Dell Configuration Guide for the S4820T System 9.9(0.
Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. Copyright © 2015 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws.
Contents 1 About this Guide............................................................................................................ 33 Audience.......................................................................................................................................................................... 33 Conventions.....................................................................................................................................................................
Using Hashes to Verify Software Images Before Installation.............................................................................................53 4 Management.................................................................................................................55 Configuring Privilege Levels............................................................................................................................................. 55 Creating a Custom Privilege Level.......................
Recovering from a Forgotten Password........................................................................................................................... 75 Recovering from a Forgotten Enable Password.......................................................................................................... 76 Recovering from a Failed Start.........................................................................................................................................
Configuring an Authentication-Fail VLAN..................................................................................................................102 7 Access Control List (ACL) VLAN Groups and Content Addressable Memory (CAM).... 104 Optimizing CAM Utilization During the Attachment of ACLs to VLANs.......................................................................... 104 Guidelines for Configuring ACL VLAN Groups...................................................................................
Configuring ACL Logging.......................................................................................................................................... 134 Flow-Based Monitoring Support for ACLs...................................................................................................................... 135 Behavior of Flow-Based Monitoring..........................................................................................................................
Configuration Information............................................................................................................................................... 180 BGP Configuration..........................................................................................................................................................180 Enabling BGP........................................................................................................................................................
View CAM-ACL Settings................................................................................................................................................ 224 View CAM Usage........................................................................................................................................................... 226 CAM Optimization........................................................................................................................................................
Applying DCB Policies in a Switch Stack........................................................................................................................ 256 Configure a DCBx Operation.......................................................................................................................................... 256 DCBx Operation.......................................................................................................................................................
Viewing the Number of SAV Dropped Packets.........................................................................................................296 Clearing the Number of SAV Dropped Packets........................................................................................................ 296 15 Equal Cost Multi-Path (ECMP)..................................................................................297 ECMP for Flow-Based Affinity.................................................................
Important FRRP Points............................................................................................................................................ 325 Important FRRP Concepts....................................................................................................................................... 326 Implementing FRRP........................................................................................................................................................
IGMP Implementation Information..................................................................................................................................346 IGMP Protocol Overview............................................................................................................................................... 346 IGMP Version 2........................................................................................................................................................
Configuring Layer 3 (Interface) Mode...................................................................................................................... 370 Egress Interface Selection (EIS).....................................................................................................................................370 Important Points to Remember................................................................................................................................. 371 Configuring EIS.......
Auto-Negotiation on Ethernet Interfaces....................................................................................................................... 395 Setting the Speed and Duplex Mode of Ethernet Interfaces.................................................................................... 396 Set Auto-Negotiation Options.................................................................................................................................. 397 View Advanced Interface Information......
UDP Helper with Broadcast-All Addresses...................................................................................................................... 418 UDP Helper with Subnet Broadcast Addresses...............................................................................................................419 UDP Helper with Configured Broadcast Addresses.........................................................................................................
Synchronizing iSCSI Sessions Learned on VLT-Lags with VLT-Peer..........................................................................443 Enable and Disable iSCSI Optimization..................................................................................................................... 444 Default iSCSI Optimization Values.................................................................................................................................. 444 iSCSI Optimization Prerequisites.............
LACP Basic Configuration Example................................................................................................................................ 478 Configure a LAG on ALPHA......................................................................................................................................478 29 Layer 2...................................................................................................................... 486 Manage the MAC Address Table.......................
Configuring the Time to Live Value.................................................................................................................................. 511 Debugging LLDP.............................................................................................................................................................512 Relevant Management Objects.......................................................................................................................................
Related Configuration Tasks..................................................................................................................................... 547 Enable Multiple Spanning Tree Globally.......................................................................................................................... 548 Adding and Removing Interfaces....................................................................................................................................
Fast Convergence (OSPFv2, IPv4 Only).................................................................................................................. 586 Multi-Process OSPFv2 with VRF.............................................................................................................................586 RFC-2328 Compliant OSPF Flooding.......................................................................................................................586 OSPF ACK Packing............................
Related Configuration Tasks.....................................................................................................................................629 Enable PIM-SM..............................................................................................................................................................629 Configuring S,G Expiry Timers........................................................................................................................................
Configure Per-VLAN Spanning Tree Plus........................................................................................................................ 661 Related Configuration Tasks......................................................................................................................................661 Enabling PVST+..............................................................................................................................................................
RIPv1........................................................................................................................................................................699 RIPv2.......................................................................................................................................................................699 Implementation Information.....................................................................................................................................
TACACS+.......................................................................................................................................................................739 Configuration Task List for TACACS+.......................................................................................................................739 TACACS+ Remote Authentication.............................................................................................................................
Setting Rate-Limit BPDUs........................................................................................................................................ 777 Debugging Layer 2 Protocol Tunneling...................................................................................................................... 777 Provider Backbone Bridging........................................................................................................................................... 778 50 sFlow.........
Obtaining a Value for MIB Objects............................................................................................................................ 801 MIB Support to Display the Available Memory Size on Flash...........................................................................................801 Viewing the Available Flash Memory Size.................................................................................................................
Recover from Stack Link Flaps.................................................................................................................................830 Recover from a Card Problem State on a Stack........................................................................................................831 Recover from a Card Mismatch State on a Stack.....................................................................................................832 53 Storm Control...............................
Disabling NTP on an Interface..................................................................................................................................859 Configuring a Source IP Address for NTP Packets...................................................................................................859 Configuring NTP Authentication.............................................................................................................................. 860 Dell Networking OS Time and Date......
Enhanced VLT..........................................................................................................................................................888 VLT Terminology.............................................................................................................................................................889 Configure Virtual Link Trunking.......................................................................................................................................
Enabling the VLT Proxy Gateway............................................................................................................................. 933 LLDP Organizational TLV for Proxy Gateway........................................................................................................... 933 Configuring an LLDP VLT Proxy Gateway......................................................................................................................
Recognize an Overtemperature Condition............................................................................................................... 984 Troubleshoot an Over-temperature Condition.......................................................................................................... 985 Recognize an Under-Voltage Condition....................................................................................................................985 Troubleshoot an Under-Voltage Condition..........
1 About this Guide This guide describes the protocols and features the Dell Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. The S4820T platform is available with Dell Networking OS version 8.3.19.0 and beyond. The S4820T platform is available with Dell Networking OS version 8.3.19.0 and beyond. S4820T stacking is supported with Dell Networking OS version 8.3.19.0 and beyond.
2 Configuration Fundamentals The Dell Networking Operating System (OS) command line interface (CLI) is a text-based interface you can use to configure interfaces and protocols. The CLI is largely the same for each platform except for some commands and command outputs. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
• CONFIGURATION mode allows you to configure security features, time settings, set logging and SNMP functions, configure static ARP and MAC addresses, and set line cards on the system. Beneath CONFIGURATION mode are submodes that apply to interfaces, protocols, and features. The following example shows the submode command structure.
ROUTER OSPF ROUTER OSPFV3 ROUTER RIP SPANNING TREE SUPPORTASSIST TRACE-LIST VLT DOMAIN VRRP UPLINK STATE GROUP uBoot Navigating CLI Modes The Dell Networking OS prompt changes to indicate the CLI mode. The following table lists the CLI mode, its prompt, and information about how to access and exit the CLI mode. Move linearly through the command modes, except for the end command which takes you directly to EXEC Privilege mode and the exit command which moves you up one command mode level.
CLI Command Mode Prompt Access Command STANDARD ACCESS-LIST Dell(config-std-nacl)# ip access-list standard (IP ACCESS-LIST Modes) EXTENDED ACCESS-LIST Dell(config-ext-nacl)# ip access-list extended (IP ACCESS-LIST Modes) IP COMMUNITY-LIST Dell(config-community-list)# ip community-list AUXILIARY Dell(config-line-aux)# line (LINE Modes) CONSOLE Dell(config-line-console)# line (LINE Modes) VIRTUAL TERMINAL Dell(config-line-vty)# line (LINE Modes) STANDARD ACCESS-LIST Dell(config-std-macl)
CLI Command Mode Prompt Access Command EIS Dell(conf-mgmt-eis)# management egress-interfaceselection FRRP Dell(conf-frrp-ring-id)# protocol frrp LLDP Dell(conf-lldp)# or Dell(confif—interface-lldp)# protocol lldp (CONFIGURATION or INTERFACE Modes) LLDP MANAGEMENT INTERFACE Dell(conf-lldp-mgmtIf)# management-interface (LLDP Mode) LINE Dell(config-line-console) or Dell(config-line-vty) line console orline vty MONITOR SESSION Dell(conf-mon-sesssessionID)# monitor session OPENFLOW INSTANCE
-- Stack Info -Unit UnitType Status ReqTyp CurTyp Version Ports -----------------------------------------------------------------------------------0 Management online S4810 S4810 9.4(0.
• Enter ? after a command prompt to list all of the available keywords. The output of this command is the same as the help command. Dell#? cd Change current directory clear Reset functions clock Manage the system clock configure Configuring from terminal copy Copy from one file to another debug Debug functions --More-- • Enter ? after a partial keyword lists all of the keywords that begin with the specified letters.
Short-Cut Key Combination Action CNTL-U Deletes the line. CNTL-W Deletes the previous word. CNTL-X Deletes the line. CNTL-Z Ends continuous scrolling of command outputs. Esc B Moves the cursor back one word. Esc F Moves the cursor forward one word. Esc D Deletes all characters from the cursor to the end of the word. Command History The Dell Networking OS maintains a history of previously-entered commands for each mode.
5 6 not present not present The find keyword displays the output of the show command beginning from the first occurrence of specified text. The following example shows this command used in combination with the show linecard all command. Example of the find Keyword The display command displays additional configuration information. The no-more command displays the output all at once rather than one screen at a time.
3 Getting Started This chapter describes how you start configuring your system. When you power up the chassis, the system performs a power-on self test (POST) and system then loads the Dell Networking Operating System. Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption. When the boot process completes, the system status LEDs remain online (green) and the console monitor displays the EXEC mode prompt.
• No parity • 8 data bits • 1 stop bit • No flow control Pin Assignments You can connect to the console using a RJ-45 to RJ-45 rollover cable and a RJ-45 to DB-9 female DTE adapter to a terminal server (for example, a PC). The pin assignments between the console and a DTE terminal server are as follows: Table 2.
The script is run and the actions contained in the script are performed. Following are the points to remember, when you are trying to establish an SSH session to the device to run commands or script files: • There is an upper limit of 10 concurrent sessions in SSH. Therefore, you might expect a failure in executing SSH-related scripts. • To avoid denial of service (DoS) attacks, a rate-limit of 10 concurrent sessions per minute in SSH is devised.
Configure the Management Port IP Address To access the system remotely, assign IP addresses to the management ports. 1. Enter INTERFACE mode for the Management port. CONFIGURATION mode interface ManagementEthernet slot/port 2. Assign an IP address to the interface. INTERFACE mode ip address ip-address/mask 3. • ip-address: an address in dotted-decimal format (A.B.C.D). • mask: a subnet mask in /prefix-length format (/ xx). Enable the interface.
• enable password stores the password in the running/startup configuration using a DES encryption method. • enable secret is stored in the running/startup configuration in using a stronger, MD5 encryption method. Dell Networking recommends using the enable secret password. To configure an enable password, use the following command. • Create a password to access EXEC Privilege mode.
Example of Copying a File to an FTP Server Dell#copy flash://Dell-EF-8.2.1.0.bin ftp://myusername:mypassword@10.10.10.10/ /Dell/Dell-EF-8.2.1.0 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 27952672 bytes successfully copied Example of Importing a File to the Local System core1#$//copy ftp://myusername:mypassword@10.10.10.10//Dell/ Dell-EF-8.2.1.0.bin flash:// Destination file name [Dell-EF-8.2.1.0.bin.
Source file name []: test.c User name to login remote host: mashutosh Example of Logging in to Copy from NFS Mount Dell#copy nfsmount:///test flash: Destination file name [test]: test2 ! 5592 bytes successfully copied Dell# Dell#copy nfsmount:///test.txt ftp://10.16.127.35 Destination file name [test.txt]: User name to login remote host: mashutosh Password to login remote host: ! Example of Copying to NFS Mount Dell#copy flash://test.txt nfsmount:/// Destination file name [test.
NOTE: When copying to a server, a host name can only be used if a DNS server is configured. Configure the Overload Bit for a Startup Scenario For information about setting the router overload bit for a specific period of time after a switch reload is implemented, refer to the Intermediate System to Intermediate System (IS-IS) section in the Dell Networking OS Command Line Reference Guide. Viewing Files You can only view file information and content on local file systems.
! 
NOTE: The MXL and Z9000 platforms currently do not support VRF. These platforms support only the management and default VRFs, which are available by default. As a result, the feature vrf command is not available for these platforms.
When you specify the management VRF, the copy operation that is used to transfer files to and from an HTTP server utilizes the VRF table corresponding to the Management VRF to look up the destination. When you specify a nondefault VRF, the VRF table corresponding to that nondefault VRF is used to look up the HTTP server.
