access-port configuration maps all traffic to Queue 0: vlan-stack dot1p-mapping c-tag-dot1p 0-7 sp-tag-dot1p 1 However, if the following QoS configuration also exists on the interface, traffic is queued to Queue 0 but is policed at 40Mbps (qos-policy-input for queue 3) because class-map "a" of Queue 3 also matches the traffic.
cam-acl l2acl number ipv4acl number ipv6acl number ipv4qos number l2qos number l2pt number ipmacacl number ecfmacl number {vman-qos | vman-qos-dualfp} number • vman-qos: mark the S-Tag dot1p and queue the frame according to the original C-Tag dot1p. This method requires half as many CAM entries as vman-qos-dual-fp. • vman-qos-dual-fp: mark the S-Tag dot1p and queue the frame according to the S-Tag dot1p. This method requires twice as many CAM entries as vman-qos and FP blocks in multiples of 2.
Figure 116. VLAN Stacking without L2PT You might need to transport control traffic transparently through the intermediate network to the other region. Layer 2 protocol tunneling enables BPDUs to traverse the intermediate network by identifying frames with the Bridge Group Address, rewriting the destination MAC to a user-configured non-reserved address, and forwarding the frames.
the intermediate network because only Dell Networking OS could recognize the significance of the destination MAC address and rewrite it to the original Bridge Group Address. In Dell Networking OS version 8.2.1.0 and later, the L2PT MAC address is user-configurable, so you can specify an address that non-Dell Networking systems can recognize and rewrite the address at egress edge. Figure 117. VLAN Stacking with L2PT Implementation Information • L2PT is available for STP, RSTP, MSTP, and PVST+ BPDUs.
Enabling Layer 2 Protocol Tunneling To enable Layer 2 protocol tunneling, use the following command. 1. Verify that the system is running the default CAM profile. Use this CAM profile for L2PT. EXEC Privilege mode show cam-profile 2. Enable protocol tunneling globally on the system. CONFIGURATION mode protocol-tunnel enable 3. Tunnel BPDUs the VLAN.
4. Set a maximum rate at which the RPM processes BPDUs for L2PT. VLAN STACKING mode protocol-tunnel rate-limit The default is: no rate limiting. The range is from 64 to 320 kbps. Debugging Layer 2 Protocol Tunneling To debug Layer 2 protocol tunneling, use the following command. • Display debugging information for L2PT. EXEC Privilege mode debug protocol-tunnel Provider Backbone Bridging IEEE 802.1ad—Provider Bridges amends 802.
sFlow 50 Configuring sFlow is supported on Dell Networking OS. Overview The Dell Networking Operating System (OS) supports sFlow version 5. sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic. It is designed to provide traffic monitoring for high-speed networks with many switches and routers. sFlow uses two types of sampling: • Statistical packet-based sampling of switched or routed packet flows.
Important Points to Remember • The Dell Networking OS implementation of the sFlow MIB supports sFlow configuration via snmpset. • By default, sFlow collection is supported only on data ports. If you want to enable sFlow collection through management ports, use the management egress-interface-selection and application sflow-collector commands in Configuration and EIS modes respectively. • Dell Networking OS exports all sFlow packets to the collector.
1 collectors configured Collector IP addr: 100.1.1.1, Agent IP addr: 1.1.1.2, UDP port: 6343 VRF: Default 0 UDP packets exported 0 UDP packets dropped 0 sFlow samples collected stack-unit 0 Port set 0 Te 1/1: configured rate 16384, actual rate 16384 Dell# If you did not enable any extended information, the show output displays the following (shown in bold).
• View the maximum header size of a packet. show running-config sflow Example of the show sflow command when the sflow max-header-size extended is configured globally Dell(conf-if-te-1/10)#show sflow sFlow services are enabled Egress Management Interface sFlow services are disabled Global default sampling rate: 32768 Global default counter polling interval: 86400 Global default extended maximum header size: 256 bytes Global extended information enabled: none 1 collectors configured Collector IP addr: 100.
Displaying Show sFlow Global To view sFlow statistics, use the following command. • Display sFlow configuration information and statistics. EXEC mode show sflow Example of Viewing sFlow Configuration (Global) The first bold line indicates sFlow is globally enabled. The second bold lines indicate sFlow is enabled on Te 1/16 and Te 1/17 Dell#show sflow sFlow services are enabled Global default sampling rate: 32768 Global default counter polling interval: 20 1 collectors configured Collector IP addr: 133.33.
ip mtu 9234 switchport sflow ingress-enable sflow sample-rate 8192 no shutdown Displaying Show sFlow on a Stack-unit To view sFlow statistics on a specified stack-unit, use the following command. • Display sFlow configuration information and statistics on the specified interface.
– interval value: in seconds. The range is from 15 to 86400 seconds. The default is 20 seconds. Back-Off Mechanism If the sampling rate for an interface is set to a very low value, the CPU can get overloaded with flow samples under high-traffic conditions. In such a scenario, a binary back-off mechanism gets triggered, which doubles the sampling-rate (halves the number of samples per second) for all interfaces. The backoff mechanism continues to double the sampling-rate until the CPU condition is cleared.
1 collectors configured Collector IP addr: 100.1.1.1, Agent IP addr: 1.1.1.2, UDP port: 6343 VRF: Default 0 UDP packets exported 0 UDP packets dropped 0 sFlow samples collected stack-unit 0 Port set 0 Te 1/1: configured rate 16384, actual rate 16384 Dell# If you did not enable any extended information, the show output displays the following (shown in bold).
IP SA IP DA srcAS and srcPeerAS dstAS and dstPeerAS Description Exported Exported version 7.8.1.0, extended gateway data is not exported because IP DA is not learned via BGP. Version 7.8.1.0 allows extended gateway information in cases where the source and destination IP addresses are learned by different routing protocols, and for cases where is source is reachable over ECMP. BGP sFlow BGP Exported Exported Extended gateway data is packed.
51 Simple Network Management Protocol (SNMP) Simple network management protocol (SNMP) is supported on Dell Networking OS. NOTE: On Dell Networking routers, standard and private SNMP management information bases (MIBs) are supported, including all Get and a limited number of Set operations (such as set vlan and copy cmd). Protocol Overview Network management stations use SNMP to retrieve or alter management data from network elements.
The SNMPv3 feature also uses a FIPS-validated cryptographic module for all of its cryptographic operations when the system is configured with the fips mode enable command in Global Configuration mode. When the FIPS mode is enabled on the system, SNMPv3 operates in a FIPScompliant manner, and only the FIPS-approved algorithm options are available for SNMPv3 user configuration. When the FIPS mode is disabled on the system, all options are available for SNMPv3 user configuration.
Configuration Task List for SNMP Configuring SNMP version 1 or version 2 requires a single step. NOTE: The configurations in this chapter use a UNIX environment with net-snmp version 5.4. This environment is only one of many RFC-compliant SNMP utilities you can use to manage your Dell Networking system using SNMP. Also, these configurations use SNMP version 2c. • Creating a Community Configuring SNMP version 3 requires configuring SNMP users in one of three methods.
Creating a Community For SNMPv1 and SNMPv2, create a community to enable the community-based security in Dell Networking OS. The management station generates requests to either retrieve or alter the value of a management object and is called the SNMP manager. A network element that processes SNMP requests is called an SNMP agent. An SNMP community is a group of SNMP agents and managers that are allowed to interact.
• snmp-server group group-name 3 noauth auth read name write name Configure an SNMPv3 view. CONFIGURATION mode snmp-server view view-name oid-tree {included | excluded} NOTE: To give a user read and write view privileges, repeat this step for each privilege type. • Configure the user with an authorization password (password privileges only). CONFIGURATION mode • snmp-server user name group-name 3 noauth auth md5 auth-password Configure an SNMP group (password privileges only).
• Read the value of a single managed object. • snmpget -v version -c community agent-ip {identifier.instance | descriptor.instance} Read the value of the managed object directly below the specified object. • snmpgetnext -v version -c community agent-ip {identifier.instance | descriptor.instance} Read the value of many objects at once. snmpwalk -v version -c community agent-ip {identifier.instance | descriptor.
Configuring Contact and Location Information using SNMP You may configure system contact and location information from the Dell Networking system or from the management station using SNMP. To configure system contact and location information from the Dell Networking system and from the management station using SNMP, use the following commands. • (From a Dell Networking system) Identify the system manager along with this person’s contact information (for example, an email address or phone number).
Subscribing to Managed Object Value Updates using SNMP By default, the Dell Networking system displays some unsolicited SNMP messages (traps) upon certain events and conditions. You can also configure the system to send the traps to a management station. Traps cannot be saved on the system. Dell Networking OS supports the following three sets of traps: • • • RFC 1157-defined traps — coldStart, warmStart, linkDown, linkUp, authenticationFailure, and egpNeighbborLoss.
snmp coldstart snmp linkdown snmp linkup SNMP_COLD_START: Agent Initialized - SNMP COLD_START. SNMP_WARM_START:Agent Initialized - SNMP WARM_START. PORT_LINKDN:changed interface state to down:%d PORT_LINKUP:changed interface state to up:%d Enabling a Subset of SNMP Traps You can enable a subset of Dell Networking enterprise-specific SNMP traps using one of the following listed command options. To enable a subset of Dell Networking enterprise-specific SNMP traps, use the following command.
envmon fan FAN_TRAY_BAD: Major alarm: fantray %d is missing or down FAN_TRAY_OK: Major alarm cleared: fan tray %d present FAN_BAD: Minor alarm: some fans in fan tray %d are down FAN_OK: Minor alarm cleared: all fans in fan tray %d are good vlt Enable VLT traps. vrrp Enable VRRP state change traps xstp %SPANMGR-5-STP_NEW_ROOT: New Spanning Tree Root, Bridge ID Priority 32768, Address 0001.e801.fc35.
threshold alarm from SNMP OID Copy Configuration Files Using SNMP To do the following, use SNMP from a remote client. • copy the running-config file to the startup-config file • copy configuration files from the Dell Networking system to a server • copy configuration files from a server to the Dell Networking system You can perform all of these tasks using IPv4 or IPv6 addresses.
MIB Object OID Object Values Description copyDestFileType . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.5 1 = Dell Networking OS file Specifies the type of file to copy to. 2 = running-config • 3 = startup-config • copyDestFileLocation . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.6 1 = flash 2 = slot0 If copySourceFileType is running-config or startup-config, the default copyDestFileLocatio n is flash. If copyDestFileType is a binary, you must specify copyDestFileLocatio n and copyDestFileName.
Copying a Configuration File To copy a configuration file, use the following commands. NOTE: In UNIX, enter the snmpset command for help using the following commands. Place the f10-copy-config.mib file in the directory from which you are executing the snmpset command or in the snmpset tool path. 1. Create an SNMP community string with read/write privileges. CONFIGURATION mode snmp-server community community-name rw 2. Copy the f10-copy-config.
• Copy the running-config to the startup-config from the UNIX machine. snmpset -v 2c -c public force10system-ip-address copySrcFileType.index i 2 copyDestFileType.index i 3 Examples of Copying Configuration Files The following examples show the command syntax using MIB object names and the same command using the object OIDs. In both cases, a unique index number follows the object. The following example shows copying configuration files using MIB object names. > snmpset -v 2c -r 0 -t 60 -c private -m .
copyUserName.index s server-login-id copyUserPassword.index s server-loginpassword • precede server-ip-address by the keyword a. • precede the values for copyUsername and copyUserPassword by the keyword s. Example of Copying Configuration Files via FTP From a UNIX Machine > snmpset -v 2c -c private -m ./f10-copy-config.mib 10.10.10.10 copySrcFileType. 110 i 2 copyDestFileName.110 s /home/startup-config copyDestFileLocation.110 i 4 copyServerAddress.110 a 11.11.11.11 copyUserName.
myfilename copyServerAddress.10 a 172.16.1.56 copyUserName.10 s mylogin copyUserPassword. 10 s mypass Additional MIB Objects to View Copy Statistics Dell Networking provides more MIB objects to view copy statistics, as shown in the following table. Table 74. Additional MIB Objects for Copying Configuration Files via SNMP MIB Object OID Values Description copyState . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.11 1= running Specifies the state of the copy operation. 2 = successful 3 = failed copyTimeStarted .
index: the index value used in the snmpset command used to complete the copy operation. NOTE: You can use the entire OID rather than the object name. Use the form: OID.index. Examples of Getting MIB Object Values The following examples show the snmpget command to obtain a MIB object value. These examples assume that: • the server OS is UNIX • you are using SNMP version 2c • the community name is public • the file f10-copy-config.
snmpget -v2c -c public 192.168.60.120 .1.3.6.1.4.1.6027.3.10.1.2.9.1.6.1 enterprises.6027.3.10.1.2.9.1.5.1 = Gauge32: 24 The output above displays that 24% of the flash memory is used. MIB Support to Display the Software Core Files Generated by the System Dell Networking provides MIB objects to display the software core files generated by the system. The chSysSwCoresTable contains the list of software core files generated by the system. The following table lists the related MIB objects. Table 76.
f10cp_vrrp_140522124357_Stk1.acore.gz" enterprises.6027.3.10.1.2.10.1.2.2.1 = "/CORE_DUMP_DIR/FTP_STK_MEMBER/f10cp_sysd_140617134445_Stk0.acore.gz" enterprises.6027.3.10.1.2.10.1.3.1.1 = "Fri Mar 14 11:51:46 2014" enterprises.6027.3.10.1.2.10.1.3.1.2 = "Fri Nov 8 08:11:16 2013" enterprises.6027.3.10.1.2.10.1.3.1.3 = "Fri May 23 05:05:16 2014" enterprises.6027.3.10.1.2.10.1.3.2.1 = "Tue Jun 17 14:19:26 2014" enterprises.6027.3.10.1.2.10.1.4.1.1 = 0 enterprises.6027.3.10.1.2.10.1.4.1.2 = 1 enterprises.6027.3.