MD5 Dell# verify md5 flash://FTOS-SE-9.5.0.0.bin MD5 hash for FTOS-SE-9.5.0.0.bin: 275ceb73a4f3118e1d6bcf7d75753459 SHA256 Dell# verify sha256 flash://FTOS-SE-9.5.0.0.bin SHA256 hash for FTOS-SE-9.5.0.0.bin: e6328c06faf814e6899ceead219afbf9360e986d692988023b749e6b2093e933 Examples: Entering the Hash Value for Verification MD5 Dell# verify md5 flash://FTOS-SE-9.5.0.0.bin 275ceb73a4f3118e1d6bcf7d75753459 MD5 hash VERIFIED for FTOS-SE-9.5.0.0.bin SHA256 Dell# verify sha256 flash://FTOS-SE-9.5.0.0.
4 Management This chapter describes the different protocols or services used to manage the Dell Networking system. Configuring Privilege Levels Privilege levels restrict access to commands based on user or terminal line. There are 16 privilege levels, of which three are pre-defined. The default privilege level is 1. Level Description Level 0 Access to the system begins at EXEC mode, and EXEC mode commands are limited to enable, disable, and exit.
level level command. In the command, specify the privilege level of the user or terminal line and specify all the keywords in the command to which you want to allow access. Allowing Access to Different Modes This section describes how to allow access to the INTERFACE, LINE, ROUTE-MAP, and ROUTER modes. Similar to allowing access to CONFIGURATION mode, to allow access to INTERFACE, LINE, ROUTE-MAP, and ROUTER modes, you must first allow access to the command that enters you into the mode.
Current privilege level is 3. Dell#? capture Capture packet configure Configuring from terminal disable Turn off privileged commands enable Turn on privileged commands exit Exit from the EXEC ip Global IP subcommands monitor Monitoring feature mtrace Trace reverse multicast path from destination to source ping Send echo messages quit Exit from the EXEC show Show running system information [output omitted] Dell#config [output omitted] Dell(conf)#do show priv Current privilege level is 3.
Applying a Privilege Level to a Terminal Line To set a privilege level for a terminal line, use the following command. • Configure a privilege level for a user. CONFIGURATION mode username username privilege level NOTE: When you assign a privilege level between 2 and 15, access to the system begins at EXEC mode, but the prompt is hostname#, rather than hostname>. Configuring Logging The Dell Networking OS tracks changes in the system using event and error messages.
Audit Logs The audit log contains configuration events and information. The types of information in this log consist of the following: • User logins to the switch. • System events for network issues or system issues. • Users making configuration changes. The switch logs who made the configuration changes and the date and time of the change. However, each specific change on the configuration is not logged. Only that the configuration was modified is logged with the user ID, date, and time of the change.
line vty0 ( 10.14.1.91 ) Clearing Audit Logs To clear audit logs, use the clear logging auditlog command in Exec mode. When RBAC is enabled, only the system administrator user role can issue this command. Example of the clear logging auditlog Command Dell# clear logging auditlog Configuring Logging Format To display syslog messages in a RFC 3164 or RFC 5424 format, use the logging version {0 | 1} command in CONFIGURATION mode. By default, the system log version is set to 0.
%IFMGR-5-CSTATE_UP: changed interface Physical state to up: So 12/8 %IFMGR-5-CSTATE_DN: changed interface Physical state to down: So 12/8 To view any changes made, use the show running-config logging command in EXEC privilege mode. Setting Up a Secure Connection to a Syslog Server You can use reverse tunneling with the port forwarding to securely connect to a syslog server. Figure 2.
If you do not, the system displays an error when you attempt to enable role-based only AAA authorization. Dell(conf)# logging localhost tcp port Dell(conf)#logging 127.0.0.1 tcp 5140 Log Messages in the Internal Buffer All error messages, except those beginning with %BOOTUP (Message), are log in the internal buffer.
• Configure a UNIX system as a syslog server by adding the following lines to /etc/syslog.conf on the UNIX system and assigning write permissions to the file. – Add line on a 4.1 BSD UNIX system. local7.debugging /var/log/ftos.log – Add line on a 5.7 SunOS UNIX system. local7.debugging /var/adm/ftos.log In the previous lines, local7 is the logging facility level and debugging is the severity level.
Display Login Statistics To view the login statistics, use the show login statistics command. Example of the show login statistics Command The show login statistics command displays the successful and failed login details of the current user in the last 30 days or the custom defined time period. Dell#show login statistics -----------------------------------------------------------------User: admin Last login time: Mon Feb 16 04:40:00 2015 Last login location: Line vty0 ( 10.14.1.
Restrictions for Limiting the Number of Concurrent Sessions These restrictions apply for limiting the number of concurrent sessions: • Only the system and security administrators can limit the number of concurrent sessions and enable the clear-line option. • Users can clear their existing sessions only if the system is configured with the login concurrent-session clearline enable command.
Password: Maximum concurrent sessions for the user reached. Current sessions for user admin: Line Location 2 vty 0 10.14.1.97 3 vty 1 10.14.1.97 4 vty 2 10.14.1.97 5 vty 3 10.14.1.97 Kill existing session? [line number/Enter to cancel]: Changing System Logging Settings You can change the default settings of the system logging by changing the severity level and the storage location. The default is to log all messages up to debug level, that is, all system messages.
Display the Logging Buffer and the Logging Configuration To display the current contents of the logging buffer and the logging settings for the system, use the show logging command in EXEC privilege mode. When RBAC is enabled, the security logs are filtered based on the user roles. Only the security administrator and system administrator can view the security logs.
– local1 (for local use) – local2 (for local use) – local3 (for local use) – local4 (for local use) – local5 (for local use) – local6 (for local use) – local7 (for local use) – lpr (for line printer system messages) – mail (for mail system messages) – news (for USENET news messages) – sys9 (system use) – sys10 (system use) – sys11 (system use) – sys12 (system use) – sys13 (system use) – sys14 (system use) – syslog (for syslog messages) – user (for user programs) – uucp (UNIX to UNIX copy protocol) Example o
2. Configure a level and set the maximum number of messages to print. LINE mode logging synchronous [level severity-level | all] [limit] Configure the following optional parameters: • level severity-level: the range is from 0 to 7. The default is 2. Use the all keyword to include all messages. • limit: the range is from 20 to 300. The default is 20. To view the logging synchronous configuration, use the show config command in LINE mode.
• Configure FTP Server Parameters (optional) • Configure FTP Client Parameters (optional) Enabling the FTP Server To enable the system as an FTP server, use the following command. To view FTP configuration, use the show running-config ftp command in EXEC privilege mode. • Enable FTP on the system.
• ip ftp source-interface interface Configure a password. CONFIGURATION mode • ip ftp password password Enter a username to use on the FTP client. CONFIGURATION mode ip ftp username name To view the FTP configuration, use the show running-config ftp command in EXEC privilege mode, as shown in the example for Enable FTP Server. Terminal Lines You can access the system remotely and restrict access to the system by creating user profiles.
Dell(config-line-vty)#show config line vty 0 access-class myvtyacl Dell(conf-ipv6-acl)#do show run acl ! ip access-list extended testdeny seq 10 deny ip 30.1.1.
Example of Terminal Line Authentication In the following example, VTY lines 0-2 use a single authentication method, line.
Enter an IPv4 address in dotted decimal format (A.B.C.D). Enter an IPv6 address in the format 0000:0000:0000:0000:0000:0000:0000:0000. Elision of zeros is supported. Example of the telnet Command for Device Access Dell# telnet 10.11.80.203 Trying 10.11.80.203... Connected to 10.11.80.203. Exit character is '^]'. Login: Login: admin Password: Dell>exit Dell#telnet 2200:2200:2200:2200:2200::2201 Trying 2200:2200:2200:2200:2200::2201... Connected to 2200:2200:2200:2200:2200::2201. Exit character is '^]'.
NOTE: The CONFIGURATION mode lock corresponds to a VTY session, not a user. Therefore, if you configure a lock and then exit CONFIGURATION mode, and another user enters CONFIGURATION mode, when you attempt to re-enter CONFIGURATION mode, you are denied access even though you are the one that configured the lock. NOTE: If your session times out and you return to EXEC mode, the CONFIGURATION mode lock is unconfigured.
Recovering from a Forgotten Enable Password Use the following commands if you forget the enable password. 1. Log onto the system using the console. 2. Power-cycle the chassis by switching off all of the power modules and then switching them back on. 3. Hit any key to abort the boot process. You enter uBoot immediately, as indicated by the => prompt. (during bootup) hit any key NOTE: You must enter the CLI commands. The system rejects them if they are copied and pasted. 4.
uBoot mode setenv gatewayip address 6. Reload the system. uBoot mode reset Restoring the Factory Default Settings Restoring the factory-default settings deletes the existing NVRAM settings, startup configuration, and all configured settings such as, stacking or fanout. To restore the factory default settings, use the restore factory-defaults stack-unit {stack—unit—number | all} {clear-all | nvram | bootvar} command in EXEC Privilege mode. CAUTION: There is no undo for this command.
1. Power-cycle the chassis (pull the power cord and reinsert it). 2. Hit any key to abort the boot process. You enter uBoot immediately, the => prompt indicates success. (during bootup) press any key 3. Assign the new location to the Dell Networking OS image it uses when the system reloads. uBoot mode => setenv primary_boot f10boot Boot variable (f10boot) can take the following values: 4. • flash0 — to boot from flash partition A. • flash1 — to boot from flash partition B.
5 802.1ag Ethernet operations, administration, and maintenance (OAM) are a set of tools used to install, monitor, troubleshoot, and manage Ethernet infrastructure deployments. Ethernet OAM consists of three main areas: • Service layer OAM — IEEE 802.1ag connectivity fault management (CFM) • Link layer OAM — IEEE 802.
Maintenance Domains Connectivity fault management (CFM) divides a network into hierarchical maintenance domains, as shown in the following illustration. A CFM maintenance domain is a management space on a network that a single management entity owns and operates. The network administrator assigns a unique maintenance level (from 0 to 7) to each domain to define the hierarchical relationship between domains.
Figure 4. Maintenance Points Maintenance End Points A maintenance end point (MEP) is a logical entity that marks the end point of a domain. There are two types of MEPs defined in 802.1ag for an 802.1 bridge: • Up-MEP — monitors the forwarding path internal to a bridge on the customer or provider edge. On Dell Networking systems, the internal forwarding path is effectively the switch fabric and forwarding engine. • Down-MEP — monitors the forwarding path external another bridge.
Configuring the CFM To configure the CFM, follow these steps: 1. Configure the ecfmacl CAM region using the cam-acl command. 2. Enable Ethernet CFM. 3. Create a Maintenance Domain. 4. Create a Maintenance Association. 5. Create Maintenance Points. 6. Use CFM tools: a. Continuity Check Messages. b. Loopback Message and Response. c. Linktrace Message and Response. Related Configuration Tasks • Enable CFM SNMP Traps. • Display Ethernet CFM Statistics.
MA-Name My_MA VLAN 200 CC-Int 10s X-CHK Status enabled Domain Name: praveen Level: 6 Total Service: 1 Services MA-Name VLAN CC-Int Your_MA 100 10s X-CHK Status enabled Creating a Maintenance Association A Maintenance association (MA) is a subdivision of an MD that contains all managed entities corresponding to a single end-to-end service, typically a virtual area network (VLAN). • Create maintenance association.
200 300 test0 cfm1 test1 cfm2 test2 10 6 20 5 30 DOWN MEP DOWN MEP DOWN 00:01:e8:59:23:45 Te 4/10 Enabled 00:01:e8:59:23:45 Te 4/10 Enabled 00:01:e8:59:23:45 Creating a Maintenance Intermediate Point Maintenance intermediate point (MIP) is a logical entity configured at a port of a switch that constitutes intermediate points of a maintenance entity (ME). An ME is a point-to-point relationship between two MEPs within a single domain.
MP ID: 900 Sender Chassis ID: Force10 MEP Interface status: Up MEP Port status: Forwarding Receive RDI: FALSE MP Status: Active Setting the MP Database Persistence To set the database persistence, use the following command. • Set the amount of time that data from a missing MEP is kept in the continuity check database. ECFM DOMAIN database hold-time minutes The default is 100 minutes. The range is from 100 to 65535 minutes. Continuity Check Messages Continuity check messages (CCM) are periodic hellos.
• • Reception of a CCM with an MD level lower than the receiving MEP, which indicates a configuration or cross-connect error. Reception of a CCM containing a port status/interface status TLV, which indicates a failed bridge or aggregated port. The continuity check protocol sends fault notifications (Syslogs, and SNMP traps, if enabled) whenever you encounter any of the these errors. Enabling CCM To enable CCM, use the following commands. 1. Enable CCM.
Figure 6. MPLS Core Link trace messages carry a unicast target address (the MAC address of an MIP or MEP) inside a multicast frame. The destination group address is based on the MD level of the transmitting MEP (01:80:C2:00:00:3[8 to F]). The MPs on the path to the target MAC address reply to the LTM with an LTR, and relays the LTM towards the target MAC until the target MAC is reached or TTL equals 0. • Send a Linktrace message.
• Display the Link Trace Cache. EXEC Privilege mode • show ethernet cfm traceroute-cache Delete all Link Trace Cache entries.
MA Name VLAN Dir MAC --------------------------------------------------------------------100 cfm0 test0 7 10 MEP DOWN Te 4/10 Enabled 00:01:e8:59:23:45 Dell(conf-if-te-1/6)#do show ethernet cfm domain Domain Name: My_Name MD Index: 1 Level: 0 Total Service: 1 Services MA-Index MA-Name VLAN CC-Int X-CHK Status 1 test 0 1s enabled Domain Name: Your_Name MD Index: 2 Level: 2 Total Service: 1 Services MA-Index MA-Name VLAN CC-Int X-CHK Status 1 test 100 1s enabled Displaying Ethernet CFM Statistics T
Bad CFM Pkts 0 CFM Pkts Discarded 0 CFM Pkts forwarded 102417 TX Statistics ============= Total CFM Pkts 10303 CCM Pkts 0 LBM Pkts 0 LTM Pkts 3 LBR Pkts 0 LTR Pkts 0 90 802.
6 802.1X 802.1X is an IEEE Standard for port security. A device connected to a port that is enabled with 802.1X is disallowed from sending or receiving packets on the network until its identity can be verified (through a username and password, for example). 802.1X employs Extensible Authentication Protocol (EAP) to transfer a device’s credentials to an authentication server (typically RADIUS) using a mandatory intermediary network access device, in this case, a Dell Networking switch.
Figure 8. EAP Frames Encapsulated in Ethernet and RADUIS The authentication process involves three devices: • The device attempting to access the network is the supplicant. The supplicant is not allowed to communicate on the network until the authenticator authorizes the port. It can only communicate with the authenticator in response to 802.1X requests. • The device with which the supplicant communicates is the authenticator. The authenticator is the gate keeper of the network.
6. If the identity information provided by the supplicant is valid, the authentication server sends an Access-Accept frame in which network privileges are specified. The authenticator changes the port state to authorized and forwards an EAP Success frame. If the identity information is invalid, the server sends an Access-Reject frame. If the port state remains unauthorized, the authenticator forwards an EAP Failure frame. Figure 9. EAP Port-Authentication EAP over RADIUS 802.
RADIUS Attributes for 802.1X Support Dell Networking systems include the following RADIUS attributes in all 802.1X-triggered Access-Request messages: Attribute 31 Calling-station-id: relays the supplicant MAC address to the authentication server. Attribute 41 NAS-Port-Type: NAS-port physical port type. 15 indicates Ethernet. Attribute 61 NAS-Port: the physical port number by which the authenticator is connected to the supplicant.
Enabling 802.1X Enable 802.1X globally. Figure 11. 802.1X Enabled 1. Enable 802.1X globally. CONFIGURATION mode dot1x authentication 2. Enter INTERFACE mode on an interface or a range of interfaces. INTERFACE mode interface [range] 3. Enable 802.1X on the supplicant interface only. INTERFACE mode dot1x authentication Examples of Verifying that 802.1X is Enabled Globally and on an Interface Verify that 802.
In the following example, the bold lines show that 802.1X is enabled. Dell#show running-config | find dot1x dot1x authentication ! [output omitted] ! interface TenGigabitEthernet 2/1 no ip address dot1x authentication no shutdown ! Dell# To view 802.1X configuration information for an interface, use the show dot1x interface command. In the following example, the bold lines show that 802.1X is enabled on all ports unauthorized by default. Dell#show dot1x interface TenGigabitEthernet 2/1/ 802.
• Configure the maximum number of times the authenticator re-transmits a Request Identity frame. INTERFACE mode dot1x max-eap-req number The range is from 1 to 10. The default is 2. The example in Configuring a Quiet Period after a Failed Authentication shows configuration information for a port for which the authenticator re-transmits an EAP Request Identity frame after 90 seconds and re-transmits for 10 times.
Forcibly Authorizing or Unauthorizing a Port The 802.1X ports can be placed into any of the three states: • ForceAuthorized — an authorized state. A device connected to this port in this state is never subjected to the authentication process, but is allowed to communicate on the network. Placing the port in this state is same as disabling 802.1X on the port. • ForceUnauthorized — an unauthorized state.
dot1x reauthentication [interval] seconds The range is from 1 to 65535. • The default is 3600. Configure the maximum number of times the supplicant can be re-authenticated. INTERFACE mode dot1x reauth-max number The range is from 1 to 10. The default is 2. Example of Re-Authenticating a Port and Verifying the Configuration The bold lines show that re-authentication is enabled and the new maximum and re-authentication time period.
The default is 30. Example of Viewing Configured Server Timeouts The example shows configuration information for a port for which the authenticator terminates the authentication process for an unresponsive supplicant or server after 15 seconds. The bold lines show the new supplicant and server timeouts. Dell(conf-if-Te-1/1)#dot1x port-control force-authorized Dell(conf-if-Te-1/1)#do show dot1x interface TenGigabitEthernet 1/1 802.
Figure 12. Dynamic VLAN Assignment 1. Configure 8021.x globally (refer to Enabling 802.1X) along with relevant RADIUS server configurations (refer to the illustration inDynamic VLAN Assignment with Port Authentication). 2. Make the interface a switchport so that it can be assigned to a VLAN. 3. Create the VLAN to which the interface will be assigned. 4. Connect the supplicant to the port configured for 802.1X. 5.
• If the supplicant fails authentication a specified number of times, the authenticator places the port in the Authentication-fail VLAN. • If a port is already forwarding on the Guest VLAN when 802.1X is enabled, the port is moved out of the Guest VLAN and the authentication process begins. Configuring a Guest VLAN If the supplicant does not respond within a determined amount of time ([reauth-max + 1] * tx-period, the system assumes that the host does not have 802.
Example of Viewing Configured Authentication View your configuration using the show config command from INTERFACE mode, as shown in the example in Configuring a Guest VLAN or using the show dot1x interface command from EXEC Privilege mode. 802.
7 Access Control List (ACL) VLAN Groups and Content Addressable Memory (CAM) This chapter describes the access control list (ACL) virtual local area network (VLAN) group and content addressable memory (CAM) enhancements. Optimizing CAM Utilization During the Attachment of ACLs to VLANs To minimize the number of entries in CAM, enable and configure the ACL CAM feature. Use this feature when you apply ACLs to a VLAN (or a set of VLANs) and when you apply ACLs to a set of ports.
• The description of the ACL group is added or removed. Guidelines for Configuring ACL VLAN Groups Keep the following points in mind when you configure ACL VLAN groups: • The interfaces where you apply the ACL VLAN group function as restricted interfaces. The ACL VLAN group name identifies the group of VLANs that performs hierarchical filtering. • You can add only one ACL to an interface at a time.
3. Apply an egress IP ACL to the ACL VLAN group. CONFIGURATION (conf-acl-vl-grp) mode ip access-group {group name} out implicit-permit 4. Add VLAN member(s) to an ACL VLAN group. CONFIGURATION (conf-acl-vl-grp) mode member vlan {VLAN-range} 5. Display all the ACL VLAN groups or display a specific ACL VLAN group, identified by name.
EXEC Privilege mode Dell#show cam-usage switch Stackunit|Portpipe| CAM Partition | Total CAM | Used CAM |Available CAM ========|========|=================|============|============|============= 1 | 0 | IN-L2 ACL | 1536 | 0 | 1536 | | OUT-L2 ACL | 206 | 9 | 197 Codes: * - cam usage is above 90%. Viewing CAM Usage View the amount of CAM space available, used, and remaining in each partition (including IPv4Flow and Layer 2 ACL sub- partitions) using the show cam-usage command in EXEC Privilege mode.
11 | | | | 1 | | | | OUT-L2 ACL IN-L2 ACL IN-L2 FIB OUT-L2 ACL | | | | 0 7152 32768 0 | | | | 0 0 1081 0 | | | | 0 7152 31687 0 The following output displays CAM space usage for Layer 3 ACLs: Dell#show cam-usage router Linecard|Portpipe| CAM Partition | Total CAM | Used CAM |Available CAM ========|========|=================|=============|=============|============== 11 | 0 | IN-L3 ACL | 8192 | 3 | 8189 | | IN-L3 FIB | 196607 | 1 | 196606 | | IN-L3-SysFlow | 2878 | 0 | 2878 | | IN-L3-TrcList | 102
8 Access Control Lists (ACLs) This chapter describes access control lists (ACLs), prefix lists, and route-maps. At their simplest, access control lists (ACLs), prefix lists, and route-maps permit or deny traffic based on MAC and/or IP addresses. This chapter describes implementing IP ACLs, IP prefix lists and route-maps. For MAC ACLS, refer to Layer 2.
NOTE: You can configure VRF-aware ACLs on interfaces either using a range of VLANs or a range of VRFs but not both. IP Access Control Lists (ACLs) In Dell Networking switch/routers, you can create two different types of IP ACLs: standard or extended. A standard ACL filters packets based on the source IP packet.
CAM Optimization When you enable this command, if a policy map containing classification rules (ACL and/or dscp/ ip-precedence rules) is applied to more than one physical interface on the same port-pipe, only a single copy of the policy is written (only one FP entry is used). When you disable this command, the system behaves as described in this chapter. Test CAM Usage This command applies to both IPv4 and IPv6 CAM profiles, but is best used when verifying QoS optimization for IPv6 ACLs.
ACLs acl1 and acl2 have overlapping rules because the address range 20.1.1.0/24 is within 20.0.0.0/8. Therefore (without the keyword order), packets within the range 20.1.1.0/24 match positive against cmap1 and are buffered in queue 7, though you intended for these packets to match positive against cmap2 and be buffered in queue 4. In cases where class-maps with overlapping ACL rules are applied to different queues, use the order keyword to specify the order in which you want to apply ACL rules.
Example of Denying Second and Subsequent Fragments To deny the second/subsequent fragments, use the same rules in a different order. These ACLs deny all second and subsequent fragments with destination IP 10.1.1.1 but permit the first fragment and non-fragmented packets with destination IP 10.1.1.1. Dell(conf)#ip access-list extended ABC Dell(conf-ext-nacl)#deny ip any 10.1.1.1/32 fragments Dell(conf-ext-nacl)#permit ip any 10.1.1.
Configure a Standard IP ACL To configure an ACL, use commands in IP ACCESS LIST mode and INTERFACE mode. For a complete list of all the commands related to IP ACLs, refer to the Dell Networking OS Command Line Interface Reference Guide. To set up extended ACLs, refer to Configure an Extended IP ACL. A standard IP ACL uses the source IP address as its match criterion. 1. Enter IP ACCESS LIST mode by naming a standard IP access list. CONFIGURATION mode ip access-list standard access-listname 2.
Configuring a Standard IP ACL Filter If you are creating a standard ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. The software assigns filters in multiples of five. 1. Configure a standard IP ACL and assign it a unique name. CONFIGURATION mode ip access-list standard access-list-name 2. Configure a drop or forward IP ACL filter.
Configuring Filters with a Sequence Number To configure filters with a sequence number, use the following commands. 1. Enter IP ACCESS LIST mode by creating an extended IP ACL. CONFIGURATION mode ip access-list extended access-list-name 2. Configure a drop or forward filter.
Dell(config-ext-nacl)#show confi ! ip access-list extended dilling seq 5 permit tcp 12.1.0.0 0.0.255.255 any seq 15 deny ip host 112.45.0.0 any log Dell(config-ext-nacl)# Configuring Filters Without a Sequence Number If you are creating an extended ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. Dell Networking OS assigns filters in multiples of five.
• L3 egress access list • L2 egress access list If a rule is simply appended, existing counters are not affected. Table 8. L2 and L3 Filtering on Switched Packets L2 ACL Behavior L3 ACL Behavior Decision on Targeted Traffic Deny Deny L3 ACL denies. Deny Permit L3 ACL permits. Permit Deny L3 ACL denies. Permit Permit L3 ACL permits. NOTE: If you configure an interface as a vlan-stack access port, only the L2 ACL filters the packets.
NOTE: The number of entries allowed per ACL is hardware-dependent. For detailed specification about entries allowed per ACL, refer to your line card documentation. 4. Apply rules to the new ACL. INTERFACE mode ip access-list [standard | extended] name To view which IP ACL is applied to an interface, use the show config command in INTERFACE mode, or use the show running-config command in EXEC mode.
! Extended Ingress IP access list abcd on tengigabitethernet 1/1 seq 5 permit tcp any any seq 10 deny icmp any any seq 15 permit 1.1.1.2 Configure Egress ACLs Egress ACLs are applied to line cards and affect the traffic leaving the system. Configuring egress ACLs onto physical interfaces protects the system infrastructure from attack — malicious and incidental — by explicitly allowing only authorized traffic.
Applying Egress Layer 3 ACLs (Control-Plane) By default, packets originated from the system are not filtered by egress ACLs. For example, if you initiate a ping session from the system and apply an egress ACL to block this type of traffic on the interface, the ACL does not affect that ping traffic. The Control Plane Egress Layer 3 ACL feature enhances IP reachability debugging by implementing control-plane ACLs for CPU-generated and CPU-forwarded traffic.
Implementation Information In Dell Networking OS, prefix lists are used in processing routes for routing protocols (for example, router information protocol [RIP], open shortest path first [OSPF], and border gateway protocol [BGP]). NOTE: It is important to know which protocol your system supports prior to implementing prefix-lists. Configuration Task List for Prefix Lists To configure a prefix list, use commands in PREFIX LIST, ROUTER RIP, ROUTER OSPF, and ROUTER BGP modes.