Displaying the Ports in a VLAN Dell Networking OS identifies VLAN interfaces using an interface index number that is displayed in the output of the show interface vlan command. Examples of Viewing VLAN Ports Using SNMP The following example shows viewing the VLAN interface index number using SNMP. Dell(conf)#do show interface vlan id 10 % Error: No such interface name.
NUM Status Description 10 Inactive Q Ports U Te 0/2 [Unix system output] > snmpget -v2c -c mycommunity 10.11.131.185 . 1.3.6.1.2.1.17.7.1.4.3.1.2.1107787786 SNMPv2-SMI::mib-2.17.7.1.4.3.1.2.1107787786 = Hex-STRING: 40 00 00 00 00 00 00 00 00 00 00 The value 40 is in the first set of 7 hex pairs, indicating that these ports are in Stack Unit 0. The hex value 40 is 0100 0000 in binary. As described, the left-most position in the string represents Port 1.
Example of Adding a Tagged Port to a VLAN using SNMP In the following example, Port 0/2 is added as a tagged member of VLAN 10. >snmpset -v2c -c mycommunity 10.11.131.185 . 1.3.6.1.2.1.17.7.1.4.3.1.2.1107787786 x "40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" .1.3.6.1.2.1.17.7.1.4.3.1.4.
CONFIGURATION mode snmp-server community 2. From the Dell Networking system, identify the interface index of the port for which you want to change the admin status. EXEC Privilege mode show interface Or, from the management system, use the snmpwwalk command to identify the interface index. 3. Enter the snmpset command to change the admin status using either the object descriptor or the OID. snmpset with descriptor: snmpset -v version -c community agent-ip ifAdminStatus.
In the following example, R1 has one dynamic MAC address, learned off of port TenGigabitEthernet 1/21, which a member of the default VLAN, VLAN 1. The SNMP walk returns the values for dot1dTpFdbAddress, dot1dTpFdbPort, and dot1dTpFdbStatus. Each object comprises an OID concatenated with an instance number. In the case of these objects, the instance number is the decimal equivalent of the MAC address; derive the instance number by converting each hex pair to its decimal equivalent.
Deriving Interface Indices Dell Networking OS assigns an interface number to each (configured or unconfigured) physical and logical interface. The interface index is a binary number with bits that indicate the slot number, port number, interface type, and card type of the interface. Dell Networking OS converts this binary index number to decimal, and displays it in the output of the show interface command.
Dell#show interface Tengigabitethernet 1/21 TenGigabitEthernet 1/21 is up, line protocol is up Monitor Port-Channels To check the status of a Layer 2 port-channel, use f10LinkAggMib (.1.3.6.1.4.1.6027.3.2). In the following example, Po 1 is a switchport and Po 2 is in Layer 3 mode. Example of SNMP Trap for Monitored Port-Channels [senthilnathan@lithium ~]$ snmpwalk -v 2c -c public 10.11.1.1 . 1.3.6.1.4.1.6027.3.2.1.1 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.1.1 = INTEGER: 1 SNMPv2-SMI::enterprises.6027.3.
SNMPv2-MIB::sysUpTime.0 = Timeticks: (8500842) 23:36:48.42 SNMPv2-MIB::snmpTrapOID.0 = OID: IF-MIB::linkDown IF-MIB::ifIndex.1107755009 = INTEGER: 1107755009 SNMPv2-SMI::enterprises.6027.3.1.1.4.1.2 = STRING: "OSTATE_DN: Changed interface state to down: Po 1" 2010-02-10 14:22:40 10.16.130.4 [10.16.130.4]: SNMPv2-MIB::sysUpTime.0 = Timeticks: (8500932) 23:36:49.32 SNMPv2MIB::snmpTrapOID.0 = OID: IF-MIB::linkUp IF-MIB::ifIndex.33865785 = INTEGER: 33865785 SNMPv2SMI::enterprises.6027.3.1.1.4.1.
Stacking 52 Stacking is supported on the S4820T platform with the Dell Networking OS version 8.3.19.0 and newer. NOTE: The S4820T commands accept Unit ID numbers 0-11, though The S4820T supports stacking up to six units with Dell Networking OS version 8.3.19.0. Using the Dell Networking OS stacking feature, you can interconnect multiple S-Series switch units with dedicated stacking ports or front end user ports.
• • • Inter-switch stacking link failure Switch insertion Switch removal If the master switch goes off line, the standby replaces it as the new master and the switch with the next highest priority or MAC address becomes standby. Stack Master Election The stack elects a master and standby unit at bootup time based on two criteria. • • Unit priority — User-configurable. The range is from 1 to 14. A higher value (14) means a higher priority. The default is 1.
5 6 7 8 9 10 Member Member Member Member Member Member not not not not not not present present present present present present Virtual IP You can manage the stack using a single IP, known as a virtual IP, that is retained in the stack even after a failover. The virtual IP address is used to log in to the current master unit of the stack. Both IPv4 and IPv6 addresses are supported as virtual IPs.
1 Member not present 2 Member not present 3 Member not present 4 Member not present 5 Member not present 6 Member not present 7 Member not present [output omitted] Standalone#show system | grep priority Master priority : 0 -----------STACK BEFORE CONNECTION---------------Stack#show system brief Stack MAC : 00:01:e8:d5:f9:6f -- Stack Info -Unit UnitType Status ReqTyp CurTyp Version --------------------------------------------------0 Standby online S4820T 7.8.1.0 52 1 Management online S4820T 7.8.1.
6 7 Member Member not present not present Stacking LAG When multiple links are used between stack units, Dell Networking OS automatically bundles them in a stacking LAG to provide aggregated throughput and redundancy. The stacking LAG is established automatically and transparently by Dell Networking OS (without user configuration) after peering is detected and behaves as follows: • • The stacking LAG dynamically aggregates; it can lose link members or gain new links.
is removed, the standby unit becomes the stack manager and Dell Networking OS elects a new standby unit. Dell Networking OS resets the failed master unit: after online, it becomes a member unit; the remaining members remain online.
cd clear copy delete dir disable enable exit format fsck pwd rename reset show ssh-peer-stack-unit start telnet-peer-stack-unit terminal upload Dell(standby)# Change current directory Reset functions Copy from one file to another Delete a file List files on a filesystem Turn off privileged commands Turn on privileged commands Exit from the EXEC Format a filesystem Filesystem check utility Display current working directory Rename a file Reset selected card Show running system information Open a SSH connecti
Create an S-Series Stack Stacking is enabled on the device using the front end ports. No configuration is allowed on front end ports used for stacking. Stacking can be made between 10G ports of two units or 40G ports of two units. The stack links between the two units are grouped into a single LAG. Stack Group/Port Numbers By default, each unit in Standalone mode is numbered stack-unit 0. A maximum of eight 10G stack links or two 40G stack links can be made between two units in a stack.
• before the management unit downloads its Dell Networking OS version 8.3.12.0 or later to the new unit. The syslog includes the unit number, previous version, and version being downloaded. • when the firmware synchronization is complete. • if the system check fails, a message such as a hardware incompatibility message or incompatible uboot version is generated. If the unit is placed in a card problem state, the management unit also generates an SNMP trap.
Creating a New Stack Prior to creating a stack, know which unit will be the management unit and which will be the standby unit. Enable the front ports of the units for stacking. For more information, refer to Enabling Front End Port Stacking. To create a new stack, use the following commands. 1. Power up all units in the stack. 2. Verify that each unit has the same Dell Networking OS version prior to stacking them together. EXEC Privilege mode show version 3.
Example of a Syslog Figure 120. Creating a New Stack In the following example, stack unit is the master management unit, stack unit 2is the standby unit. The cables are connected to each unit.
configs obsolete after a reload. [confirm yes/no]:yes Dell-2(conf)#stack-unit 0 stack-group 0 Setting ports Te 1/1 Te 1/2 Te 1/3 as stack group will make their interface configs obsolete after a reload.
CONFIGURATION mode stack-unit priority 4. Assign a stack group to each unit. CONFIGURATION mode stack-unit-id stack-group-id 5. Connect the new unit to the stack using stacking cables. Example of Adding a Stack Unit with a Conflicting Stack Number (Before and After) The following example shows adding a stack unit with a conflicting stack number (before).
Adding a Configured Unit to an Existing Stack To add a configured unit to an existing stack, use the following commands. If a stack unit goes down and is removed from the stack, the logical provisioning configured for that stack-unit number is saved on the master and standby units. When a new unit is added to the stack, if a stack group configuration conflict occurs between the new unit and the provisioned stack unit, the configuration of the new unit takes precedence. 1.
Merge Two S-Series Stacks You may merge two stacks while they are powered and online. To merge two stacks, connect one stack to the other using user port cables from the front end user port. • Dell Networking OS selects a master stack manager from the two existing managers based on the priority of the stack. • Dell Networking OS resets all the units in the losing stack; they all become stack members. • If there is no unit numbering conflict, the stack members retain their previous unit numbers.
Renumbering the stack manager triggers the whole stack to reload, as shown in the message below. When the stack comes back online, the master unit remains the management unit. Renumbering master unit will reload the stack. WARNING: Interface configuration for current unit will be lost! Proceed to renumber [confirm yes/no]: yes Creating a Virtual Stack Unit on an S-Series Stack Use virtual stack units to configure ports on the stack before adding a new unit. • Create a virtual stack unit.
Next Boot Required Type Current Type Master priority Hardware Rev Num Ports Up Time Dell Networking Jumbo Capable POE Capable Burned In MAC : No Of MACs : 3 : online : S4810 - 52-port GE/TE/FG (SE) : S4810 - 52-port GE/TE/FG (SE) : 0 : 3.
-- Stack Info -Unit UnitType Status ReqTyp CurTyp Version Ports -------------------------------------------------------0 Member not present 1 Member not present 2 Member not present 3 Management online S4810 S4810 8-3-12-13 64 4 Member not present 5 Member not present 6 Member not present 7 Member not present 8 Member not present 9 Member not present 10 Member not present 11 Member not present The following example shows the show system stack-ports command.
Managing Redundancy on an S-Series Stack Use the following commands to manage the redundancy on an S-Series stack. • Reset the current management unit and make the standby unit the new master unit. EXEC Privilege mode redundancy force-failover stack-unit • A new standby is elected. When the former stack master comes back online, it becomes a member unit. Prevent the stack master from rebooting after a failover.
Displaying the Status of Stacking Ports To display the status of the stacking ports, including the topology, use the following command. • Display the stacking ports. EXEC Privilege mode show system stack-ports Examples of Viewing the Status for Stacked Switches The following example shows four switches stacked together with two 40G links in a ring topology.
-- Power Supplies -Unit Bay Status Type FanStatus --------------------------------------------Unit Bay Status Type FanStatus --------------------------------------------1 0 absent absent 1 1 up AC up -- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed -------------------------------------------1 0 up up 7200 up 7200 1 1 up up 7200 up 7440 Speed in RP The following example shows three switches stacked together in a daisy chain topology.
Examples of Removing a Stack Member (Before and After) The following examples shows removing a stack member (before). The following examples shows removing a stack member (after). Removing Front End Port Stacking To remove the configuration on the front end ports used for stacking, use the following commands. 1. Remove the stack group configuration that is configured. CONFIGURATION mode no stack-unit id stack-group id 2. Save the stacking configuration on the ports. EXEC Privilege mode write memory 3.
10:55:20: %STKUNIT1-M:CP %KERN-2-INT: Error: Please check the stack cable/module and power-cycle the stack. ---------------------STANDBY UNIT-------------------------------10:55:18: %STKUNIT1-M:CP %KERN-2-INT: Error: Stack Port 50 has flapped 5 times within 10 seonds.Shutting down this stack port now. 10:55:18: %STKUNIT1-M:CP %KERN-2-INT: Error: Please check the stack cable/module and power-cycle the stack.
stack-1# Recover from a Card Mismatch State on an S-Series Stack A card mismatch occurs if the stack has a provision for the lowest available stack number which does not match the model of a newly added unit. To recover, disconnect the new unit. Then, either: • • remove the provision from the stack, then reconnect the standalone unit, or renumber the standalone unit with another available stack number on the stack.
-- Stack Info -Unit UnitType Status ReqTyp CurTyp Version Ports -----------------------------------------------------------0 Member type mismatch S25N S50V 7.8.1.0 52 1 Management online S50N S50N 7.8.1.0 52 2 Standby online S50V S50V 7.8.1.
53 Storm Control Storm control is supported on Dell Networking OS. The storm control feature allows you to control unknown-unicast and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell Networking Operating System (OS) Behavior: Dell Networking OS supports broadcast control (the storm-control broadcast command) for Layer 2 and Layer 3 traffic. Dell Networking OS Behavior: The minimum number of packets per second (PPS) that storm control can limit on the device is two.
Spanning Tree Protocol (STP) 54 The spanning tree protocol (STP) is supported on Dell Networking OS. Protocol Overview STP is a Layer 2 protocol — specified by IEEE 802.1d — that eliminates loops in a bridged topology by enabling only a single path through the network. By eliminating loops, the protocol improves scalability in a large network and allows you to implement redundant paths, which can be activated after the failure of active paths.
Important Points to Remember • • • • • STP is disabled by default. The Dell Networking OS supports only one spanning tree instance (0). For multiple instances, enable the multiple spanning tree protocol (MSTP) or per-VLAN spanning tree plus (PVST+). You may only enable one flavor of spanning tree at any one time. All ports in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the spanning tree topology at the time you enable the protocol.
To configure and enable the interfaces for Layer 2, use the following command. 1. If the interface has been assigned an IP address, remove it. INTERFACE mode no ip address 2. Place the interface in Layer 2 mode. INTERFACE switchport 3. Enable the interface. INTERFACE mode no shutdown Example of the show config Command To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode.
Figure 122. Spanning Tree Enabled Globally To enable STP globally, use the following commands. 1. Enter PROTOCOL SPANNING TREE mode. CONFIGURATION mode protocol spanning-tree 0 2. Enable STP. PROTOCOL SPANNING TREE mode no disable Examples of Verifying Spanning Tree Information To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode.
To view the spanning tree configuration and the interfaces that are participating in STP, use the show spanning-tree 0 command from EXEC privilege mode. If a physical interface is part of a port channel, only the port channel is listed in the command output. R2#show spanning-tree 0 Executing IEEE compatible Spanning Tree Protocol Bridge Identifier has priority 32768, address 0001.e826.ddb7 Configured hello time 2, max age 20, forward delay 15 Current root has priority 32768, address 0001.e80d.
spanning-tree 0 Modifying Global Parameters You can modify the spanning tree parameters. The root bridge sets the values for forward-delay, hellotime, and max-age and overwrites the values set on other bridges participating in STP. NOTE: Dell Networking recommends that only experienced network administrators change the spanning tree parameters. Poorly planned modification of the spanning tree parameters can negatively affect network performance. The following table displays the default values for STP.
PROTOCOL SPANNING TREE mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree 0 command from EXEC privilege mode. Refer to the second example in Enabling Spanning Tree Protocol Globally. Modifying Interface STP Parameters You can set the port cost and port priority values of interfaces in Layer 2 mode. • Port cost — a value that is based on the interface type.
CAUTION: Enable PortFast only on links connecting to an end station. PortFast can cause loops if it is enabled on an interface connected to a network. To enable PortFast on an interface, use the following command. • Enable PortFast on an interface.
• When you add a physical port to a port channel already in the Error Disable state, the new member port is also disabled in the hardware. • When you remove a physical port from a port channel in the Error Disable state, the Error Disabled state is cleared on this physical port (the physical port is enabled in the hardware). • The reset linecard command does not clear the Error Disabled state of the port or the Hardware Disabled state. The interface continues to be disables in the hardware.
• disables spanning tree on an interface • drops all BPDUs at the line card without generating a console message Example of Blocked BPDUs Dell(conf-if-te-1/7)#do show spanning-tree rstp brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32768, Address 0001.e805.fb07 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32768, Address 0001.e85d.0e90 Configured hello time 2, max age 20, forward delay 15 Interface Name PortID Prio ---------- -------Te 1/6 128.
Root Bridge hello time 2, max age 20, forward delay 15 Dell# STP Root Guard Use the STP root guard feature in a Layer 2 network to avoid bridging loops. In STP, the switch in the network with the lowest priority (as determined by STP or set with the bridge-priority command) is selected as the root bridge. If two switches have the same priority, the switch with the lower MAC address is selected as the root.
Figure 124. STP Root Guard Prevents Bridging Loops Configuring Root Guard Enable STP root guard on a per-port or per-port-channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with STP root guard: • Root guard is supported on any STP-enabled port or port-channel interface except when used as a stacking port.
• Enable root guard on a port or port-channel interface. INTERFACE mode or INTERFACE PORT-CHANNEL mode spanning-tree {0 | mstp | rstp | pvst} rootguard – 0: enables root guard on an STP-enabled port assigned to instance 0. – mstp: enables root guard on an MSTP-enabled port. – rstp: enables root guard on an RSTP-enabled port. – pvst: enables root guard on a PVST-enabled port.
STP Loop Guard The STP loop guard feature provides protection against Layer 2 forwarding loops (STP loops) caused by a hardware failure, such as a cable failure or an interface fault. When a cable or interface fails, a participating STP link may become unidirectional (STP requires links to be bidirectional) and an STP port does not receive BPDUs. When an STP blocking port does not receive BPDUs, it transitions to a Forwarding state. This condition can create a loop in the network.
Figure 125. STP Loop Guard Prevents Forwarding Loops Configuring Loop Guard Enable STP loop guard on a per-port or per-port channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with loop guard: • Loop guard is supported on any STP-enabled port or port-channel interface.
• You cannot enable root guard and loop guard at the same time on an STP port. For example, if you configure loop guard on a port on which root guard is already configured, the following error message is displayed: % Error: RootGuard is configured. Cannot configure LoopGuard. • Enabling Portfast BPDU guard and loop guard at the same time on a port results in a port that remains in a blocking state and prevents traffic from flowing through it.
System Time and Date 55 System time and date settings and the network time protocol (NTP) are supported on Dell Networking OS. You can set system times and dates and maintained through the NTP. They are also set through the Dell Networking Operating System (OS) command line interfaces (CLIs) and hardware settings. In the release 9.4.(0.0), support for reaching an NTP server through different VRFs is included. You can configure a maximum of eight logging servers across different VRFs or the same VRF.
In what may be the most common client/server model, a client sends an NTP message to one or more servers and processes the replies as received. The server interchanges addresses and ports, overwrites certain fields in the message, recalculates the checksum and returns the message immediately. Information included in the NTP message allows the client to determine the server time regarding local time and adjust the local clock accordingly.
Implementation Information Dell Networking systems can only be an NTP client. Configure the Network Time Protocol Configuring NTP is a one-step process. • Enabling NTP Related Configuration Tasks • Configuring NTP Broadcasts • Disabling NTP on an Interface • Configuring a Source IP Address for NTP Packets (optional) Enabling NTP NTP is disabled by default. To enable NTP, specify an NTP server to which the Dell Networking system synchronizes.
• Set the interface to receive NTP packets. INTERFACE mode ntp broadcast client Example of Configuring NTP Broadcasts 2w1d11h : NTP: Maximum Slew:-0.000470, Remainder = -0.496884 Disabling NTP on an Interface By default, NTP is enabled on all active interfaces. If you disable NTP on an interface, Dell Networking OS drops any NTP packets sent to that interface. To disable NTP on an interface, use the following command. • Disable NTP on the interface.
Dell Networking OS Behavior: Dell Networking OS uses an encryption algorithm to store the authentication key that is different from previous Dell Networking OS versions; Dell Networking OS uses data encryption standard (DES) encryption to store the key in the startup-config when you enter the ntp authentication-key command.
ntp master To configure the switch as NTP Server use the ntp master command. stratum number identifies the NTP Server's hierarchy. Examples of Configuring and Viewing an NTP Configuration The following example shows configuring an NTP server. R6_E300(conf)#1w6d23h : NTP: xmit packet to 192.168.1.1: leap 0, mode 3, version 3, stratum 2, ppoll 1024 rtdel 0219 (8.193970), rtdsp AF928 (10973.266602), refid C0A80101 (192.168.1.1) ref CD7F4F63.6BE8F000 (14:51:15.
NOTE: • Leap Indicator (sys.leap, peer.leap, pkt.leap) — This is a two-bit code warning of an impending leap second to be inserted in the NTP time scale. The bits are set before 23:59 on the day of insertion and reset after 00:00 on the following day. This causes the number of seconds (rollover interval) in the day of insertion to be increased or decreased by one.
Dell Networking OS Time and Date You can set the time and date using the Dell Networking OS CLI. Configuration Task List The following is a configuration task list for configuring the time and date settings.
– timezone-name: enter the name of the timezone. Do not use spaces. – offset: enter one of the following: * a number from 1 to 23 as the number of hours in addition to UTC for the timezone. * a minus sign (-) then a number from 1 to 23 as the number of hours.
00:00:00 pacific Sat Nov 7 2009" Setting Recurring Daylight Saving Time Set a date (and time zone) on which to convert the switch to daylight saving time on a specific day every year. If you have already set daylight saving for a one-time setting, you can set that date and time as the recurring setting with the clock summer-time time-zone recurring command. To set a recurring daylight saving time, use the following command.
Examples of the clock summer-time recurring Command The following example shows the clock summer-time recurring command.
Tunneling 56 Tunnel interfaces create a logical tunnel for IPv4 or IPv6 traffic. Tunneling supports RFC 2003, RFC 2473, and 4213. DSCP, hop-limits, flow label values, OSPFv2, and OSPFv3 are also supported. ICMP error relay, PATH MTU transmission, and fragmented packets are not supported. Configuring a Tunnel You can configure a tunnel in IPv6 mode, IPv6IP mode, and IPIP mode. You can configure a tunnel in IPv6 mode, IPv6IP mode, and IPIP mode.
interface Tunnel 2 no ip address ipv6 address 2::1/64 tunnel destination 90.1.1.1 tunnel source 60.1.1.1 tunnel mode ipv6ip no shutdown The following sample configuration shows a tunnel configured in IPIP mode (IPv4 tunnel carries IPv4 and IPv6 traffic): Dell(conf)#interface tunnel 3 Dell(conf-if-tu-3)#tunnel source 5::5 Dell(conf-if-tu-3)#tunnel destination 8::9 Dell(conf-if-tu-3)#tunnel mode ipv6 Dell(conf-if-tu-3)#ip address 3.1.1.
Configuring a Tunnel Interface You can configure the tunnel interface using the ip unnumbered and ipv6 unnumbered commands. To configure the tunnel interface to operate without a unique explicit IP or IPv6 address, select the interface from which the tunnel will borrow its address. The following sample configuration shows how to use the tunnel interface configuration commands. Dell(conf-if-te-1/1)#show config ! interface TenGigabitEthernet 1/1 ip address 20.1.1.
Configuring Tunnel source anylocal Decapsulation The tunnel source anylocal command allows a multipoint receive-only tunnel to decapsulate tunnel packets addressed to any IPv4 or IPv6 (depending on the tunnel mode) address configured on the switch that is operationally UP. The source anylocal parameters can be used for packet decapsulation instead of the ip address or interface (tunnel allow-remote command), but only on multipoint receive-only mode tunnels.
Uplink Failure Detection (UFD) 57 Uplink failure detection (UFD) is supported on Dell Networking OS. Feature Description UFD provides detection of the loss of upstream connectivity and, if used with network interface controller (NIC) teaming, automatic recovery from a failed link. A switch provides upstream connectivity for devices, such as servers. If a switch loses its upstream connectivity, downstream devices also lose their connectivity.