NOTE: The last line in the prefix list Juba contains a “permit all” statement. By including this line in a prefix list, you specify that all routes not matching any criteria in the prefix list are forwarded. To delete a filter, use the no seq sequence-number command in PREFIX LIST mode.If you are creating a standard prefix list with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured.
seq 5 deny 1.102.0.0/16 le 32 (hit count: 0) seq 6 deny 2.1.0.0/16 ge 23 (hit count: 0) seq 10 permit 0.0.0.0/0 le 32 (hit count: 0) ip prefix-list filter_ospf: count: 4, range entries: 1, sequences: 5 - 10 seq 5 deny 100.100.1.0/24 (hit count: 0) seq 6 deny 200.200.1.0/24 (hit count: 0) seq 7 deny 200.200.2.0/24 (hit count: 0) seq 10 permit 0.0.0.0/0 le 32 (hit count: 0) The following example shows the show ip prefix-list summary command.
• Apply a configured prefix list to incoming routes. You can specify an interface. If you enter the name of a non-existent prefix list, all routes are forwarded. CONFIG-ROUTER-OSPF mode distribute-list prefix-list-name in [interface] • Apply a configured prefix list to incoming routes. You can specify which type of routes are affected. If you enter the name of a non-existent prefix list, all routes are forwarded.
Resequencing an ACL or Prefix List Resequencing is available for IPv4 and IPv6 ACLs, prefix lists, and MAC ACLs. To resequence an ACL or prefix list, use the following commands. You must specify the list name, starting number, and increment when using these commands.
Dell# show running-config acl ! ip access-list extended test remark 2 XYZ remark 4 this remark corresponds to permit any host 1.1.1.1 seq 4 permit ip any host 1.1.1.1 remark 6 this remark has no corresponding rule remark 8 this remark corresponds to permit ip any host 1.1.1.2 seq 8 permit ip any host 1.1.1.2 seq 10 permit ip any host 1.1.1.3 seq 12 permit ip any host 1.1.1.
To create a route map, use the following command. • Create a route map and assign it a unique name. The optional permit and deny keywords are the actions of the route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] The default is permit. The optional seq keyword allows you to assign a sequence number to the route map instance. Configured Route Map Examples The default action is permit and the default sequence number starts at 10.
interface Loopback 23 Set clauses: tag 3444 Dell# To delete a route map, use the no route-map map-name command in CONFIGURATION mode. Configure Route Map Filters Within ROUTE-MAP mode, there are match and set commands. • match commands search for a certain criterion in the routes. • set commands change the characteristics of routes, either adding something or specifying a level.
match community community-list-name [exact] • Match routes whose next hop is a specific interface. CONFIG-ROUTE-MAP mode match interface interface The parameters are: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383.
To create route map instances, use these commands. There is no limit to the number of match commands per route map, but the convention is to keep the number of match filters in a route map low. Set commands do not require a corresponding match command. Configuring Set Conditions To configure a set condition, use the following commands. • Add an AS-PATH number to the beginning of the AS-PATH. CONFIG-ROUTE-MAP mode • set as-path prepend as-number [...
Configure a Route Map for Route Redistribution Route maps on their own cannot affect traffic and must be included in different commands to affect routing traffic. Route redistribution occurs when Dell Networking OS learns the advertising routes from static or directly connected routes or another routing protocol. Different protocols assign different values to redistributed routes to identify either the routes and their origins.
Example of Using the continue Clause in a Route Map ! route-map test permit 10 match commu comm-list1 set community 1:1 1:2 1:3 set as-path prepend 1 2 3 4 5 continue 30! Logging of ACL Processes This functionality is supported on the S4820T platform. To assist in the administration and management of traffic that traverses the device after being validated by the configured ACLs, you can enable the generation of logs for access control list (ACL) processes.
Guidelines for Configuring ACL Logging This functionality is supported on the S4820T platform. Keep the following points in mind when you configure logging of ACL activities: • During initialization, the ACL logging application tags the ACL rule indices for which a match condition exists as being in-use, which ensures that the same rule indices are not reused by ACL logging again.
seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [log [interval minutes]] Flow-Based Monitoring Support for ACLs Flow-based monitoring is supported on the S4820T platform. Flow-based monitoring conserves bandwidth by monitoring only the specified traffic instead of all traffic on the interface. It is available for Layer 2 and Layer 3 ingress traffic. You can specify traffic using standard or extended access-lists.
based monitoring. It downloads monitoring configuration to the ACL agent whenever the ACL agent is registered with the port mirroring application or when flow-based monitoring is enabled. The show monitor session session-id command has been enhanced to display the Type field in the output, which indicates whether a particular session is enabled for flow-monitoring.
Example of the flow-based enable Command To view an access-list that you applied to an interface, use the show ip accounting access-list command from EXEC Privilege mode. Dell(conf)#monitor session 0 Dell(conf-mon-sess-0)#flow-based enable Dell(conf)#ip access-list ext testflow Dell(config-ext-nacl)#seq 5 permit icmp any any count bytes monitor Dell(config-ext-nacl)#seq 10 permit ip 102.1.1.
9 Bidirectional Forwarding Detection (BFD) BFD is a protocol that is used to rapidly detect communication failures between two adjacent systems. It is a simple and lightweight replacement for existing routing protocol link state detection mechanisms. It also provides a failure detection solution for links on which no routing protocol is used. BFD is a simple hello mechanism. Two neighboring systems running BFD establish a session using a three-way handshake.
BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets. The following illustration shows the complete encapsulation of a BFD control packet inside an IPv4 packet. Figure 13. BFD in IPv4 Packet Format Field Description Diagnostic Code The reason that the last session failed. State The current local session state. Refer to BFD Sessions. Flag A bit that indicates packet function.
Field Description My Discriminator A random number generated by the local system to identify the session. Your Discriminator A random number generated by the remote system to identify the session. Discriminator values are necessary to identify the session to which a control packet belongs because there can be many sessions running on a single interface. Desired Min TX Interval The minimum rate at which the local system would like to send control packets to the remote system.
State Description Administratively Down The local system does not participate in a particular session. Down The remote system is not sending control packets or at least not within the detection time for a particular session. Init The local system is communicating. Up Both systems are exchanging control packets. The session is declared down if: • A control packet is not received within the detection time. • Sufficient echo packets are lost.
Figure 14.
Session State Changes The following illustration shows how the session state on a system changes based on the status notification it receives from the remote system. For example, if a session on a system is down and it receives a Down status notification from the remote system, the session state on the local system changes to Init. Figure 15.
• Configure BFD for IS-IS • Configure BFD for BGP • Configure BFD for VRRP • Configuring Protocol Liveness • Troubleshooting BFD Configure BFD for Physical Ports Configuring BFD for physical ports is supported on the C-Series and E-Series platforms only. BFD on physical ports is useful when you do not enable the routing protocol. Without BFD, if the remote system fails, the local system does not remove the connected route until the first failed attempt to send a packet.
Establishing a Session on Physical Ports To establish a session, enable BFD at the interface level on both ends of the link, as shown in the following illustration. The configuration parameters do not need to match. Figure 16. Establishing a BFD Session on Physical Ports 1. Enter interface mode. CONFIGURATION mode interface 2. Assign an IP address to the interface if one is not already assigned. INTERFACE mode ip address ip-address 3.
Neighbor parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Actual parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Role: Active Delete session on Down: False Client Registered: CLI Uptime: 00:03:57 Statistics: Number of packets received from neighbor: 1775 Number of packets sent to neighbor: 1775 Number of state changes: 1 Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 4 Log messages display when you configure both interfaces for BFD.
INTERFACE mode • no bfd enable Enable BFD on an interface. INTERFACE mode bfd enable If you disable BFD on a local interface, this message displays: R1(conf-if-te-4/24)#01:00:52: %RPM0-P:RP2 %BFDMGR-1-BFD_STATE_CHANGE: Changed session state to Ad Dn for neighbor 2.2.2.2 on interface Te 4/24 (diag: 0) If the remote system state changes due to the local state administration being down, this message displays: R2>01:32:53: %RPM0-P:RP2 %BFDMGR-1-BFD_STATE_CHANGE: Changed session state to Down for neighbor 2.
Example of the show bfd neighbors Command to Verify Static Routes To verify that sessions have been created for static routes, use the show bfd neighbors command. R1(conf)#ip route 2.2.3.0/24 2.2.2.2 R1(conf)#ip route bfd R1(conf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 2.2.2.
Establishing Sessions with OSPF Neighbors BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state. Figure 18. Establishing Sessions with OSPF Neighbors To establish BFD with all OSPF neighbors or with OSPF neighbors on a single interface, use the following commands. • Establish sessions with all OSPF neighbors.
The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.2 * 2.2.3.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Te 2/1 Up 100 100 3 O 2.2.3.2 Te 2/2 Up 100 100 3 O Changing OSPF Session Parameters Configure BFD sessions with default intervals and a default role.
2. Establish sessions with OSPFv3 neighbors. Related Configuration Tasks • Changing OSPFv3 Session Parameters • Disabling BFD for OSPFv3 Establishing Sessions with OSPFv3 Neighbors You can establish BFD sessions with all OSPFv3 neighbors at once or with all neighbors out of a specific interface. Sessions are only established when the OSPFv3 adjacency is in the Full state. To establish BFD with all OSPFv3 neighbors or with OSPFv3 neighbors on a single interface, use the following commands.
INTERFACE mode ipv6 ospf bfd all-neighbors disable Configure BFD for IS-IS When using BFD with IS-IS, the IS-IS protocol registers with the BFD manager on the RPM. BFD sessions are then established with all neighboring interfaces participating in IS-IS. If a neighboring interface fails, the BFD agent on the line card notifies the BFD manager, which in turn notifies the IS-IS protocol that a link state change occurred. Configuring BFD for IS-IS is a two-step process: 1. Enable BFD globally. 2.
ROUTER-ISIS mode bfd all-neighbors • Establish sessions with IS-IS neighbors on a single interface. INTERFACE mode isis bfd all-neighbors Example of Verifying Sessions with IS-IS Neighbors To view the established sessions, use the show bfd neighbors command. The bold line shows that IS-IS BFD sessions are enabled. R2(conf-router_isis)#bfd all-neighbors R2(conf-router_isis)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.
• Disable BFD sessions with IS-IS neighbors on a single interface. INTERFACE mose isis bfd all-neighbors disable Configure BFD for BGP In a BGP core network, BFD provides rapid detection of communication failures in BGP fast-forwarding paths between internal BGP (iBGP) and external BGP (eBGP) peers for faster network reconvergence. BFD for BGP is supported on 1GE, 10GE, 40GE, portchannel, and VLAN interfaces. BFD for BGP does not support IPv6 and the BGP multihop feature.
• By establishing a BFD session with a specified BGP neighbor (the neighbor {ip-address | peer-group-name} bfd command) BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays. Incoming BFD control packets received from the BGP neighbor are assigned to the highest priority queue within the control plane policing (COPP) framework to avoid BFD packets drops due to queue congestion.
Disabling BFD for BGP You can disable BFD for BGP. To disable a BFD for BGP session with a specified neighbor, use the first command. To remove the disabled state of a BFD for BGP session with a specified neighbor, use the second command. The BGP link with the neighbor returns to normal operation and uses the BFD session parameters globally configured with the bfd all-neighbors command or configured for the peer group to which the neighbor belongs. • Disable a BFD for BGP session with a specified neighbor.
• Displays routing information exchanged with BGP neighbors, including BFD for BGP sessions. EXEC Privilege mode show ip bgp neighbors [ip-address] Examples of Verifying BGP Information The following example shows verifying a BGP configuration. R2# show running-config bgp ! router bgp 2 neighbor 1.1.1.2 remote-as 1 neighbor 1.1.1.2 no shutdown neighbor 2.2.2.2 remote-as 1 neighbor 2.2.2.2 no shutdown neighbor 3.3.3.2 remote-as 1 neighbor 3.3.3.
Number of messages communicated b/w Manager and Agent: 5 Session Discriminator: 10 Neighbor Discriminator: 11 Local Addr: 2.2.2.3 Local MAC Addr: 00:01:e8:66:da:34 Remote Addr: 2.2.2.
The bold line shows the message displayed when you enable BFD for BGP connections. R2# show ip bgp summary BGP router identifier 10.0.0.1, local AS number 2 BGP table version is 0, main routing table version 0 BFD is enabled, Interval 100 Min_rx 100 Multiplier 3 Role Active 3 neighbor(s) using 24168 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 1.1.1.2 2.2.2.2 3.3.3.
BGP state ESTABLISHED, in this state for 00:05:33 ... Neighbor is using BGP neighbor mode BFD configuration Peer active in peer-group outbound optimization ... R2# show ip bgp neighbors 2.2.2.4 BGP neighbor is 2.2.2.4, remote AS 1, external link Member of peer-group pg1 for session parameters BGP version 4, remote router ID 12.0.0.4 BGP state ESTABLISHED, in this state for 00:05:33 ... Neighbor is using BGP peer-group mode BFD configuration Peer active in peer-group outbound optimization ...
Establishing Sessions with All VRRP Neighbors BFD sessions can be established for all VRRP neighbors at once, or a session can be established with a particular neighbor. Figure 21. Establishing Sessions with All VRRP Neighbors To establish sessions with all VRRP neighbors, use the following command. • Establish sessions with all VRRP neighbors.