Figure 127. Uplink Failure Detection How Uplink Failure Detection Works UFD creates an association between upstream and downstream interfaces. The association of uplink and downlink interfaces is called an uplink-state group. An interface in an uplink-state group can be a physical interface or a port-channel (LAG) aggregation of physical interfaces. An enabled uplink-state group tracks the state of all assigned upstream interfaces.
Figure 128. Uplink Failure Detection Example If only one of the upstream interfaces in an uplink-state group goes down, a specified number of downstream ports associated with the upstream interface are put into a Link-Down state. You can configure this number and is calculated by the ratio of the upstream port bandwidth to the downstream port bandwidth in the same uplink-state group.
– An uplink-state group is considered to be operationally down if it has no upstream interfaces in the Link-Up state. No uplink-state tracking is performed when a group is disabled or in an Operationally Down state. • You can assign physical port or port-channel interfaces to an uplink-state group. – You can assign an interface to only one uplink-state group. Configure each interface assigned to an uplink-state group as either an upstream or downstream interface, but not both.
Where port-range and port-channel-range specify a range of ports separated by a dash (-) and/or individual ports/port channels in any order; for example: upstream tengigabitethernet 1/1-2,5,9,11-12 downstream port-channel 1-3,5 • A comma is required to separate each port and port-range entry. To delete an interface from the group, use the no {upstream | downstream} interface command. 3.
Clearing a UFD-Disabled Interface You can manually bring up a downstream interface in an uplink-state group that UFD disabled and is in a UFD-Disabled Error state. To re-enable one or more disabled downstream interfaces and clear the UFD-Disabled Error state, use the following command. • Re-enable a downstream interface on the switch/router that is in a UFD-Disabled Error State so that it can send and receive traffic.
down: Te 1/7 02:37:29: %RPM0-P:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Te 1/7 02:37:29 : UFD: Group:3, UplinkState: DOWN 02:37:29: %RPM0-P:CP %IFMGR-5-OSTATE_DN: Changed uplink state group state to down: Group 3 02:37:29: %RPM0-P:CP %IFMGR-5-OSTATE_DN: Downstream interface set to UFD error-disabled: Fo 3/60 02:37:29: %RPM0-P:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Fo 3/60 02:38:31 : UFD: Group:3, UplinkState: UP 02:38:31: %RPM0-P:CP %IFMGR-5-OSTATE_UP: Changed uplink state gr
• If a downstream interface in an uplink-state group is disabled (Oper Down state) by uplink-state tracking because an upstream port is down, the message error-disabled[UFD] displays in the output. Display the current configuration of all uplink-state groups or a specified group. EXEC mode or UPLINK-STATE-GROUP mode (For EXEC mode) show running-config uplink-state-group [group-id] (For UPLINK-STATE-GROUP mode) show configuration – group-id: The values are from 1 to 16.
Interface index is 280544512 Internet address is not set MTU 1554 bytes, IP MTU 1500 bytes LineSpeed 1000 Mbit, Mode auto Flowcontrol rx off tx off ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:25:46 Queueing strategy: fifo Input Statistics: 0 packets, 0 bytes 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 0 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Ou
• Verify the configuration with various show commands.
58 Upgrade Procedures To find the upgrade procedures, go to the Dell Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell Networking OS version. To upgrade your system type, follow the procedures in the Dell Networking OS Release Notes. Get Help with Upgrades Direct any questions or concerns about the Dell Networking OS upgrade procedures to the Dell Technical Support Center. You can reach Technical Support: • On the web: http://www.dell.
Virtual LANs (VLANs) 59 Virtual LANs (VLANs) are supported on Dell Networking OS. VLANs are a logical broadcast domain or logical grouping of interfaces in a local area network (LAN) in which all data received is kept locally and broadcast to all members of the group. When in Layer 2 mode, VLANs move traffic at wire speed and can span multiple devices. The Dell Networking Operating System (OS) supports up to 4093 port-based VLANs and one default VLAN, as specified in IEEE 802.1Q.
command places the interface in Layer 2 mode and the show vlan command in EXEC privilege mode indicates that the interface is now part of the Default VLAN (VLAN 1). By default, VLAN 1 is the Default VLAN. To change that designation, use the default vlan-id command in CONFIGURATION mode. You cannot delete the Default VLAN. NOTE: You cannot assign an IP address to the Default VLAN. To assign an IP address to a VLAN that is currently the Default VLAN, create another VLAN and assign it to be the Default VLAN.
VLANs and Port Tagging To add an interface to a VLAN, the interface must be in Layer 2 mode. After you place an interface in Layer 2 mode, the interface is automatically placed in the Default VLAN. Dell Networking OS supports IEEE 802.1Q tagging at the interface level to filter traffic. When you enable tagging, a tag header is added to the frame after the destination and source MAC addresses. That information is preserved as the frame moves through the network.
NOTE: In a VLAN, the shutdown command stops Layer 3 (routed) traffic only. Layer 2 traffic continues to pass through the VLAN. If the VLAN is not a routed VLAN (that is, configured with an IP address), the shutdown command has no affect on VLAN traffic. When you delete a VLAN (using the no interface vlan vlan-id command), any interfaces assigned to that VLAN are assigned to the Default VLAN as untagged interfaces. To create a port-based VLAN, use the following command.
interface vlan vlan-id 2. Enable an interface to include the IEEE 802.1Q tag header. INTERFACE mode tagged interface Add an Interface to Another VLAN To view just the interfaces that are in Layer 2 mode, use the show interfaces switchport command in EXEC Privilege mode or EXEC mode. The following example shows the steps to add a tagged interface (in this case, port channel 1) to VLAN 4. To view the interface’s status. Interface (po 1) is tagged and in VLAN 2 and 3, use the show vlan command.
Moving Untagged Interfaces To move untagged interfaces from the Default VLAN to another VLAN, use the following commands. 1. Access INTERFACE VLAN mode of the VLAN to which you want to assign the interface. CONFIGURATION mode interface vlan vlan-id 2. Configure an interface as untagged. INTERFACE mode untagged interface This command is available only in VLAN interfaces.
4 Active T U Te 1/1 Te 1/2 The only way to remove an interface from the Default VLAN is to place the interface in Default mode by using the no switchport command in INTERFACE mode. Assigning an IP Address to a VLAN VLANs are a Layer 2 feature. For two physical interfaces on different VLANs to communicate, you must assign an IP address to the VLANs to route traffic between the two interfaces.
To configure a port so that it can be a member of an untagged and tagged VLANs, use the following commands. 1. Remove any Layer 2 or Layer 3 configurations from the interface. INTERFACE mode 2. Configure the interface for Hybrid mode. INTERFACE mode portmode hybrid 3. Configure the interface for Switchport mode. INTERFACE mode switchport 4. Add the interface to a tagged or untagged VLAN.
Virtual Link Trunking (VLT) 60 Virtual link trunking (VLT) is supported on Dell Networking OS. Overview VLT allows physical links between two chassis to appear as a single virtual link to the network core or other switches such as Edge, Access, or top-of-rack (ToR). VLT reduces the role of spanning tree protocols (STPs) by allowing link aggregation group (LAG) terminations on two separate distribution or core switches, and by supporting a loop-free topology.
Figure 130. VLT on S4820T Switches VLT on Core Switches You can also deploy VLT on core switches. Uplinks from servers to the access layer and from access layer to the aggregation layer are bundled in LAG groups with end-to-end Layer 2 multipathing. This set up requires “horizontal” stacking at the access layer and VLT at the aggregation layer such that all the uplinks from servers to access and access to aggregation are in Active-Active Load Sharing mode.
Figure 131. Enhanced VLT VLT Terminology The following are key VLT terms. • Virtual link trunk (VLT) — The combined port channel between an attached device and the VLT peer switches. • VLT backup link — The backup link monitors the vitality of VLT peer switches. The backup link sends configurable, periodic keep alive messages between the VLT peer switches. • VLT interconnect (VLTi) — The link used to synchronize states between the VLT peer switches.
Configure Virtual Link Trunking VLT requires that you enable the feature and then configure the same VLT domain, backup link, and VLT interconnect on both peer switches. Important Points to Remember • You cannot enable S4820T stacking simultaneously with VLT. If you enable both at the same time, unexpected behavior occurs. Refer to VLT and Stacking. • VLT port channel interfaces must be switch ports. • If you include RSTP on the system, configure it before VLT. Refer to Configure Rapid Spanning Tree.
• VLT Heartbeat is supported only on default VRFs. • In a scenario where one hundred hosts are connected to a Peer1 on a non-VLT domain and traffic flows through Peer1 to Peer2; when you move these hosts from a non-VLT domain to a VLT domain and send ARP requests to Peer1, only half of these ARP requests reach Peer1, while the remaining half reach Peer2 (because of LAG hashing).
– The VLT interconnect must consist of either 10G or 40G ports. A maximum of eight 10G or four 40G ports is supported. A combination of 10G and 40G ports is not supported. – A VLT interconnect over 1G ports is not supported. – The port channel must be in Default mode (not Switchport mode) to have VLTi recognize it. – The system automatically includes the required VLANs in VLTi. You do not need to manually select VLANs.
– In order that the chassis backup link does not share the same physical path as the interconnect trunk, Dell Networking recommends using the management ports on the chassis and traverse an out-of-band management network. The backup link can use user ports, but not the same ports the interconnect trunk uses. – The chassis backup link does not carry control plane information or data traffic. Its use is restricted to health checks only.
– Enable Layer 3 VLAN connectivity VLT peers by configuring a VLAN network interface for the same VLAN on both switches. – Dell Networking does not recommend enabling peer-routing if the CAM is full. To enable peerrouting, a minimum of two local DA spaces for wild card functionality are required. • Software features supported on VLT physical ports – In a VLT domain, the following software features are supported on VLT physical ports: 802.
Primary and Secondary VLT Peers To prevent issues when connectivity between peers is lost, you can designate Primary and Secondary roles for VLT peers . You can elect or configure the Primary Peer. By default, the peer with the lowest MAC address is selected as the Primary Peer. You can configure another peer as the Primary Peer using the VLT domain domain-id role priority priority-value command. If the VLTi link fails, the status of the remote VLT Primary Peer is checked using the backup link.
When the bandwidth usage drops below the 80% threshold, the system generates another syslog message (shown in the following message) and an SNMP trap. %STKUNIT0-M:CP %VLTMGR-6-VLT-LAG-ICL: Overall Bandwidth utilization of VLT-ICLLAG (port-channel 25) reaches below threshold. Bandwidth usage (74 )VLT show remote port channel status VLT and Stacking You cannot enable stacking on S4820T units with VLT.
This delay in bringing up the VLT ports also applies when the VLTi link recovers from a failure that caused the VLT ports on the secondary VLT peer node to be disabled. PIM-Sparse Mode Support on VLT The designated router functionality of the PIM Sparse-Mode multicast protocol is supported on VLT peer switches for multicast sources and receivers that are connected to VLT ports. VLT peer switches can act as a last-hop router for IGMP receivers and as a first-hop router for multicast sources. Figure 132.
VLT VLANs, you must configure VLTi as the static multicast router port on both VLT peer switches. This ensures that for first hop routers, the packets from the source are redirected to the designated router (DR) if they are incorrectly hashed. In addition to being first-hop or last -hop routers, the peer node can also act as an intermediate router.
time needed for peer recovery provides resiliency. You can enable VLT unicast across multiple configurations using VLT links. You can enable ECMP on VLT nodes using VLT unicast. VLT unicast routing is supported on both IPv6/IPv4. To enable VLT unicast routing, both VLT peers must be in L3 mode. Static route and routing protocols such as RIP, OSPF, ISIS, and BGP are supported. However, point-to-point configuration is not supported. To enable VLT unicast, VLAN configuration must be symmetrical on both peers.
• VLT resiliency — After a VLT link or peer failure, if the traffic hashes to the VLT peer, the traffic continues to be routed using multicast until the PIM protocol detects the failure and adjusts the multicast distribution tree. • Optimal routing — The VLT peer that receives the incoming traffic can directly route traffic to all downstream routers connected on VLT ports.
Non-VLT ARP Sync ARP entries (including ND entries) learned on other ports are synced with the VLT peer to support station move scenarios. NOTE: ARP entries learned on non-VLT, non-spanned VLANs are not synced with VLT peers. RSTP Configuration RSTP is supported in a VLT domain. Before you configure VLT on peer switches, configure RSTP in the network. RSTP is required for initial loop prevention during the VLT startup phase.