I O R V - ISIS OSPF Static Route (RTM) VRRP LocalAddr * 2.2.5.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.5.2 Te 4/25 Down 1000 1000 3 V To view session state information, use the show vrrp command. The bold line shows the VRRP BFD session. Dell(conf-if-te-4/25)#do show vrrp -----------------TenGigabitEthernet 4/1, VRID: 1, Net: 2.2.5.1 VRF:0 default State: Backup, Priority: 1, Master: 2.2.5.
• bfd disable Disable a particular VRRP session on an interface. INTERFACE mode no vrrp bfd neighbor ip-address Configuring Protocol Liveness Protocol liveness is a feature that notifies the BFD manager when a client protocol is disabled. When you disable a client, all BFD sessions for that protocol are torn down. Neighbors on the remote system receive an Admin Down control packet and are placed in the Down state. To enable protocol liveness, use the following command. • Enable Protocol Liveness.
00 01 86 a0 00 00 00 00 00:34:14 : Sent packet for session with neighbor 2.2.2.2 on Te 4/24 TX packet dump: 20 c0 03 18 00 00 00 04 00 00 00 05 00 01 86 a0 00 01 86 a0 00 00 00 00 00:34:14 : Received packet for session with neighbor 2.2.2.2 on Te 4/24 RX packet dump: 20 c0 03 18 00 00 00 05 00 00 00 04 00 01 86 a0 00 01 86 a0 00 00 00 00 00:34:14 : Sent packet for session with neighbor 2.2.2.
10 Border Gateway Protocol IPv4 (BGPv4) This chapter provides a general description of BGPv4 as it is supported in the Dell Networking Operating System (OS). BGP protocol standards are listed in the Standards Compliance chapter. BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS). The primary function of the BGP is to exchange network reachability information with other BGP systems.
Figure 22. Internal BGP BGP version 4 (BGPv4) supports classless interdomain routing and aggregate routes and AS paths. BGP is a path vector protocol — a computer network in which BGP maintains the path that updated information takes as it diffuses through the network. Updates traveling through the network and returning to the same node are easily detected and discarded.
Figure 23. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. Sessions and Peers When two routers communicate using the BGP protocol, a BGP session is started. The two end-points of that session are Peers. A Peer is also called a Neighbor. Establish a Session Information exchange between peers is driven by events and timers. The focus in BGP is on the traffic routing policies.
State Description Idle BGP initializes all resources, refuses all inbound BGP connection attempts, and initiates a TCP connection to the peer. Connect In this state the router waits for the TCP connection to complete, transitioning to the OpenSent state if successful. If that transition is not successful, BGP resets the ConnectRetry timer and transitions to the Active state when the timer expires. Active The router resets the ConnectRetry timer to zero and returns to the Connect state.
Figure 24. BGP Router Rules 1. Router B receives an advertisement from Router A through eBGP. Because the route is learned through eBGP, Router B advertises it to all its iBGP peers: Routers C and D. 2. Router C receives the advertisement but does not advertise it to any peer because its only other peer is Router D, an iBGP peer, and Router D has already learned it through iBGP from Router B. 3.
reduce the options. If a number of best paths is determined, this selection criteria is applied to group’s best to determine the ultimate best path. In non-deterministic mode (the bgp non-deterministic-med command is applied), paths are compared in the order in which they arrive. This method can lead to Dell Networking OS choosing different best paths from a set of paths, depending on the order in which they were received from the neighbors because MED may or may not get compared between the adjacent paths.
b. A path with no AS_PATH configured has a path length of 0. c. AS_CONFED_SET is not included in the AS_PATH length. d. AS_CONFED_SEQUENCE has a path length of 1, no matter how many ASs are in the AS_CONFED_SEQUENCE. 5. Prefer the path with the lowest ORIGIN type (IGP is lower than EGP, and EGP is lower than INCOMPLETE). 6. Prefer the path with the lowest multi-exit discriminator (MED) attribute. The following criteria apply: a.
Figure 26. BGP Local Preference Multi-Exit Discriminators (MEDs) If two ASs connect in more than one place, a multi-exit discriminator (MED) can be used to assign a preference to a preferred path. MED is one of the criteria used to determine the best path, so keep in mind that other criteria may impact selection, as shown in the illustration in Best Path Selection Criteria. One AS assigns the MED a value and the other AS uses that value to decide the preferred path.
Figure 27. Multi-Exit Discriminators NOTE: Configuring the set metric-type internal command in a route-map advertises the IGP cost as MED to outbound EBGP peers when redistributing routes. The configured set metric value overwrites the default IGP cost. If the outbound route-map uses MED, it overwrites IGP MED. Origin The origin indicates the origin of the prefix, or how the prefix came into BGP. There are three origin codes: IGP, EGP, INCOMPLETE.
The AS path is shown in the following example. The origin attribute is shown following the AS path information (shown in bold).
Implement BGP with Dell Networking OS The following sections describe how to implement BGP on Dell Networking OS. Additional Path (Add-Path) Support The add-path feature reduces convergence times by advertising multiple paths to its peers for the same address prefix without replacing existing paths with new ones. By default, a BGP speaker advertises only the best path to its peers for a given address prefix.
Ignore Router-ID in Best-Path Calculation You can avoid unnecessary BGP best-path transitions between external paths under certain conditions. The bgp bestpath router-id ignore command reduces network disruption caused by routing and forwarding plane changes and allows for faster convergence. Four-Byte AS Numbers You can use the 4-Byte (32-bit) format when configuring autonomous system numbers (ASNs). The 4-Byte support is advertised as a new BGP capability (4-BYTE-AS) in the OPEN message.
Dynamic AS Number Notation Application Dell Networking OS applies the ASN notation type change dynamically to the running-config statements. When you apply or change an notation, the type selected is reflected immediately in the running-configuration and the show commands (refer to the following two examples).
AS Number Migration With this feature you can transparently change the AS number of an entire BGP network and ensure that the routes are propagated throughout the network while the migration is in progress. When migrating one AS to another, perhaps combining ASs, an eBGP network may lose its routing to an iBGP if the ASN changes. Migration can be difficult as all the iBGP and eBGP peers of the migrating network must be updated to maintain network reachability.
previous illustration. If Router B has an inbound route-map applied on Router C to prepend "65001 65002" to the as-path, the following events take place on Router B: 1. Receive and validate the update. 2. Prepend local-as 200 to as-path. 3. Prepend "65001 65002" to as-path. Local-AS is prepended before the route-map to give an impression that update passed through a router in AS 200 before it reached Router B.
• An SNMP walk may terminate pre-maturely if the index does not increment lexicographically. Dell Networking recommends using options to ignore such errors. • Multiple BPG process instances are not supported. Thus, the f10BgpM2PeerInstance field in various tables is not used to locate a peer. • Multiple instances of the same NLRI in the BGP RIB are not supported and are set to zero in the SNMP query response. • The f10BgpM2NlriIndex and f10BgpM2AdjRibsOutIndex fields are not used.
Item Default Route Flap Damping Parameters half-life = 15 minutes reuse = 750 suppress = 2000 max-suppress-time = 60 minutes external distance = 20 Distance internal distance = 200 local distance = 200 keepalive = 60 seconds Timers holdtime = 180 seconds Add-path Disabled Enabling BGP By default, BGP is not enabled on the system. Dell Networking OS supports one autonomous system (AS) and assigns the AS number (ASN).
Disable 4-Byte support and return to the default 2-Byte format by using the no bgp four-octet-as-support command. You cannot disable 4-Byte support if you currently have a 4-Byte ASN configured. Disabling 4-Byte AS numbers also disables ASDOT and ASDOT+ number representation. All AS numbers are displayed in ASPLAIN format. b. Enable IPv4 multicast or IPv6 mode. CONFIG-ROUTER-BGP mode address-family [ipv4 | ipv6} vrf Use this command to enter BGP for IPv6 mode (CONF-ROUTER_BGPv6_AF). 2.
The following example shows the show ip bgp summary command output (4–byte AS number displays). R2#show ip bgp summary BGP router identifier 192.168.10.2, local AS number 48735.
BGP version 4, remote router ID 10.0.0.
• Enable ASPLAIN AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asplain NOTE: ASPLAIN is the default method Dell Networking OS uses and does not appear in the configuration display. • Enable ASDOT AS Number representation. CONFIG-ROUTER-BGP mode • bgp asnotation asdot Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ Examples of the bgp asnotation Commands The following example shows the bgp asnotation asplain command output.
A maximum of 256 peer groups are allowed on the system. Create a peer group by assigning it a name, then adding members to the peer group. After you create a peer group, you can configure route policies for it. For information about configuring route policies for a peer group, refer to Filtering BGP Routes. NOTE: Sample Configurations for enabling peer groups are found at the end of this chapter. 1. Create a peer group by assigning a name to it. CONFIG-ROUTERBGP mode neighbor peer-group-name peer-group 2.
• • • • • neighbor neighbor neighbor neighbor neighbor filter-list out next-hop-self route-map out route-reflector-client send-community A neighbor may keep its configuration after it was added to a peer group if the neighbor’s configuration is more specific than the peer group’s and if the neighbor’s configuration does not affect outgoing updates.
10.68.160.1 10.68.161.1 10.68.162.1 10.68.163.1 10.68.164.1 10.68.165.1 10.68.166.1 10.68.167.1 10.68.168.1 10.68.169.1 10.68.170.1 10.68.171.1 10.68.172.1 10.68.173.1 10.68.174.1 10.68.175.1 10.68.176.1 10.68.177.1 10.68.178.1 10.68.179.1 10.68.180.1 10.68.181.1 10.68.182.1 10.68.183.1 10.68.184.1 10.68.185.1 Dell> Configuring BGP Fast Fall-Over By default, a BGP session is governed by the hold time. BGP routers typically carry large routing tables, so frequent session resets are not desirable.
Received 6 updates, Sent 0 updates Route refresh request: received 0, sent 0 Minimum time between advertisement runs is 5 seconds Minimum time before advertisements start is 0 seconds Capabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) fall-over enabled Update source set to Loopback 0 Peer active in peer-group outbound optimization
Configuring Passive Peering When you enable a peer-group, the software sends an OPEN message to initiate a TCP connection. If you enable passive peering for the peer group, the software does not send an OPEN message, but it responds to an OPEN message. When a BGP neighbor connection with authentication configured is rejected by a passive peer-group, Dell Networking OS does not allow another passive peer-group on the same subnet to connect with the BGP neighbor.
Example of the Verifying that Local AS Numbering is Disabled The first line in bold shows the actual AS number. The second two lines in bold show the local AS number (6500) maintained during migration. To disable this feature, use the no neighbor local-as command in CONFIGURATION ROUTER BGP mode. R2(conf-router_bgp)#show conf ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.
neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.1 update-source Loopback 0 neighbor 192.168.10.1 no shutdown neighbor 192.168.12.2 remote-as 65123 neighbor 192.168.12.2 allowas-in 9 neighbor 192.168.12.
• The default is 360 seconds. Local router supports graceful restart as a receiver only. CONFIG-ROUTER-BGP mode bgp graceful-restart [role receiver-only] Enabling Neighbor Graceful Restart BGP graceful restart is active only when the neighbor becomes established. Otherwise, it is disabled. Graceful-restart applies to all neighbors with established adjacency. With the graceful restart feature, Dell Networking OS enables the receiving/restarting mode by default.
{deny | permit} filter parameter This is the filter that is used to match the AS-path. The entries can be any format, letters, numbers, or regular expressions. You can enter this command multiple times if multiple filters are desired. For accepted expressions, refer to Regular Expressions as Filters. 3. Return to CONFIGURATION mode. AS-PATH ACL mode exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Use a configured AS-PATH ACL for route filtering and manipulation.
Regular Expression Definition ^ (caret) Matches the beginning of the input string. Alternatively, when used as the first character within brackets [^ ], this matches any number except the ones specified within the brackets. $ (dollar) Matches the end of the input string. . (period) Matches any single character, including white space. * (asterisk) Matches 0 or more sequences of the immediately previous character or pattern.
neighbor 10.155.15.2 shutdown Dell(conf-router_bgp)#ex Dell(conf)#ex Dell#show ip as-path-access-lists ip as-path access-list Eagle deny 32$ Dell# Redistributing Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the BGP process. With the redistribute command, you can include ISIS, OSPF, static, or directly connected routes in the BGP process. To add routes from other routing instances or protocols, use any of the following commands in ROUTER BGP mode.
The range is from 2 to 64. 2. Allow the specified neighbor/peer group to send/ receive multiple path advertisements. CONFIG-ROUTER-BGP mode neighbor add-path NOTE: The path-count parameter controls the number of paths that are advertised, not the number of paths that are received. Configuring IP Community Lists Within Dell Networking OS, you have multiple methods of manipulating routing attributes. One attribute you can manipulate is the COMMUNITY attribute.
deny deny deny deny deny deny deny deny deny deny deny deny deny deny Dell# 705:20 14551:20 701:112 702:112 703:112 704:112 705:112 14551:112 701:667 702:667 703:667 704:666 705:666 14551:666 Configuring an IP Extended Community List To configure an IP extended community list, use these commands. 1. Create a extended community list and enter the EXTCOMMUNITY-LIST mode. CONFIGURATION mode ip extcommunity-list extcommunity-list-name 2. Two types of extended communities are supported.