Sample RSTP Configuration The following is a sample of an RSTP configuration. Using the example shown in the Overview section as a sample VLT topology, the primary VLT switch sends BPDUs to an access device (switch or server) with its own RSTP bridge ID. BPDUs generated by an RSTP-enabled access device are only processed by the primary VLT switch. The secondary VLT switch tunnels the BPDUs that it receives to the primary VLT switch over the VLT interconnect.
Configuring a VLT Interconnect To configure a VLT interconnect, follow these steps. 1. Configure the port channel for the VLT interconnect on a VLT switch and enter interface configuration mode. CONFIGURATION mode interface port-channel id-number Enter the same port-channel number configured with the peer-link port-channel command as described in Enabling VLT and Creating a VLT Domain. NOTE: To be included in the VLTi, the port channel must be in Default mode (no switchport or VLAN assigned). 2.
To disable VLT, use the no vlt domain command. NOTE: Do not use MAC addresses such as “reserved” or “multicast.” 2. Configure the IP address of the management interface on the remote VLT peer to be used as the endpoint of the VLT backup link for sending out-of-band hello messages. VLT DOMAIN CONFIGURATION mode back-up destination ip-address [interval seconds] You can optionally specify the time interval used to send hello messages. The range is from 1 to 5 seconds. 3.
To set an amount of time, in seconds, to delay the system from restoring the VLT port, use the delayrestore command at any time. For more information, refer to VLT Port Delayed Restoration. Configuring a VLT Port Delay Period To configure a VLT port delay period, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs from 1 to 1000. 2.
Also, reconfigure the same MAC address on the VLT peer switch. Use this command to minimize the time required for the VLT system to synchronize the default MAC address of the VLT domain on both peer switches when one peer switch reboots. 4. (Optional) When you create a VLT domain on a switch, Dell Networking OS automatically assigns a unique unit ID (0 or 1) to each peer switch.
INTERFACE PORT-CHANNEL mode vlt-peer-lag port-channel id-number The valid port-channel ID numbers are from 1 to 128. 7. Repeat Steps 1 to 6 on the VLT peer switch to configure the same port channel as part of the VLT domain. 8. On an attached switch or server: To connect to the VLT domain and add port channels to it, configure a port channel. For an example of how to verify the port-channel configuration, refer to VLT Sample Configuration.
Enter the same port-channel number configured with the peer-link port-channel command in the Enabling VLT and Creating a VLT Domain. 2. Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. • 3. For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
The unit IDs are used for internal system operations. To explicitly configure the default values on each peer switch, use the unit-id command. Configure a different unit ID (0 or 1) on each peer switch. Use this command to minimize the time required for the VLT system to determine the unit ID assigned to each peer switch when one peer switch reboots. 8. Configure enhanced VLT. Configure the port channel to be used for the VLT interconnect on a VLT switch and enter interface configuration mode.
18. Repeat steps 1 through 15 for the VLT peer node in Domain 2. To verify the configuration of a VLT domain, use any of the show commands described in Verifying a VLT Configuration. VLT Sample Configuration To review a sample VLT configuration setup, study these steps. 1. Configure the VLT domain with the same ID in VLT peer 1 and VLT peer 2. VLT DOMAIN mode vlt domain domain id 2. Configure the VLTi between VLT peer 1 and VLT peer 2. 3.
EXEC mode show vlt brief or show vlt detail 13. Verify that the VLT LAG is running in both VLT peer units. EXEC mode or EXEC Privilege mode show interfaces interface Example of Configuring VLT In the following sample VLT configuration steps, VLT peer 1 is S4820T-2, VLT peer 2 is S4820T-4, and the ToR is S60-1. NOTE: If you use a third-party ToR unit, Dell Networking recommends using static LAGs with VLT peers to avoid potential problems if you reboot the VLT peers.
ip address 10.11.206.58/16 no shutdown Configure the VLT links between VLT peer 1 and VLT peer 2 to the Top of Rack unit. In the following example, port Te 1/4 in VLT peer 1 is connected to Te 1/8 of TOR and port Te 1/18 in VLT peer 2 is connected to Te 1/30 of TOR. 1. Configure the static LAG/LACP between the ports connected from VLT peer 1 and VLT peer 2 to the Top of Rack unit. 2. Configure the VLT peer link port channel id in VLT peer 1 and VLT peer 2. 3.
! interface Port-channel 100 no ip address switchport no shutdown s60-1#show interfaces port-channel 100 brief Codes: L - LACP Port-channel L LAG 100 Mode L2 Status up Uptime 03:33:48 Ports Te 1/8 (Up) Te 1/30 (Up) Verify VLT is up. Verify that the VLTi (ICL) link, backup link connectivity (heartbeat status), and VLT peer link (peer chassis) are all up.
Secondary peers. Only the Primary VLT switch determines the PVST+ roles and states on VLT ports and ensures that the VLT interconnect link is never blocked. PVST+ instance in Primary peer will send the role/state of VLT-LAGs for all VLANs to the Secondary peer. Secondary peer will use this information to program the hardware. PVST+ instance running in Secondary peer will not control the VLT-LAGs.
eVLT Configuration Example The following example demonstrates the steps to configure enhanced VLT (eVLT) in a network. In this example, you are configuring two domains. Domain 1 consists of Peer 1 and Peer 2; Domain 2 consists of Peer 3 and Peer 4, as shown in the following example. In Domain 1, configure Peer 1 fist, then configure Peer 2. When that is complete, perform the same steps for the peer nodes in Domain 2. The interface used in this example is TenGigabitEthernet. Figure 133.
Add links to the eVLT port-channel on Peer 1. Domain_1_Peer1(conf)#interface range tengigabitethernet 1/16 - 17 Domain_1_Peer1(conf-if-range-te-1/16-17)# port-channel-protocol LACP Domain_1_Peer1(conf-if-range-te-1/16-17)# port-channel 100 mode active Domain_1_Peer1(conf-if-range-te-1/16-17)# no shutdown Next, configure the VLT domain and VLTi on Peer 2.
Domain_2_Peer3(conf-if-range-te-1/19-20)# port-channel 100 mode active Domain_2_Peer3(conf-if-range-te-1/19-20)# no shutdown Next, configure the VLT domain and VLTi on Peer 4. Domain_2_Peer4#configure Domain_2_Peer4(conf)#interface port-channel 1 Domain_2_Peer4(conf-if-po-1)# channel-member TenGigabitEthernet 1/8-9 Domain_1_Peer4#no shutdown Domain_2_Peer4(conf)#vlt domain 200 Domain_2_Peer4(conf-vlt-domain)# peer-link port-channel 1 Domain_2_Peer4(conf-vlt-domain)# back-up destination 10.18.130.
The following example shows how to repeat these steps on VLT Peer Node 2. VLT_Peer2(conf)#ip multicast-routing VLT_Peer2(conf)#interface vlan 4001 VLT_Peer2(conf-if-vl-4001)#ip address 140.0.0.
show interfaces interface – interface: specify one of the following interface types: * For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/ port information. * For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. * For a port channel interface, enter the keywords port-channel then a number. Examples of the show vlt and show spanning-tree rstp Commands The following example shows the show vlt backup-link command.
ICL Link Status: HeartBeat Status: VLT Peer Status: Local Unit Id: Version: Local System MAC address: Remote System MAC address: Configured System MAC address: Remote system version: Delay-Restore timer: Up Up Up 1 5(1) 00:01:e8:8a:e7:e7 00:01:e8:8a:e9:70 00:0a:0a:01:01:0a 5(1) 90 seconds The following example shows the show vlt detail command.
The following example shows the show vlt statistics command. Dell_VLTpeer1# show vlt statistics VLT Statistics ---------------HeartBeat Messages Sent: HeartBeat Messages Received: ICL Hello's Sent: ICL Hello's Received: 987 986 148 98 Dell_VLTpeer2# show vlt statistics VLT Statistics ---------------HeartBeat Messages Sent: HeartBeat Messages Received: ICL Hello's Sent: ICL Hello's Received: 994 978 89 89 The following example shows the show spanning-tree rstp command.
Po 111 128.112 128 200000 DIS(vlt) 0 Po 120 128.121 128 2000 FWD(vlt) 0 0 0 0001.e88a.dff8 128.112 0001.e88a.dff8 128.121 Additional VLT Sample Configurations To configure VLT, configure a backup link and interconnect trunk, create a VLT domain, configure a backup link and interconnect trunk, and connect the peer switches in a VLT domain to an attached access device (switch or server). Review the following examples of VLT configurations.
Configuring Virtual Link Trunking (VLT Peer 2) Enable VLT and create a VLT domain with a backup-link VLT interconnect (VLTi). Dell_VLTpeer2(conf)#vlt domain 999 Dell_VLTpeer2(conf-vlt-domain)#peer-link port-channel 100 Dell_VLTpeer2(conf-vlt-domain)#back-up destination 10.11.206.23 Dell_VLTpeer2(conf-vlt-domain)#exit Configure the backup link. Dell_VLTpeer2(conf)#interface ManagementEthernet 0/0 Dell_VLTpeer2(conf-if-ma-0/0)#ip address 10.11.206.
no ip address switchport channel-member fortyGigE 1/48,52 no shutdown Troubleshooting VLT To help troubleshoot different VLT issues that may occur, use the following information. NOTE: For information on VLT Failure mode timing and its impact, contact your Dell Networking representative. Table 81.
Description Behavior at Peer Up Behavior During Run Time Action to Take System MAC mismatch A syslog error message and an SNMP trap are generated. A syslog error message and an SNMP trap are generated. Verify that the unit ID of VLT peers is not the same on both units and that the MAC address is the same on both units. Unit ID mismatch The VLT peer does not boot up. The VLTi is forced to a down state. The VLT peer does not boot up. The VLTi is forced to a down state.
Specifying VLT Nodes in a PVLAN You can configure VLT peer nodes in a private VLAN (PVLAN). VLT enables redundancy without the implementation of Spanning Tree Protocol (STP), and provides a loop-free network with optimal bandwidth utilization. Because the VLT LAG interfaces are terminated on two different nodes, PVLAN configuration of VLT VLANs and VLT LAGs are symmetrical and identical on both the VLT peers. PVLANs provide Layer 2 isolation between ports within the same VLAN.
not validated if you associate an ICL to a PVLAN. Similarly, if you dissociate an ICL from a PVLAN, although the PVLAN parity exists, ICL is removed from that PVLAN. Association of VLTi as a Member of a PVLAN If a VLAN is configured as a non-VLT VLAN on both the peers, the VLTi link is made a member of that VLAN if the VLTi link is configured as a PVLAN or normal VLAN on both the peers.
PVLAN Operations When a VLT Peer is Restarted When the VLT peer node is rebooted, the VLAN membership of the VLTi link is preserved and when the peer node comes back online, a verification is performed with the newly received PVLAN configuration from the peer. If any differences are identified, the VLTi link is either added or removed from the VLAN. When the peer node restarts and returns online, all the PVLAN configurations are exchanged across the peers.
VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Mac Synchronization Peer1 Peer2 Peer1 Peer2 Promiscuo us Trunk Primary Primary Yes No Trunk Access Primary Secondary No No Promiscuo us Promiscuo us Primary Primary Yes Yes Promiscuo us Access Primary Secondary No No Promiscuo us Promiscuo us Primary Primary Yes Yes - Secondary (Community) - Secondary (Isolated) No No Secondary (Community) Secondary (Isolated) No No • • Yes Yes Access Promiscuo us Acc
VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Mac Synchronization Peer1 Peer2 Peer1 Peer2 Access Access Secondary (Community) Secondary (Community) No No - Primary VLAN Y - Primary VLAN X No No Promiscuo us Access Primary Secondary No No Trunk Access Primary/Normal Secondary No No Configuring a VLT VLAN or LAG in a PVLAN You can configure the VLT peers or nodes in a private VLAN (PVLAN).
INTERFACE PORT-CHANNEL mode no shutdown 5. To configure the VLT interconnect, repeat Steps 1–4 on the VLT peer switch. 6. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 7. Enter the port-channel number that acts as the interconnect trunk. VLT DOMAIN CONFIGURATION mode peer-link port-channel id-number The range is from 1 to 128. 8.
6. Enable the VLAN. INTERFACE VLAN mode no shutdown 7. To obtain maximum VLT resiliency, configure the PVLAN IDs and mappings to be identical on both the VLT peer nodes. Set the PVLAN mode of the selected VLAN to primary. INTERFACE VLAN mode private-vlan mode primary 8. Map secondary VLANs to the selected primary VLAN.
supported only for the IP address belongs to the received interface IP network. Proxy ARP is not supported if the ARP requested IP address is different from the received interface IP subnet. For example, if VLAN 100 and 200 are configured on the VLT peers, and if the VLAN 100 IP address is configured as 10.1.1.0/24 and the VLAN 200 IP address is configured as 20.1.1.0/24, the proxy ARP is not performed if the VLT node receives an ARP request for 20.1.1.0/24 on VLAN 100.