Filtering Routes with Community Lists To use an IP community list or IP extended community list to filter routes, you must apply a match community filter to a route map and then apply that route map to a BGP neighbor or peer group. 1. Enter the ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2. Configure a match filter for all routes meeting the criteria in the IP community or IP extended community list.
route-map map-name [permit | deny] [sequence-number] 2. Configure a set filter to delete all COMMUNITY numbers in the IP community list. CONFIG-ROUTE-MAP mode set comm-list community-list-name delete OR set community {community-number | local-as | no-advertise | no-export | none} Configure a community list by denying or permitting specific community numbers or types of community. 3.
*>i 6.10.0.0/15 *>i 6.14.0.0/15 *>i 6.133.0.0/21 *>i 6.151.0.0/16 --More-- 195.171.0.16 205.171.0.16 205.171.0.16 205.171.0.16 100 100 100 100 0 0 0 0 209 209 209 209 7170 7170 7170 7170 1455 1455 1455 1455 i i i i Changing MED Attributes By default, Dell Networking OS uses the MULTI_EXIT_DISC or MED attribute when comparing EBGP paths from the same AS. To change how the MED attribute is used, enter any or all of the following commands.
4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Apply the route map to the neighbor or peer group’s incoming or outgoing routes. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-map map-name {in | out} To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. To view a route map configuration, use the show route-map command in EXEC Privilege mode.
The show ip bgp network command includes multipath information for that network. • Enable multiple parallel paths. CONFIG-ROUTER-BGP mode maximum-paths {ebgp | ibgp} number Filtering BGP Routes Filtering routes allows you to implement BGP policies. You can use either IP prefix lists, route maps, AS-PATH ACLs or IP community lists (using a route map) to control which routes the BGP neighbor or peer group accepts and advertises.
neighbor {ip-address | peer-group-name} distribute-list prefix-list-name {in | out} Configure the following parameters: • ip-address or peer-group-name: enter the neighbor’s IP address or the peer group’s name. • prefix-list-name: enter the name of a configured prefix list. • in: apply the prefix list to inbound routes. • out: apply the prefix list to outbound routes. As a reminder, the following are rules concerning prefix lists: • If the prefix list contains no filters, all routes are permitted.
Filtering BGP Routes Using AS-PATH Information To filter routes based on AS-PATH information, use these commands. 1. Create a AS-PATH ACL and assign it a name. CONFIGURATION mode ip as-path access-list as-path-name 2. Create a AS-PATH ACL filter with a deny or permit action. AS-PATH ACL mode {deny | permit} as-regular-expression 3. Return to CONFIGURATION mode. AS-PATH ACL exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5.
CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-reflector-client When you enable a route reflector, Dell Networking OS automatically enables route reflection to all clients. To disable route reflection between all clients in this reflector, use the no bgp client-to-client reflection command in CONFIGURATION ROUTER BGP mode. All clients must be fully meshed before you disable route reflection.
– as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte). All Confederation routers must be either 4 Byte or 2 Byte. You cannot have a mix of router ASN support. To view the configuration, use the show config command in CONFIGURATION ROUTER BGP mode. Enabling Route Flap Dampening When EBGP routes become unavailable, they “flap” and the router issues both WITHDRAWN and UPDATE notices.
– half-life: the range is from 1 to 45. Number of minutes after which the Penalty is decreased. After the router assigns a Penalty of 1024 to a route, the Penalty is decreased by half after the half-life period expires. The default is 15 minutes. – reuse: the range is from 1 to 20000. This number is compared to the flapping route’s Penalty value. If the Penalty value is less than the reuse value, the flapping route is once again advertised (or no longer suppressed). The default is 750.
To view a count of dampened routes, history routes, and penalized routes when you enable route dampening, look at the seventh line of the show ip bgp summary command output, as shown in the following example (bold). Dell>show ip bgp summary BGP router identifier 10.114.8.
BGP soft-reconfiguration clears the policies without resetting the TCP connection. To reset a BGP connection using BGP soft reconfiguration, use the clear ip bgp command in EXEC Privilege mode at the system prompt. When you enable soft-reconfiguration for a neighbor and you execute the clear ip bgp soft in command, the update database stored in the router is replayed and updates are reevaluated.
Match a Clause with a Continue Clause The continue feature can exist without a match clause. Without a match clause, the continue clause executes and jumps to the specified route-map entry. With a match clause and a continue clause, the match clause executes first and the continue clause next in a specified route map entry. The continue clause launches only after a successful match.
BGP Regular Expression Optimization Dell Networking OS optimizes processing time when using regular expressions by caching and re-using regular expression evaluated results, at the expense of some memory in RP1 processor. BGP policies that contain regular expressions to match against as-paths and communities might take a lot of CPU processing time, thus affect BGP routing convergence.
To disable all BGP debugging, use the no debug ip bgp command. To disable all debugging, use the undebug all command. Storing Last and Bad PDUs Dell Networking OS stores the last notification sent/received and the last bad protocol data unit (PDU) received on a per peer basis. The last bad PDU is the one that causes a notification to be issued. In the following example, the last seven lines shown in bold are the last PDUs.
Capturing PDUs To capture incoming and outgoing PDUs on a per-peer basis, use the capture bgp-pdu neighbor direction command. To disable capturing, use the no capture bgp-pdu neighbor direction command. The buffer size supports a maximum value between 40 MB (the default) and 100 MB. The capture buffers are cyclic and reaching the limit prompts the system to overwrite the oldest PDUs when new ones are received for a given neighbor or direction.
Dell(conf-router_bgp)#do sho ip bg s BGP router identifier 172.30.1.56, local AS number 65056 BGP table version is 313511, main routing table version 313511 207896 network entrie(s) and 207896 paths using 42364576 bytes of memory 59913 BGP path attribute entrie(s) using 2875872 bytes of memory 59910 BGP AS-PATH entrie(s) using 2679698 bytes of memory 3 BGP community entrie(s) using 81 bytes of memory Neighbor AS 1.1.1.2 2 172.30.1.
Example of Enabling BGP (Router 1) R1# conf R1(conf)#int loop 0 R1(conf-if-lo-0)#ip address 192.168.128.1/24 R1(conf-if-lo-0)#no shutdown R1(conf-if-lo-0)#show config ! interface Loopback 0 ip address 192.168.128.1/24 no shutdown R1(conf-if-lo-0)#int te 1/21 R1(conf-if-te-1/21)#ip address 10.0.1.21/24 R1(conf-if-te-1/21)#no shutdown R1(conf-if-te-1/21)#show config ! interface TengigabitEthernet 1/21 ip address 10.0.1.21/24 no shutdown R1(conf-if-te-1/21)#int te 1/31 R1(conf-if-te-1/31)#ip address 10.0.3.
ip address 10.0.2.2/24 no shutdown R2(conf-if-te-2/31)# R2(conf-if-te-2/31)#router bgp 99 R2(conf-router_bgp)#network 192.168.128.0/24 R2(conf-router_bgp)#neighbor 192.168.128.1 remote 99 R2(conf-router_bgp)#neighbor 192.168.128.1 no shut R2(conf-router_bgp)#neighbor 192.168.128.1 update-source loop 0 R2(conf-router_bgp)#neighbor 192.168.128.3 remote 100 R2(conf-router_bgp)#neighbor 192.168.128.3 no shut R2(conf-router_bgp)#neighbor 192.168.128.
R1(conf-router_bgp)#show config ! router bgp 99 network 192.168.128.0/24 neighbor AAA peer-group neighbor AAA no shutdown neighbor BBB peer-group neighbor BBB no shutdown neighbor 192.168.128.2 remote-as 99 neighbor 192.168.128.2 peer-group AAA neighbor 192.168.128.2 update-source Loopback 0 neighbor 192.168.128.2 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 peer-group BBB neighbor 192.168.128.3 update-source Loopback 0 neighbor 192.168.128.
R2(conf-router_bgp)# neighbor CC no shutdown R2(conf-router_bgp)# neighbor BBB peer-group R2(conf-router_bgp)# neighbor BBB no shutdown R2(conf-router_bgp)# neighbor 192.168.128.1 peer AAA R2(conf-router_bgp)# neighbor 192.168.128.1 no shut R2(conf-router_bgp)# neighbor 192.168.128.3 peer BBB R2(conf-router_bgp)# neighbor 192.168.128.3 no shut R2(conf-router_bgp)#show conf ! router bgp 99 network 192.168.128.
Hold time is 180, keepalive interval is 60 seconds Received 93 messages, 0 in queue 5 opens, 0 notifications, 5 updates 83 keepalives, 0 route refresh requests Sent 99 messages, 0 in queue 5 opens, 4 notifications, 5 updates 85 keepalives, 0 route refresh requestsCapabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Update source set
11 Content Addressable Memory (CAM) CAM is a type of memory that stores information in the form of a lookup table. On Dell Networking systems, CAM stores Layer 2 (L2) and Layer 3 (L3) forwarding information, access-lists (ACLs), flows, and routing policies. CAM Allocation CAM Allocation for Ingress To allocate the space for regions such has L2 ingress ACL, IPV4 ingress ACL, IPV6 ingress ACL, IPV4 QoS, L2 QoS, PBR, VRF ACL, and so forth, use the cam-acl command in CONFIGURATION mode.
NOTE: When you reconfigure CAM allocation, use the nlbclusteracl number command to change the number of NLB ARP entries. The range is from 0 to 2. The default value is 0. At the default value of 0, eight NLB ARP entries are available for use. This platform supports upto 256 CAM entries. Select 1 to configure 128 entries. Select 2 to configure 256 entries.
cam-acl {default | l2acl number ipv4acl number ipv6acl number ipv4qos number l2qos number l2pt number ipmacacl number vman-qos | vman-dual-qos number ecfmacl number nlbcluster number ipv4pbr number openflow number | fcoe number iscsioptacl number [vrfv4acl number] NOTE: If you do not enter the allocation values for the CAM regions, the value is 0. 3. Execute write memory and verify that the new settings are written to the CAM on the next boot. EXEC Privilege mode show cam-acl 4. Reload the system.
The show running-config cam-profile command shows the current profile and microcode. NOTE: If you select the CAM profile from CONFIGURATION mode, the output of this command does not reflect any changes until you save the running-configuration and reload the chassis.
The default values for the show cam-acl command are: Dell#show cam-acl -- Chassis Cam ACL -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDualQos : 0 EcfmAcl : 0 FcoeAcl : 0 iscsiOptAcl : 0 ipv4pbr : 0 vrfv4Acl : 0 Openflow : 0 fedgovacl : 0 -- Stack unit 0 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDu
View CAM Usage View the amount of CAM space available, used, and remaining in each ACL partition using the show cam-usage command from EXEC Privilege mode.
DSA_QOS_CAM_INSTALL_FAILED: Not enough space in L3 Cam(PolicyQos) for class 5 (Te 1/ 22) entries on portpipe 1 for linecard 1 If you exceed the QoS CAM space, follow these steps. 1. Verify that you have configured a CAM profile that allocates 24 K entries to the IPv4 system flow region. 2. Allocate more entries in the IPv4Flow region to QoS. Dell Networking OS supports the ability to view the actual CAM usage before applying a service-policy.
12 Control Plane Policing (CoPP) Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level.
Figure 31. CoPP Implemented Versus CoPP Not Implemented Configure Control Plane Policing The system can process a maximum of 4200 packets per second (PPS). Protocols that share a single queue may experience flaps if one of the protocols receives a high rate of control traffic even though per protocol CoPP is applied. This happens because queuebased rate limiting is applied first.
Configuring CoPP for Protocols This section lists the commands necessary to create and enable the service-policies for CoPP. For complete information about creating ACLs and QoS rules, refer to Access Control Lists (ACLs) and Quality of Service (QoS). The basics for creating a CoPP service policy are to create a Layer 2, Layer 3, and/or an IPv6 ACL rule for the desired protocol type. Then, create a QoS input policy to rate-limit the protocol traffics according to the ACL.
Dell(conf)#mac access-list extended lacp cpu-qos Dell(conf-mac-acl-cpuqos)#permit lacp Dell(conf-mac-acl-cpuqos)#exit Dell(conf)#ipv6 access-list ipv6-icmp cpu-qos Dell(conf-ipv6-acl-cpuqos)#permit icmp Dell(conf-ipv6-acl-cpuqos)#exit Dell(conf)#ipv6 access-list ipv6-vrrp cpu-qos Dell(conf-ipv6-acl-cpuqos)#permit vrrp Dell(conf-ipv6-acl-cpuqos)#exit The following example shows creating the QoS input policy.
The basics for creating a CoPP service policy is to create QoS policies for the desired CPU bound queue and associate it with a particular rate-limit. The QoS policies are assigned to a control-plane service policy for each port-pipe. 1. Create a QoS input policy for the router and assign the policing. CONFIGURATION mode qos-policy-input name cpu-qos 2. Create an input policy-map to assign the QoS policy to the desired service queues.l.
CoPP enhancements are to enhance the capability of FTOS by utilizing more number of CPU queues on CMIC port and sending control packets to different queues that internally reduce limitation or contention of control protocols sharing the same queues (that is, before this functionality of CoPP for OSPV3 was introduced, OSPF might have caused the LACP flap because of both control traffic sent to same Q7 on CPU port).
Policing provides a method for protecting CPU bound control plane packets by policing packets transmited to CPU with a specified rate and from undesired or malicious traffic. This is done at each CPU queue on each unit. FP Entries for Distribution of NDP Packets to Various CPU Queues • At present generic mac based entries in system flow region will take IPv6 packets to CPU.