VLT Nodes as Rendezvous Points for Multicast Resiliency You can configure virtual link trunking (VLT) peer nodes as rendezvous points (RPs) in a Protocol Independent Multicast (PIM) domain. PIM uses a VLT node as the RP to distribute multicast traffic to a multicast group. Messages to join the multicast group (Join messages) and data are sent towards the RP, so that receivers can discover who the senders are and begin receiving traffic destined for the multicast group.
vlan-stack {access | trunk} 2. Configure VLAN as VLAN-stack compatible on both the peers. INTERFACE VLAN mode vlan-stack compatible 3. Add the VLT LAG as a member to the VLAN-stack on both the peers. INTERFACE VLAN mode member port-channel port—channel ID 4. Verify the VLAN-stack configurations.
Dell(conf-if-po-20)#switchport Dell(conf-if-po-20)#vlt-peer-lag port-channel 20 Dell(conf-if-po-20)#vlan-stack trunk Dell(conf-if-po-20)#no shutdown Dell#show running-config interface port-channel 20 ! interface Port-channel 20 no ip address switchport vlan-stack trunk vlt-peer-lag port-channel 20 no shutdown Dell# Configure VLAN as VLAN-Stack VLAN and add the VLT LAG as Members to the VLAN Dell(conf)#interface vlan 50 Dell(conf-if-vl-50)#vlan-stack compatible Dell(conf-if-vl-50-stack)#member port-channel 1
vlt domain 1 peer-link port-channel 1 back-up destination 10.16.151.
Codes: * - Default VLAN, G - GVRP VLANs, R - Remote Port Mirroring VLANs, P Primary, C - Community, I - Isolated O - Openflow Q: U - Untagged, T - Tagged x - Dot1x untagged, X - Dot1x tagged o - OpenFlow untagged, O - OpenFlow tagged G - GVRP tagged, M - Vlan-stack i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged NUM 50 Dell# 1038 Status Active Description Q M M V Ports Po10(Te 1/8) Po20(Te 1/20) Po1(Te 1/30-32) Virtual Link Trunking (VLT)
VLT Proxy Gateway 61 The Virtual link trucking (VLT) proxy gateway feature allows a VLT domain to locally terminate and route L3 packets that are destined to a L3 end point in another VLT domain. Enable the VLT proxy gateway using the link layer discover protocol (LLDP) method or the static configuration. For more information, refer to Dell Networking OS Command Line Reference Guide.
Guidelines for Enabling the VLT Proxy Gateway Keep the following points in mind when you enable this functionality: 1. The proxy gateway is supported only for VLT; for example, across VLT domain. 2. You must enable the VLT peer-routing command for the VLT proxy gateway to function. 3. The current design does not handle asymmetric virtual local area network (VLAN) configuration scenarios such as the same VLAN configured with L2 mode on one VLT domain and L3 mode on another VLT domain.
the same subnet, there is no route asymmetry dynamically. But if you configure the static route on one DC and not on the other, there is asymmetry. 8. If the port-channel specified in theproxy-gateway command is not a VLT LAG, the configuration is rejected by the CLI. VLT LAG to a legacy LAG when it is part of proxy-gateway. 9. You cannot change the LLDP port channel interface to a legacy LAG when you enable the proxy gateway. 10.
LLDP Organizational TLV for Proxy Gateway Define a new organizational TLV : • LLDP defines an organizationally specific TLV (type 127) with an organizationally unique identifier (0x0001E8) and organizationally defined subtype (0x01) for sending or receiving this information. • LLDP will uses the existing infrastructure and adds the new TLV, and sends and receives only on the configured ports.
2. Configure peer-domain-link port-channel in VLT Domain Proxy Gateway LLDP mode. The VLT port channel is the one that connects the remote VLT domain. Sample Configurations for Static VLT Proxy Gateway Apply the following configurations in the Core L3 Routers C and D in local VLT domain and C1 and D1 in the remote VLT domain: 1. Configure proxy-gateway static in VLT Domain CONFIG mode 2. Configure remote-mac-address in VLT Domain Proxy Gateway LLDP mode.
1. The above figure show a sample VLT Proxy gateway scenario. Their are no diagonal links in the square VLT connection between the C and D in VLT domain 1 and C1 and D1 in the VLT domain 2. This undergo sub-optimal routing with the VLT Proxy Gateway LLDP method. For VLT Proxy Gateway to work in this scenario you must configure the , VLT-peer-mac transmit command under VLT Domain Proxy Gateway LLDP mode, in both C and D (VLT domain 1) and C1 and D1 (VLT domain 2).
VLT DOMAIN PROXY GW LLDP mode Dell(conf-vlt-domain-proxy-gw-lldp)#peer-domain-link port-channel interface exclude-vlan vlan-range 4. Display the VLT proxy gateway configuration.
Virtual Routing and Forwarding (VRF) 62 Virtual Routing and Forwarding (VRF) allows a physical router to partition itself into multiple Virtual Routers (VRs). The control and data plane are isolated in each VR so that traffic does NOT flow across VRs.Virtual Routing and Forwarding (VRF) allows multiple instances of a routing table to co-exist within the same router at the same time. VRF Overview VRF improves functionality by allowing network paths to be segmented without using multiple devices.
Figure 134. VRF Network Example VRF Configuration Notes Although there is no restriction on the number of VLANs that can be assigned to a VRF instance, the total number of routes supported in VRF is limited by the size of the IPv4 CAM. VRF is implemented in a network device by using Forwarding Information Bases (FIBs). A network device may have the ability to configure different virtual routers, where entries in the FIB that belong to one VRF cannot be accessed by another VRF on the same device.
Dell Networking OS uses both the VRF name and VRF ID to manage VRF instances. The VRF name and VRF ID number are assigned using the ip vrf command. The VRF ID is displayed in show ip vrf command output. The VRF ID is not exchanged between routers. VRF IDs are local to a router. VRF supports some routing protocols only on the default VRF (default-vrf) instance. Table 1 displays the software features supported in VRF and whether they are supported on all VRF instances or only the default VRF. Table 83.
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF NOTE: ACLs supported on all VRF VLAN ports. IPv4 ACLs are supported on nondefault-VRFs also. IPv6 ACLs are supported on defaultVRF only. PBR supported on default-VRF only. QoS not supported on VLANs.
DHCP DHCP requests are not forwarded across VRF instances. The DHCP client and server must be on the same VRF instance. VRF Configuration The VRF configuration tasks are: 1. Enabling VRF in Configuration Mode 2. Creating a Non-Default VRF 3. Assign an Interface to a VRF You can also: • View VRF Instance Information • Connect an OSPF Process to a VRF Instance • Configure VRRP on a VRF Load VRF CAM VRF is enabled by default on the switch.
Task Command Syntax Command Mode Assign an interface to a VRF instance. ip vrf forwarding vrfname INTERFACE Assigning a Front-end Port to a Management VRF Starting in 9.7(0.0) release, you can assign a front-end port to a management VRF and make the port to act as a host interface. NOTE: You cannot assign loop-back and port-channel interfaces to a management port.
Assigning an OSPF Process to a VRF Instance OSPF routes are supported on all VRF instances. Refer toOpen Shortest Path First (OSPFv2) for complete OSPF configuration information. Assign an OSPF process to a VRF instance . Return to CONFIGURATION mode to enable the OSPF process. The OSPF Process ID is the identifying number assigned to the OSPF process, and the Router ID is the IP address associated with the OSPF process.
Task Command Syntax View VRRP command output for the VRF vrf1 show vrrp vrf vrf1 -----------------TenGigabitEthernet 1/13, IPv4 VRID: 10, Version: 2, Net: 10.1.1.1 VRF: 2 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 43, Gratuitous ARP sent: 0 Virtual MAC address: 00:00:5e:00:01:0a Virtual IP address: 10.1.1.
Task Command Syntax Command Mode Configure a static neighbor. ipv6 neighbor vrf management 1::1 tengigabitethernet 1/1 xx:xx:xx:xx:xx:xx CONFIGURATION Sample VRF Configuration The following configuration illustrates a typical VRF set-up. Figure 135.
Figure 136. Setup VRF Interfaces The following example relates to the configuration shown in Figure1 and Figure 2. Router 1 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet 3/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 1/1 ip vrf forwarding blue ip address 10.0.0.
interface TenGigabitEthernet 1/2 ip vrf forwarding orange ip address 20.0.0.1/24 no shutdown ! interface TenGigabitEthernet 1/3 ip vrf forwarding green ip address 30.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.
interface TenGigabitEthernet 2/2 ip vrf forwarding orange ip address 21.0.0.1/24 no shutdown ! interface TenGigabitEthernet 2/3 ip vrf forwarding green ip address 31.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.
orange 2 green 3 Dell#show ip ospf 1 neighbor Neighbor ID Pri State 1.0.0.2 1 FULL/DR Dell#sh ip ospf 2 neighbor Neighbor ID Pri State 2.0.0.2 1 FULL/DR Dell#show ip route vrf blue Te Vl Te Vl 1/2, 192 1/3, 256 Dead Time Address Interface Area 00:00:32 1.0.0.2 Vl 128 0 Dead Time Address Interface Area 00:00:37 2.0.0.
O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Dist/Metric Last Change ------------------------------------C 3.0.0.0/24 Direct, Vl 256 0/0 00:20:52 C 30.0.0.0/24 Direct, Te 1/3 0/0 00:09:45 S 31.0.0.0/24 via 3.0.0.
L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Last Change --------------------------C 1.0.0.0/24 Direct, Vl 128 0/0 00:27:21 O 10.0.0.0/24 via 1.0.0.1, Vl 128 110/2 00:14:24 C 11.0.0.
0/0 Dell# 00:20:19 Route Leaking VRFs Static routes can be used to redistribute routes between non-default to default/non-default VRF and vice-versa. You can configure route leaking between two VRFs using the following command: ip route vrf x.x.x.x s.s.s.s nh.nh.nh.nh vrf default. This command indicates that packets that are destined to x.x.x.x/s.s.s.s are reachable through nh.nh.nh.nh in the default VRF table. Meaning, the routes to x.x.x.x/s.s.s.
After the target VRF learns routes that are leaked by the source VRF, the source VRF in turn can leak the export target corresponding to the destination VRFs that have imported its routes. The source VRF learns the export target corresponding to the destinations VRF using the ip route-import tag or ipv6 route-import tag command. This mechanism enables reverse communication between destination VRF and the source VRF.
! ip vrf ip ip ! ip vrf ! ip vrf ip ip ip VRF-Blue route-export route-import 3:3 1:1 VRF-Green VRF-shared route-export route-import route-import 1:1 2:2 3:3 Show routing tables of all the VRFs (without any route-export and route-import tags being configured) Dell# show ip route vrf VRF-Red O 11.1.1.1/32 via 111.1.1.1 110/0 C 111.1.1.0/24 Direct, Te 1/11 0/0 00:00:10 22:39:59 Dell# show ip route vrf VRF-Blue O 22.2.2.2/32 via 122.2.2.2 110/0 00:00:11 C 122.2.2.
C 133.3.3.0/24 Direct, Te 1/13 0/0 22:39:61 Dell# show ip route vrf VRF-Shared O 11.1.1.1/32 via VRF-Red:111.1.1.1 110/0 C 111.1.1.0/24 Direct, VRF-Red:Te 1/11 0/0 O 22.2.2.2/32 via VRF-Blue:122.2.2.2 110/0 C 122.2.2.0/24 Direct, VRF-Blue:Te 1/22 0/0 O 44.4.4.4/32 via 144.4.4.4 110/0 00:00:11 C 144.4.4.
route-map import_ospf_protocol and then specify the match criteria as OSPF using the match sourceprotocol ospf command. You can then use the ip route-import route-map command to import routes matching the filtering criteria defined in the import_ospf_protocol route-map. For a reply communication, VRF-blue is configured with a route-export tag. This value is then configured as route-import tag on the VRF-Red. To configure route leaking using filtering criteria, perform the following steps: 1.
The show VRF commands displays the following output: Dell# show ip route vrf VRF-Blue C 122.2.2.0/24 Direct, Te 1/22 O 22.2.2.2/32 via 122.2.2.2 00:00:11 O 44.4.4.4/32 0/0 110/0 22:39:61 via vrf-red:144.4.4.4 0/0 00:32:36 << only OSPF and BGP leaked from VRF-red Important Points to Remember • Only Active routes are eligible for leaking. For example, if VRF-A has two routes from BGP and OSPF, in which the BGP route is not active. In this scenario, the OSPF route takes precedence over BGP.
Virtual Router Redundancy Protocol (VRRP) 63 Virtual router redundancy protocol (VRRP) is supported on Dell Networking OS. VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN). The MASTER router is chosen from the virtual routers by an election process and forwards packets sent to the next hop IP address.
Figure 137. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. End-station connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. VRRP Implementation Within a single VRRP group, up to 12 virtual IP addresses are supported.
decreases based on the dynamics of the network, the advertisement intervals may increase or decrease accordingly. CAUTION: Increasing the advertisement interval increases the VRRP Master dead interval, resulting in an increased failover time for Master/Backup election. Take caution when increasing the advertisement interval, as the increased dead interval may cause packets to be dropped during that switch-over time. Table 84.
• Create a virtual router for that interface with a VRID. INTERFACE mode vrrp-group vrid The VRID range is from 1 to 255. • NOTE: The interface must already have a primary IP address defined and be enabled, as shown in the second example. Delete a VRRP group. INTERFACE mode no vrrp-group vrid Examples of Configuring and Verifying VRRP The following examples how to configure VRRP.
You can use the version both command in INTERFACE mode to migrate from VRRPv2 to VRRPv3. When you set the VRRP version to both, the switch sends only VRRPv3 advertisements but can receive VRRPv2 or VRRPv3 packets. To migrate an IPv4 VRRP group from VRRPv2 to VRRPv3: 1. Set the switches with the lowest priority to “both”. 2. Set the switch with the highest priority to version to 3. 3. Set all the switches from both to version 3.
belonging to either subnet 50.1.1.0/24 or subnet 60.1.1.0/24, but not from both subnets (though Dell Networking OS allows the same). • If the virtual IP address and the interface’s primary/secondary IP address are the same, the priority on that VRRP group MUST be set to 255. The interface then becomes the OWNER router of the VRRP group and the interface’s physical MAC address is changed to that of the owner VRRP group’s MAC address.
The following example shows the same VRRP group (VRID 111) configured on multiple interfaces on different subnets. Dell#show vrrp -----------------TenGigabitEthernet 1/1, VRID: 111, Net: 10.10.10.1 State: Master, Priority: 255, Master: 10.10.10.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 1768, Gratuitous ARP sent: 5 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.10.1 10.10.10.2 10.10.10.3 10.10.10.
Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 2343, Gratuitous ARP sent: 5 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.10.1 10.10.10.2 10.10.10.3 10.10.10.10 Authentication: (none) -----------------TenGigabitEthernet 1/2, VRID: 111, Net: 10.10.2.1 State: Master, Priority: 125, Master: 10.10.2.
Disabling Preempt The preempt command is enabled by default. The command forces the system to change the MASTER router if another router with a higher priority comes online. Prevent the BACKUP router with the higher priority from becoming the MASTER router by disabling preempt. NOTE: You must configure all virtual routers in the VRRP group the same: you must configure all with preempt enabled or configure all with preempt disabled.
If you are configured for VRRP version 2, the timer values must be in multiples of whole seconds. For example, timer value of 3 seconds or 300 centisecs are valid and equivalent. However, a timer value of 50 centisecs is invalid because it not is not multiple of 1 second. If are using VRRP version 3, you must configure the timer values in multiples of 25 centisecs. To change the advertisement interval in seconds or centisecs, use the following command. A centisecs is 1/100 of a second.
The lowered priority of the VRRP group may trigger an election. As the Master/Backup VRRP routers are selected based on the VRRP group’s priority, tracking features ensure that the best VRRP router is the Master for that group. The sum of all the costs of all the tracked interfaces must be less than the configured priority on the VRRP group. If the VRRP group is configured as Owner router (priority 255), tracking for that group is disabled, irrespective of the state of the tracked interfaces.
• (Optional) Display the configuration of tracked objects in VRRP groups on a specified interface. EXEC mode or EXEC Privilege mode show running-config interface interface Examples of Configuring and Viewing the track Command The following example shows how to configure tracking using the track command. Dell(conf-if-te-1/1)#vrrp-group 111 Dell(conf-if-te-1/1-vrid-111)#track Tengigabitethernet 1/2 The following example shows how to verify tracking using the show conf command.
Tracking states for 2 resource Ids: 2 - Up IPv6 route, 2040::/64, priority-cost 20, 00:02:11 3 - Up IPv6 route, 2050::/64, priority-cost 30, 00:02:11 The following example shows verifying the VRRP configuration on an interface.
This time is the gap between system boot up completion and VRRP enabling. The seconds range is from 0 to 900. The default is 0. VRRP for IPv6 Configuration This section shows VRRP IPv6 topology with CLI configurations. Consider an example VRRP for IPv6 configuration in which the IPv6 VRRP group consists of two routers. NOTE: This example does not contain comprehensive directions and is intended to provide guidance for only a typical VRRP configuration. You can copy and paste from the example to your CLI.
Figure 138. VRRP for IPv6 Topology NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be master even if one of two routers has a higher IP or IPv6 address.
NOTE: You must configure a virtual link local (fe80) address for each VRRPv3 group created for an interface. The VRRPv3 group becomes active as soon as you configure the link local address. Afterwards, you can configure the group’s virtual IPv6 address. R2(conf-if-te-1/1-vrid-10)#virtual-address fe80::10 NOTE: The virtual IPv6 address you configure should be the same as the IPv6 subnet to which the interface belongs.
Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 11, Bad pkts rcvd: 0, Adv sent: 0 Virtual MAC address: 00:00:5e:00:02:0a Virtual IP address: 1::10 fe80::10 Dell#show vrrp tengigabitethernet 0/0 TenGigabitEthernet 0/0, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 0 default State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 214, Bad pkts rcvd: 0, Adv sent:
VRF: 2 vrf2 State: Master, Priority: 100, Master: fe80::201:e8ff:fe8a:e9ed (local) Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 443 Virtual MAC address: 00:00:5e:00:02:ff Virtual IP address: 10:1:1::255 fe80::255 Dell#show vrrp vrf vrf2 port-channel 1 Port-channel 1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 2 vrf2 State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down
Figure 139. VRRP for IPv4 Topology Examples of Configuring VRRP for IPv4 and IPv6 The following example shows configuring VRRP for IPv4 Router 2. R2(conf)#interface tengigabitethernet 2/31 R2(conf-if-te-2/31)#ip address 10.1.1.1/24 R2(conf-if-te-2/31)#vrrp-group 99 R2(conf-if-te-2/31-vrid-99)#priority 200 R2(conf-if-te-2/31-vrid-99)#virtual 10.1.1.3 R2(conf-if-te-2/31-vrid-99)#no shut R2(conf-if-te-2/31)#show conf ! interface TenGigabitEthernet 2/31 ip address 10.1.1.
priority 200 virtual-address 10.1.1.3 no shutdown R2(conf-if-te-2/31)#end R2#show vrrp -----------------TenGigabitEthernet 2/31, VRID: 99, Net: 10.1.1.1 State: Master, Priority: 200, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 817, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:63 Virtual IP address: 10.1.1.3 Authentication: (none) R2# Router 3 R3(conf)#interface tengigabitethernet 3/21 R3(conf-if-te-3/21)#ip address 10.1.1.
Figure 140. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address. The following example shows configuring VRRP for IPv6 Router 2 and Router 3. Configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
Although R2 and R3 have the same default, priority (100), R2 is elected master in the VRRPv3 group because the TenGigabitethernet 1/1 interface has a higher IPv6 address than the TenGigabitethernet 1/2 interface on R3.
Virtual MAC address: 00:00:5e:00:02:0a VRRP in a VRF Configuration The following example shows how to enable VRRP operation in a VRF virtualized network for the following scenarios. • Multiple VRFs on physical interfaces running VRRP. • Multiple VRFs on VLAN interfaces running VRRP. To view a VRRP in a VRF configuration, use the show commands. VRRP in a VRF: Non-VLAN Scenario The following example shows how to enable VRRP in a non-VLAN.
Figure 141. VRRP in a VRF: Non-VLAN Example Example of Configuring VRRP in a VRF on Switch-1 (Non-VLAN) Switch-1 S1(conf)#ip vrf default-vrf 0 ! S1(conf)#ip vrf VRF-1 1 ! S1(conf)#ip vrf VRF-2 2 ! S1(conf)#ip vrf VRF-3 3 ! S1(conf)#interface TenGigabitEthernet 1/1 S1(conf-if-te-1/1)#ip vrf forwarding VRF-1 S1(conf-if-te-1/1)#ip address 10.10.1.5/24 S1(conf-if-te-1/1)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 1 will be 177.
! S1(conf)#interface TenGigabitEthernet 1/3 S1(conf-if-te-1/3)#ip vrf forwarding VRF-3 S1(conf-if-te-1/3)#ip address 20.1.1.5/24 S1(conf-if-te-1/3)#vrrp-group 15 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S1(conf-if-te-1/3-vrid-105)#priority 255 S1(conf-if-te-1/3-vrid-105)#virtual-address 20.1.1.5 S1(conf-if-te-1/3)#no shutdown Dell#show vrrp tengigabitethernet 2/8 -----------------TenGigabitEthernet 2/8, IPv4 VRID: 1, Version: 2, Net: 10.1.1.
VLAN Scenario In another scenario, to connect to the LAN, VRF-1, VRF-2, and VRF-3 use a single physical interface with multiple tagged VLANs (instead of separate physical interfaces). In this case, you configure three VLANs: VLAN-100, VLAN-200, and VLAN-300. Each VLAN is a member of one VRF. A physical interface (tengigabitethernet 1/1 ) attaches to the LAN and is configured as a tagged interface in VLAN-100, VLAN-200, and VLAN-300. The rest of this example is similar to the nonVLAN scenario.
Vlan 400, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 1 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Dell#show vrrp vrf vrf2 port-channel 1 -----------------Port-channel 1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 2 vrf2 State: Master, Priority: 100, Master: 10.1.1.
S2(conf-if-vl-300-vrid-101)#virtual-address 20.1.1.5 S2(conf-if-vl-300)#no shutdown Dell#show vrrp vrf vrf1 vlan 400 -----------------Vlan 400, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 1 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Vlan 400, IPv4 VRID: 10, Version: 2, Net: 20.1.1.
S-Series Debugging and Diagnostics 64 This chapter describes debugging and diagnostics for the device. Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, Level 0 diagnostics verify the identification registers of the components on the board.
NOTE: The system reboots when the offline diagnostics complete. This is an automatic process. The following warning message appears when you implement the offline stackunit command: Warning - Diagnostic execution will cause stack-unit to reboot after completion of diags. Proceed with Offline-Diags [confirm yes/no]:y After the system goes offline, you must reload or run the online stack-unit stack-unit-number command for the normal operation. 2. Confirm the offline status.
Unit UnitType Status ReqTyp CurTyp Version Ports ----------------------------------------------------------------------------------0 Management online S4820T S4820T 9-4(0-89) 64 1 Member not present 2 Member not present 3 Member not present 4 Member not present 5 Member not present 6 Member not present 7 Member not present 8 Member not present 9 Member not present 10 Member not present 11 Member not present -- Power Supplies -Unit Bay Status Type FanSpeed(rpm) -----------------------------------------------
00:08:50: %STKUNIT1-M:CP %CHMGR-5-STACKUNITDETECTED: Stack unit 2 present 00:09:00: %STKUNIT1-M:CP %CHMGR-5-CHECKIN: Checkin from Stack unit 2 (type S25P, 28 ports) 00:09:00: %S25P:2 %CHMGR-0-PS_UP: Power supply 0 in unit 2 is up 00:09:00: %STKUNIT1-M:CP %CHMGR-5-STACKUNITUP: Stack unit 2 is up [output from the console of the unit in which diagnostics are performed] Dell(stack-member-2)# Diagnostic test results are stored on file: flash:/TestReport-SU-2.txt Diags completed...
Test Test Test Test Test Test Test Test 5 - Fan Tray Air Flow Status Test ............................. 6.000 - TMP75A-CPU ............................................. 6.001 - TMP75B-MAC ............................................. 6.002 - TMP75C-LEFT-PHY ........................................ 6.003 - TMP75D-RIGHT-PHY ....................................... 6 - Temp Sensor Access Test .................................... 7 - RTC Presence Test ..........................................
Using the Show Hardware Commands The show hardware command tree consists of commands used with the system. These commands display information from a hardware sub-component and from hardware-based feature tables. NOTE: Use the show hardware commands only under the guidance of the Dell Technical Assistance Center. The following lists the show hardware commands available as of the latest Dell Networking OS version.