CPU Queue Weights Rate (pps) Protocol 2 2 300 TTL0, TTL1, IP with options, Mac limit violation, Hyper pull, L3 with Bcast MacDA, Unknown L3, ARP unresolved, ACL Logging 3 4 400 sFlow, L3 MTU Fail frames 4 127 2000 IPC/IRC, VLT Control frames 5 16 300 ARP Request, NS, RS, iSCSI OPT Snooping 6 16 400 ICMP, ARP Reply, NTP, Local terminated L3, NA, RA,ICMPv6 (other Than NDP and MLD) 7 64 400 xSTP, FRRP, LACP, 802.
Dell(conf-ipv6-acl-cpuqos)#permit ospf 2. Create a QoS input policy for the router and assign the policing. CONFIGURATION mode Dell(conf)#qos-policy-input ospfv3_rate cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 1500 16 peak 1500 16 3. Create a QoS class map to differentiate the control-plane traffic and assign to the ACL. CONFIGURATION mode Dell(conf)#class-map match-any ospfv3 cpu-qos Dell(conf-class-map-cpuqos)#match ipv6 access-group ospfv3 4.
UDP (DHCP-R) TCP (FTP) ICMP IGMP TCP (MSDP) UDP (NTP) OSPF PIM UDP (RIP) TCP (SSH) TCP (TELNET) VRRP Dell# 67 any any any any/639 any any any any any any any 67 21 any any 639/any 123 any any 520 22 23 any _ _ _ _ _ _ _ _ _ _ _ _ Q6 Q6 Q6 Q7 Q6 Q6 Q7 Q7 Q7 Q6 Q6 Q7 CP CP CP CP CP CP CP CP CP CP CP CP _ _ _ _ _ _ _ _ _ _ _ _ To view the queue mapping for the MAC protocols, use the show mac protocol-queue-mapping command.
13 Data Center Bridging (DCB) NOTE: DCB is not supported when you use 10GBaseT ports for stacking. Ethernet Enhancements in Data Center Bridging The following section describes DCB. The S4820T system supports loading two DCB_Config files: FCoE_DCB_Config and iSCSI_DCB_Config. These files are located in the root directory flash:/CONFIG_TEMPLATE. After copying the configuration files to the startup config and reloading the system.
Traffic Description Storage traffic Storage traffic based on Fibre Channel media uses the Small Computer System Interface (SCSI) protocol for data transfer. This traffic typically consists of large data packets with a payload of 2K bytes that cannot recover from frame loss. To successfully transport storage traffic, data center Ethernet must provide nodrop service with lossless links.
• • • • • • • PFC supports buffering to receive data that continues to arrive on an interface while the remote system reacts to the PFC operation. PFC uses DCB MIB IEEE 802.1azd2.5 and PFC MIB IEEE 802.1bb-d2.2. PFC uses DCB MIB IEEE 802.1azd2.5 and PFC MIB IEEE 802.1bb-d2.2. PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface.
• ETS supports groups of 802.1p priorities that have: – PFC enabled or disabled – No bandwidth limit or no ETS processing • ETS uses the DCB MIB IEEE 802.1azd2.5. Data Center Bridging Exchange Protocol (DCBx) The data center bridging exchange (DCBx) protocol is disabled by default on the S4810; ETS is also disabled. DCBx allows a switch to automatically discover DCB-enabled peers and exchange configuration information. PFC and ETS use DCBx to exchange and negotiate parameters with peer devices.
• Enhanced transmission selection • Data center bridging exchange protocol • FCoE initialization protocol (FIP) snooping DCB processes virtual local area network (VLAN)-tagged packets and dot1p priority values. Untagged packets are treated with a dot1p priority of 0. For DCB to operate effectively, you can classify ingress traffic according to its dot1p priority so that it maps to different data queues. The dot1p-queue assignments used are shown in the following table.
Important Points to Remember • If you remove a dot1p priority-to-priority group mapping from a DCB map (no priority pgid command), the PFC and ETS parameters revert to their default values on the interfaces on which the DCB map is applied. By default, PFC is not applied on specific 802.1p priorities; ETS assigns equal bandwidth to each 802.1p priority. As a result, PFC and lossless port queues are disabled on 802.
dcb-map dcb-map-name The dcb-map-name variable can have a maximum of 32 characters. 2. Create a PFC group. CONFIGURATION mode priority-group group-num {bandwidth bandwidth | strict-priority} pfc on The range for priority group is from 0 to 7. Set the bandwidth in percentage. The percentage range is from 1 to 100% in units of 1%. Committed and peak bandwidth is in megabits per second. The range is from 0 to 40000. Committed and peak burst size is in kilobytes. Default is 50. The range is from 0 to 10000.
NOTE: Although, each port on the S4810, S4820T, and S5000 devices support 8 QoS queues, you can configure only 4 QoS queues (0-3) to manage data traffic. The remaining 4 queues (4-7) are reserved for control traffic. Dell(conf)#do show qos dot1p-queue-mapping Dot1p Priority : 0 1 2 3 4 5 6 7 Queue : 0 0 0 1 2 3 3 3 Dell(conf)# The configuration of no-drop queues provides flexibility for ports on which PFC is not needed but lossless traffic should egress from the interface.
As soon as you apply a DCB map with PFC enabled on an interface, DCBx starts exchanging information with a peer. The IEEE802.1Qbb, CEE and CIN versions of PFC TLV are supported. DCBx also validates PFC configurations that are received in TLVs from peer devices. By applying a DCB map with PFC enabled, you enable PFC operations on ingress port traffic. To achieve complete lossless handling of traffic, configure PFC priorities on all DCB egress ports.
Applying a DCB Map on a Port When you apply a DCB map with PFC enabled on a switch interface, a memory buffer for PFC-enabled priority traffic is automatically allocated. The buffer size is allocated according to the number of PFC-enabled priorities in the assigned map. To apply a DCB map to an Ethernet port, follow these steps: Table 16. DCB Map to an Ethernet Port Step Task Command Command Mode 1 Enter interface configuration mode on an Ethernet port.
Configuring Lossless Queues DCB also supports the manual configuration of lossless queues on an interface when PFC mode is disabled in a DCB map, apply the map on the interface. The configuration of no-drop queues provides flexibility for ports on which PFC is not needed, but lossless traffic should egress from the interface. Configuring no-drop queues is applicable only on the interfaces which do not need PFC.
Step Task Command Command Mode 4 Return to interface configuration mode. exit DCB MAP 5 Apply the DCB map, created to disable the PFC operation, on the interface dcb-map {name | default} INTERFACE 6 Configure the port queues that still function as no-drop queues for lossless traffic. For the dot1p-queue assignments. pfc no-drop queuesqueue-range INTERFACE The maximum number of lossless queues globally supported on a port is 2.
Although the system contains 9 MB of space for shared buffers, a minimum guaranteed buffer is provided to all the internal and external ports in the system for both unicast and multicast traffic. This minimum guaranteed buffer reduces the total available shared buffer to 7,787 KB. This shared buffer can be used for lossy and lossless traffic. The default behavior causes up to a maximum of 6.6 MB to be used for PFC-related traffic. The remaining approximate space of 1 MB can be used by lossy traffic.
class-map match-any dscp-pfc-2 match ip dscp 20-25,30-35 2. Associate above class-maps to Queues Queue assignment to be based on the below table . NOTE: Although, each port on the S4810, S4820T, and S5000 devices support 8 QoS queues, you can configure only 4 QoS queues (0-3)to manage data traffic. The remaining 4 queues (4-7) are reserved for control traffic. Table 19. Queue Assignments 3. 4.
NOTE: The IEEE 802.1Qaz, CEE, and CIN versions of ETS are supported. Creating an ETS Priority Group An ETS priority group specifies the range of 802.1p priority traffic to which a QoS output policy with ETS settings is applied on an egress interface. 1. Configure a DCB Map. CONFIGURATION mode dcb-map dcb-map-name The dcb-map-name variable can have a maximum of 32 characters. 2. Create an ETS priority group.
By default, all 802.1p priorities are grouped in priority group 0 and 100% of the port bandwidth is assigned to priority group 0. The complete bandwidth is equally assigned to each priority class so that each class has 12 to 13%. The maximum number of priority groups supported in ETS output policies on an interface is equal to the number of data queues (4) on the port. The 802.1p priorities in a priority group can map to multiple queues.
QoS OUTPUT POLICY mode Dell(conf-qos-policy-out)#bandwidth-percentage 100 4. Exit QoS Output Policy Configuration mode. QoS OUTPUT POLICY mode Dell(conf-if-te-0/1)#exit 5. Enter INTERFACE Configuration mode. CONFIGURATION mode interface type slot/port 6. Apply the QoS output policy with the bandwidth percentage for specified priority queues to an egress interface.
ETS Prerequisites and Restrictions On an S6000 switch, ETS is enabled by default on Ethernet ports with equal bandwidth assigned to each 802.1p priority. You can change the default ETS configuration only by using a DCB map.
mapped to one queue takes precedence over the strict priority group whose traffic is mapped to two queues. Therefore, in this example, scheduling traffic to priority group 1 (mapped to one strict-priority queue) takes precedence over scheduling traffic to priority group 3 (mapped to two strict-priority queues).
DCBx Port Roles To enable the auto-configuration of DCBx-enabled ports and propagate DCB configurations learned from peer DCBx devices internally to other switch ports, use the following DCBx port roles. Auto-upstream The port advertises its own configuration to DCBx peers and is willing to receive peer configuration. The port also propagates its configuration to other ports on the switch. The first auto-upstream that is capable of receiving a peer configuration is elected as the configuration source.
devices but do not accept or propagate internal or external configurations. Unlike other user-configured ports, the configuration of DCBx ports in Manual mode is saved in the running configuration. On a DCBx port in a manual role, all PFC, application priority, ETS recommend, and ETS configuration TLVs are enabled.
– The switch is capable of supporting the received DCB configuration values through either a symmetric or asymmetric parameter exchange. A newly elected configuration source propagates configuration changes received from a peer to the other auto-configuration ports. Ports receiving auto-configuration information from the configuration source ignore their current settings and use the configuration source information.
On the S4820T, PFC and ETS use DCBx to exchange link-level configuration with DCBx peer devices. Figure 35. DCBx Sample Topology DCBx Prerequisites and Restrictions The following prerequisites and restrictions apply when you configure DCBx operation on a port: • For DCBx, on a port interface, enable LLDP in both Send (TX) and Receive (RX) mode (the protocol lldp mode command; refer to the example in CONFIGURATION versus INTERFACE Configurations in the Link Layer Discovery Protocol (LLDP) chapter).
[no] DCBx version {auto | cee | cin | ieee-v2.5} • cee: configures the port to use CEE (Intel 1.01). • cin: configures the port to use Cisco-Intel-Nuova (DCBx 1.0). • ieee-v2.5: configures the port to use IEEE 802.1Qaz (Draft 2.5). The default is Auto. 4. Configure the DCBx port role the interface uses to exchange DCB information. PROTOCOL LLDP mode [no] DCBx port-role {config-source | auto-downstream | auto-upstream | manual} • auto-upstream: configures the port to receive a peer configuration.
Configuring DCBx Globally on the Switch To globally configure the DCBx operation on a switch, follow these steps. 1. Enter Global Configuration mode. EXEC PRIVILEGE mode configure 2. Enter LLDP Configuration mode to enable DCBx operation. CONFIGURATION mode [no] protocol lldp 3. Configure the DCBx version used on all interfaces not already configured to exchange DCB information. PROTOCOL LLDP mode [no] DCBx version {auto | cee | cin | ieee-v2.
[no] fcoe priority-bits priority-bitmap The priority-bitmap range is from 1 to FF. The default is 0x8. 7. Configure the iSCSI priority advertised for the iSCSI protocol in Application Priority TLVs. PROTOCOL LLDP mode [no] iscsi priority-bits priority-bitmap The priority-bitmap range is from 1 to FF. The default is 0x10. DCBx Error Messages The following syslog messages appear when an error in DCBx operation occurs.
Verifying the DCB Configuration To display DCB configurations, use the following show commands. Table 20. Displaying DCB Configurations Command Output show qos dot1p-queue mapping Displays the current 802.1p priority-queue mapping. show dcb [stack-unit unit-number] Displays the data center bridging status, number of PFC-enabled ports, and number of PFC-enabled queues. On the master switch in a stack, you can specify a stack-unit number. The range is from 0 to 5.
The following example shows the output of the show qos dcb-map test command. Dell#show qos dcb-map test ----------------------State :Complete PfcMode:ON -------------------PG:0 TSA:ETS BW:50 PFC:OFF Priorities:0 1 2 5 6 7 PG:1 TSA:ETS BW:50 Priorities:3 4 PFC:ON The following example shows the show interfaces pfc summary command.
Table 21. show interface pfc summary Command Description Fields Description Interface Interface type with stack-unit and port number. Admin mode is on; Admin is enabled PFC Admin mode is on or off with a list of the configured PFC priorities . When PFC admin mode is on, PFC advertisements are enabled to be sent and received from peers; received PFC configuration takes effect. The admin operational status for a DCBx exchange of PFC configuration is enabled or disabled.