• This view helps identifying the stack unit/port pipe/port that may experience internal drops. View the input and output statistics for a stack-port interface. EXEC Privilege mode • show hardware stack-unit {0-11} stack-port {0-64} View the counters in the field processors of the stack unit. EXEC Privilege mode • show hardware stack-unit {0-11} unit {0-1} counters View the details of the FP Devices and Hi gig ports on the stack-unit.
Recognize an Overtemperature Condition An overtemperature condition occurs, for one of two reasons: the card genuinely is too hot or a sensor has malfunctioned. Inspect cards adjacent to the one reporting the condition to discover the cause. • If directly adjacent cards are not normal temperature, suspect a genuine overheating condition. • If directly adjacent cards are normal temperature, suspect a faulty sensor. When the system detects a genuine over-temperature condition, it powers off the card.
This message indicates that the specified card is not receiving enough power. In response, the system first shuts down Power over Ethernet (PoE). If the under-voltage condition persists, line cards are shut down, then the RPMs. Troubleshoot an Under-Voltage Condition To troubleshoot an under-voltage condition, check that the correct number of power supplies are installed and their Status light emitting diodes (LEDs) are lit.
Buffer Tuning Buffer tuning allows you to modify the way your switch allocates buffers from its available memory and helps prevent packet drops during a temporary burst of traffic. The S-Series application-specific integrated circuit (ASICs) implement the key functions of queuing, feature lookups, and forwarding lookups in hardware.
• Oversubscription ratio = 10 • Dynamic Cell Limit Per port = 59040/29 = 2036 cells Figure 142. Buffer Tuning Points Deciding to Tune Buffers Dell Networking recommends exercising caution when configuring any non-default buffer settings, as tuning can significantly affect system performance. The default values work for most cases. As a guideline, consider tuning buffers if traffic is bursty (and coming from several interfaces). In this case: • Reduce the dedicated buffer on all queues/interfaces.
• buffer-profile csf csqueue Change the dedicated buffers on a physical 1G interface. BUFFER PROFILE mode • buffer dedicated Change the maximum number of dynamic buffers an interface can request. BUFFER PROFILE mode • buffer dynamic Change the number of packet-pointers per queue. BUFFER PROFILE mode • buffer packet-pointers Apply the buffer profile to a line card. CONFIGURATION mode • buffer fp-uplink linecard Apply the buffer profile to a CSF to FP link.
To display the default buffer profile, use the show buffer-profile {summary | detail} command from EXEC Privilege mode. The following example shows viewing the default buffer profile. Dell#show buffer-profile detail interface tengigabitethernet 1/1 Interface Te 1/1 Buffer-profile Dynamic buffer 194.88 (Kilobytes) Queue# Dedicated Buffer Buffer Packets (Kilobytes) 0 2.50 256 1 2.50 256 2 2.50 256 3 2.50 256 4 9.38 256 5 9.38 256 6 9.38 256 7 9.
6 7 3.00 3.00 256 256 Using a Pre-Defined Buffer Profile Dell Networking OS provides two pre-defined buffer profiles, one for single-queue (for example, nonquality-of-service [QoS]) applications, and one for four-queue (for example, QoS) applications. You must reload the system for the global buffer profile to take effect, a message similar to the following displays: % Info: For the global pre-defined buffer profile to take effect, please save the config and reload the system..
! buffer fp-uplink stack-unit 0 port-set 0 buffer-policy fsqueue-hig buffer fp-uplink stack-unit 0 port-set 1 buffer-policy fsqueue-hig ! Interface range tengigabitethernet 1/1 - 18 buffer-policy fsqueue-fp Dell#show run interface tengigabitethernet 1/10 ! interface TenGigabitEthernet 1/10 no ip address Troubleshooting Packet Loss The show hardware stack-unit command is intended primarily to troubleshoot packet loss. To troubleshoot packet loss, use the following commands.
Total Total Total Total Total Ingress Drops :0 IngMac Drops :0 Mmu Drops :0 EgMac Drops :0 Egress Drops :0 Dell#show hardware stack-unit 0 drops unit 0 Port# :Ingress Drops :IngMac Drops :Total Mmu Drops :EgMac Drops :Egress Drops 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 5 0 0 0 0 0 6 0 0 0 0 0 7 0 0 0 0 0 8 0 0 0 0 0 Dell#show hardware stack-unit --- Ingress Drops --Ingress Drops : IBP CBP Full Drops : PortSTPnotFwd Drops : IPv4 L3 Discards : Policy Discards : Packets dropped by FP : (L2+L3) Drops
Example of Viewing Dataplane Statistics Dell#show hardware stack-unit 2 cpu data-plane statistics bc pci driver statistics for device: rxHandle :0 noMhdr :0 noMbuf :0 noClus :0 recvd :0 dropped :0 recvToNet :0 rxError :0 rxDatapathErr :0 rxPkt(COS0) :0 rxPkt(COS1) :0 rxPkt(COS2) :0 rxPkt(COS3) :0 rxPkt(COS4) :0 rxPkt(COS5) :0 rxPkt(COS6) :0 rxPkt(COS7) :0 rxPkt(UNIT0) :0 rxPkt(UNIT1) :0 rxPkt(UNIT2) :0 rxPkt(UNIT3) :0 transmitted :0 txRequested :0 noTxDesc :0 txError :0 txReqTooLarge :0 txInternalError :0 t
0 Multicasts, 5 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics: 1649714 packets, 1948622676 bytes, 0 underruns 0 64-byte pkts, 27234 over 64-byte pkts, 107970 over 127-byte pkts 34 over 255-byte pkts, 504838 over 511-byte pkts, 1009638 over 1023-byte pkts 0 Multicasts, 0 Broadcasts, 1649714 Unicasts 0 throttles, 0 discarded, 0 collisions Rate info (interval 45 seconds): Input 00.00 Mbits/sec, 2 packets/sec, 0.00% of line-rate Output 00.
To undo this command, use the no logging coredump server command. Mini Core Dumps Dell Networking OS supports mini core dumps on the application and kernel crashes. The mini core dump applies to Master, Standby, and Member units. Application and kernel mini core dumps are always enabled. The mini core dumps contain the stack space and some other minimal information that you can use to debug a crash. These files are small files and are written into flash until space is exhausted.
--------------------FREE MEMORY--------------uvmexp.free = 0x2312 Enabling TCP Dumps A TCP dump captures CPU-bound control plane traffic to improve troubleshooting and system manageability. When you enable TCP dump, it captures all the packets on the local CPU, as specified in the CLI. You can save the traffic capture files to flash, FTP, SCP, or TFTP. The files saved on the flash are located in the flash://TCP_DUMP_DIR/Tcpdump_/ directory and labeled tcpdump_*.pcap.
Standards Compliance 65 This chapter describes standards compliance for Dell Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell Networking Operating System (OS), Dell Networking OS also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website.
SFF-8431 SFP+ Direct Attach Cable (10GSFP+Cu) MTU 9,252 bytes RFC and I-D Compliance Dell Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell Networking OS first supports the standard. General Internet Protocols The following table lists the Dell Networking OS support per platform for general internet protocols. Table 88.
General IPv4 Protocols The following table lists the Dell Networking OS support per platform for general IPv4 protocols. Table 89. General IPv4 Protocols RFC# Full Name S-Series 791 Internet Protocol 7.6.1 792 Internet Control Message Protocol 7.6.1 826 An Ethernet Address Resolution Protocol 7.6.1 1027 Using ARP to Implement Transparent Subnet Gateways 7.6.1 1035 DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION (client) 7.6.
General IPv6 Protocols The following table lists the Dell Networking OS support per platform for general IPv6 protocols. Table 90. General IPv6 Protocols RFC# Full Name S-Series 1886 DNS Extensions to support IP version 6 7.8.1 1981 (Partial) Path MTU Discovery for IP version 6 7.8.1 2460 Internet Protocol, Version 6 (IPv6) Specification 7.8.1 2462 (Partial) IPv6 Stateless Address Autoconfiguration 7.8.1 2464 Transmission of IPv6 Packets over Ethernet Networks 7.8.
RFC# Full Name S-Series/Z-Series 2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing 2796 BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP) 2842 Capabilities Advertisement with BGP-4 7.8.1 2858 Multiprotocol Extensions for BGP-4 7.8.1 2918 Route Refresh Capability for BGP-4 7.8.1 3065 Autonomous System Confederations for BGP 7.8.1 4360 BGP Extended Communities Attribute 7.8.1 4893 BGP Support for Four-octet AS Number Space 7.8.
Intermediate System to Intermediate System (IS-IS) The following table lists the Dell Networking OS support per platform for IS-IS protocol. Table 93.
Multicast The following table lists the Dell Networking OS support per platform for Multicast protocol. Table 95. Multicast RFC# Full Name S-Series 1112 Host Extensions for IP Multicasting 7.8.1 2236 Internet Group Management Protocol, 7.8.1 Version 2 2710 Multicast Listener Discovery (MLD) for IPv6 3376 Internet Group Management Protocol, 7.8.
RFC# Full Name S4810 S4820T Z-Series Management of TCP/IPbased internets 1157 A Simple Network Management Protocol (SNMP) 7.6.1 1212 Concise MIB Definitions 7.6.1 1215 A Convention for Defining 7.6.1 Traps for use with the SNMP 1493 Definitions of Managed 7.6.1 Objects for Bridges [except for the dot1dTpLearnedEntryDisc ards object] 1724 RIP Version 2 MIB Extension 1850 OSPF Version 2 7.6.1 Management Information Base 1901 Introduction to Community-based SNMPv2 7.6.
RFC# Full Name S4810 S4820T Z-Series Digital Hierarchy (SONET/ SDH) Interface Type 2570 Introduction and Applicability Statements for Internet Standard Management Framework 7.6.1 2571 An Architecture for 7.6.1 Describing Simple Network Management Protocol (SNMP) Management Frameworks 2572 Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) 2574 User-based Security 7.6.
RFC# Full Name S4810 S4820T Z-Series 9.5.(0.0) 9.5.(0.0) radiusAuthClientMalforme dAccessResponses radiusAuthClientUnknown Types radiusAuthClientPacketsD ropped 2698 A Two Rate Three Color Marker 9.5.(0.0) 3635 Definitions of Managed Objects for the Ethernetlike Interface Types 7.6.1 2674 Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions 7.6.1 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol 7.6.
RFC# Full Name S4810 S4820T Z-Series Network Management Protocol (SNMP) 3418 Management Information 7.6.1 Base (MIB) for the Simple Network Management Protocol (SNMP) 3434 Remote Monitoring MIB Extensions for High Capacity Alarms, HighCapacity Alarm Table (64 bits) 7.6.1 3580 IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines 7.6.
RFC# Full Name S4810 S4820T Z-Series 9.2(0.0) 9.2(0.0) 9.2(0.0) Gateway Protocol (BGP-4) using SMIv2 draft-ietf-isiswgmib- 16 Management Information Base for Intermediate System to Intermediate System (IS-IS): isisSysObject (top level scalar objects) isisISAdjTable isisISAdjAreaAddrTable isisISAdjIPAddrTable isisISAdjProtSuppTable draft-ietf-netmodinterfaces-cfg-03 Defines a YANG data model for the configuration of network interfaces. Used in the Programmatic Interface RESTAPI feature. IEEE 802.
RFC# Full Name S4810 S4820T Z-Series 9.2.(0.0) 9.2.(0.0) Multiple Spanning Tree Protocol sFlow.org sFlow Version 5 7.7.1 sFlow.org sFlow Version 5 MIB 7.7.1 FORCE10-BGP4V2-MIB Force10 BGP MIB (draftietf-idr-bgp4-mibv2-05) 7.8.1 f10–bmp-mib Force10 Bare Metal Provisioning MIB 9.2(0.0) FORCE10-FIB-MIB Force10 CIDR Multipath Routes MIB (The IP Forwarding Table provides information that you can use to determine the egress port of an IP packet and troubleshoot an IP reachability issue.
RFC# Full Name S4810 FORCE10-SSCHASSIS-MIB Force10 S-Series Enterprise Chassis MIB 7.6.1 FORCE10-SMI Force10 Structure of 7.6.1 Management Information FORCE10-SYSTEM- Force10 System COMPONENT-MIB Component MIB (enables the user to view CAM usage information) 7.6.1 FORCE10-TC-MIB Force10 Textual Convention 7.6.1 FORCE10-TRAPALARM-MIB Force10 Trap Alarm MIB 7.6.