Fields Description PFC TLV Statistics: Output TLV pkts Number of PFC TLVs transmitted. PFC TLV Statistics: Error pkts Number of PFC error packets received. PFC TLV Statistics: Pause Tx pkts Number of PFC pause frames transmitted. PFC TLV Statistics: Pause Rx pkts Number of PFC pause frames received The following example shows the show interface pfc statistics command.
ETS DCBx Oper status is Down State Machine Type is Asymmetric Conf TLV Tx Status is enabled Reco TLV Tx Status is enabled 0 Input Conf TLV Pkts, 1955 Output Conf TLV Pkts, 0 Error Conf TLV Pkts 0 Input Reco TLV Pkts, 1955 Output Reco TLV Pkts, 0 Error Reco TLV Pkts Dell(conf)# show interfaces tengigabitethernet 1/1 ets detail Interface TenGigabitEthernet 1/1 Max Supported TC Groups is 4 Number of Traffic Classes is 8 Admin mode is on Admin Parameters : -----------------Admin is enabled TC-grp Priority# Band
Number of Traffic Classes is 8 Admin mode is on Admin Parameters : -----------------Admin is enabled TC-grp Priority# Bandwidth 0 0,1,2,3,4,5,6,7 100% 1 0% 2 0% 3 0% 4 0% 5 0% 6 0% 7 0% Priority# Bandwidth TSA 0 1 2 3 4 5 6 7 Remote Parameters: ------------------Remote is disabled Local Parameters : -----------------Local is enabled TC-grp Priority# 0 0,1,2,3,4,5,6,7 1 2 3 4 5 6 7 TSA ETS ETS ETS ETS ETS ETS ETS ETS 13% 13% 13% 13% 12% 12% 12% 12% ETS ETS ETS ETS ETS ETS ETS ETS Bandwidth 100% 0% 0% 0%
Field Description Admin mode ETS mode: on or off. Admin Parameters ETS configuration on local port, including priority groups, assigned dot1p priorities, and bandwidth allocation. Remote Parameters ETS configuration on remote peer port, including Admin mode (enabled if a valid TLV was received or disabled), priority groups, assigned dot1p priorities, and bandwidth allocation.
Max Supported TC Groups is 4 Number of Traffic Classes is 1 Admin mode is on Admin Parameters: -------------------Admin is enabled TC-grp Priority# Bandwidth TSA -----------------------------------------------0 0,1,2,3,4,5,6,7 100% ETS 1 2 3 4 5 6 7 8 Stack unit 1 stack port all Max Supported TC Groups is 4 Number of Traffic Classes is 1 Admin mode is on Admin Parameters: -------------------Admin is enabled TC-grp Priority# Bandwidth TSA -----------------------------------------------0 0,1,2,3,4,5,6,7 100%
P-PFC Configuration TLV enabled p-PFC Configuration TLV disabled F-Application priority for FCOE enabled f-Application Priority for FCOE disabled I-Application priority for iSCSI enabled i-Application Priority for iSCSI disabled ----------------------------------------------------------------------Interface TenGigabitEthernet 1/14 Remote Mac Address 00:01:e8:8a:df:a0 Port Role is Auto-Upstream DCBx Operational Status is Enabled Is Configuration Source? FALSE Local DCBx Compatibility mode is CEE Local DCBx C
Field Description Local DCBx Status: DCBx Max Version Supported Highest DCBx version supported in Control TLVs. Local DCBx Status: Sequence Number Sequence number transmitted in Control TLVs. Local DCBx Status: Acknowledgment Number Acknowledgement number transmitted in Control TLVs. Local DCBx Status: Protocol State Current operational state of DCBx protocol: ACK or IN-SYNC. Peer DCBx Status: DCBx Operational Version DCBx version advertised in Control TLVs received from peer device.
Figure 36. PFC and ETS Applied to LAN, IPC, and SAN Priority Traffic QoS Traffic Classification: The service-class dynamic dot1p command has been used in Global Configuration mode to map ingress dot1p frames to the queues shown in the following table. For more information, refer to QoS dot1p Traffic Classification and Queue Assignment.
dot1p Value in the Incoming Frame Priority Group Assignment 6 LAN 7 LAN The following describes the priority group-bandwidth assignment. Priority Group Bandwidth Assignment IPC 5% SAN 50% LAN 45% PFC and ETS Configuration Command Examples The following examples show PFC and ETS configuration commands to manage your data center traffic. 1. Enabling DCB Dell(conf)#dcb enable 2.
NOTE: Dell Networking does not recommend mapping all ingress traffic to a single queue when using PFC and ETS. However, Dell Networking does recommend using Ingress traffic classification using the service-class dynamic dot1p command (honor dot1p) on all DCB-enabled interfaces.
CONFIGURATION mode dcb pfc-shared-buffer-size 4000 dcb pfc-total-buffer-size 5000 3. Configure the number of PFC queues. CONFIGURATION mode dcb enable pfc-queues pfc-queues The number of ports supported based on lossless queues configured depends on the buffer. The default number of PFC queues in the system is two for S4810 and Z9500, and one for S6000 platforms.
14 Dynamic Host Configuration Protocol (DHCP) DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network endstations (hosts) based on configuration policies determined by network administrators.
Option Number and Description Domain Name Server Option 6 Domain Name Option 15 Specifies the domain name servers (DNSs) that are available to the client. Specifies the domain name that clients should use when resolving hostnames via DNS. IP Address Lease Time Option 51 DHCP Message Type Option 53 Specifies the amount of time that the client is allowed to use an assigned IP address.
Assign an IP Address using DHCP The following section describes DHCP and the client in a network. When a client joins a network: 1. The client initially broadcasts a DHCPDISCOVER message on the subnet to discover available DHCP servers. This message includes the parameters that the client requires and might include suggested values for those parameters. 2. Servers unicast or broadcast a DHCPOFFER message in response to the DHCPDISCOVER that offers to the client values for the requested parameters.
you configure IP source address validation on a member port of a virtual local area network (VLAN) and then to apply an access list to the VLAN, Dell Networking OS displays the first line in the following message. If you first apply an ACL to a VLAN and then enable IP source address validation on one of its member ports, Dell Networking OS displays the second line in the following message. % Error: Vlan member has access-list configured. % Error: Vlan has an access-list configured.
ip dhcp server 2. Create an address pool and give it a name. DHCP mode pool name 3. Specify the range of IP addresses from which the DHCP server may assign addresses. DHCP  mode network network/prefix-length • network: the subnet address. • prefix-length: specifies the number of bits used for the network portion of the address you specify. The prefix-length range is from 17 to 31. 4. Display the current pool configuration.
The default is 24 hours. Specifying a Default Gateway The IP address of the default router should be on the same subnet as the client. To specify a default gateway, follow this step. • Specify default gateway(s) for the clients on the subnet, in order of preference. DHCP  default-router address Configure a Method of Hostname Resolution Dell systems are capable of providing DHCP clients with parameters for two methods of hostname resolution—using DNS or NetBIOS WINS.
DHCP mode pool name 2. Specify the client IP address. DHCP  host address 3. Specify the client hardware address. DHCP  hardware-address hardware-address type • hardware-address: the client MAC address. • type: the protocol of the hardware platform. The default protocol is Ethernet. Debugging the DHCP Server To debug the DHCP server, use the following command. • Display debug information for DHCP server.
Figure 39. Configuring a Relay Agent To view the ip helper-address configuration for an interface, use the show ip interface command from EXEC privilege mode. Example of the show ip interface Command R1_E600#show ip int tengigabitethernet 1/3 TenGigabitEthernet 1/3 is up, line protocol is down Internet address is 10.11.0.1/24 Broadcast address is 10.11.0.255 Address determined by user input IP MTU is 1500 bytes Helper address is 192.168.0.1 192.168.0.
Configure the System to be a DHCP Client A DHCP client is a network device that requests an IP address and configuration parameters from a DHCP server. Implement the DHCP client functionality as follows: • The switch can obtain a dynamically assigned IP address from a DHCP server. A start-up configuration is not received. Use bare metal provisioning (BMP) to receive configuration parameters (Dell Networking OS version and a configuration file). BMP is enabled as a factory-default setting on a switch.
The following criteria determine packets destined for the DHCP client: – DHCP is enabled on the interface. – The user data protocol (UDP) destination port in the packet is 68. – The chaddr (change address) in the DHCP header of the packet is the same as the interface’s MAC address. • An entry in the DHCP snooping table is not added for a DHCP client interface. DHCP Server A switch can operate as a DHCP client and a DHCP server.
The received stacking configuration is always applied on the master stack unit. option #230 "unit-number:3#priority:2#stack-group:14" Configure Secure DHCP DHCP as defined by RFC 2131 provides no authentication or security mechanisms. Secure DHCP is a suite of features that protects networks that use dynamic address allocation from spoofing and attacks.
When you enable DHCP snooping, the relay agent builds a binding table — using DHCPACK messages — containing the client MAC address, IP addresses, IP address lease time, port, VLAN ID, and binding type. Every time the relay agent receives a DHCPACK on a trusted port, it adds an entry to the table.
CONFIGURATION mode ipv6 dhcp snooping vlan vlan-id Adding a Static Entry in the Binding Table To add a static entry in the binding table, use the following command. • Add a static entry in the binding table. EXEC Privilege mode ip dhcp snooping binding mac Adding a Static IPV6 DHCP Snooping Binding Table To add a static entry in the snooping database, use the following command. • Add a static entry in the snooping binding table.
DHCP packets information Relay Information-option packets Relay Trust downstream packets Snooping packets : 0 : 0 : 0 Packets received on snooping disabled L3 Ports Snooping packets processed on L2 vlans : 0 : 142 DHCP Binding File Details Invalid File Invalid Binding Entry Binding Entry lease expired List of Trust Ports List of DHCP Snooping Enabled Vlans List of DAI Trust ports : 0 : 0 : 0 :Te 1/4 :Vl 10 :Te 1/4 Displaying the Contents of the DHCPv6 Binding Table To display the contents of the DHCP
ip dhcp relay secondary-subnet 2. Sample Configuration: Dell(conf)#ip dhcp relay secondary-subnet Dell(conf)#interface TenGigabitEthernet 0/0 Dell(conf-if-te-0/0)#ip address 10.1.1.1/24 Dell(conf-if-te-0/0)#ip address 11.1.1.1/24 secondary Dell(conf-if-te-0/0)#ip helper-address 2.1.1.1 Dell(conf-if-te-0/0)#no shutdown Dell(conf-if-te-0/0)# DHCP relay tries to get ip address for the client, through configured primary address filling giaddr (relay address) 10.1.1.1.
Other attacks using ARP spoofing include: Broadcast An attacker can broadcast an ARP reply that specifies FF:FF:FF:FF:FF:FF as the gateway’s MAC address, resulting in all clients broadcasting all internet-bound packets. MAC flooding An attacker can send fraudulent ARP messages to the gateway until the ARP cache is exhausted, after which, traffic from the gateway is broadcast.
Valid ARP Replies Invalid ARP Requests Invalid ARP Replies Dell# : 1000 : 1000 : 0 Bypassing the ARP Inspection You can configure a port to skip ARP inspection by defining the interface as trusted, which is useful in multi-switch environments. ARPs received on trusted ports bypass validation against the binding table. All ports are untrusted by default. To bypass the ARP inspection, use the following command. • Specify an interface as trusted so that ARPs are not validated against the binding table.
• Enable IP source address validation with VLAN option. INTERFACE mode ip dhcp source-address-validation vlan vlan-id NOTE: Before enabling SAV With VLAN option, allocate at least one FP block to the ipmacacl CAM region. DHCP MAC Source Address Validation DHCP MAC source address validation (SAV) validates a DHCP packet’s source hardware address against the client hardware address field (CHADDR) in the payload.
Viewing the Number of SAV Dropped Packets The following output of the show ip dhcp snooping source-address-validation discard-counters command displays the number of SAV dropped packets.
15 Equal Cost Multi-Path (ECMP) This chapter describes configuring ECMP. This chapter describes configuring ECMP. ECMP for Flow-Based Affinity ECMP for flow-based affinity includes link bundle monitoring. Configuring the Hash Algorithm TeraScale has one algorithm that is used for link aggregation groups (LAGs), ECMP, and NH-ECMP, and ExaScale can use three different algorithms for each of these features. To adjust the ExaScale behavior to match TeraScale, use the following command.
Dell Networking OS provides a command line interface (CLI)-based solution for modifying the hash seed to ensure that on each configured system, the ECMP selection is same. When configured, the same seed is set for ECMP, LAG, and NH, and is used for incoming traffic only. NOTE: While the seed is stored separately on each port-pipe, the same seed is used across all CAMs. NOTE: You cannot separate LAG and ECMP, but you can use different algorithms across the chassis with the same seed.
Managing ECMP Group Paths To avoid path degeneration, configure the maximum number of paths for an ECMP route that the L3 CAM can hold. When you do not configure the maximum number of routes, the CAM can hold a maximum ECMP per route. To configure the maximum number of paths, use the following command. NOTE: For the new settings to take effect, save the new ECMP settings to the startup-config (write-mem) then reload the system. • Configure the maximum number of paths per ECMP group. CONFIGURATION mode.
• Display details for an ECMP group bundle. EXEC mode show link-bundle-distribution ecmp-group ecmp-group-id The range is from 1 to 64. Viewing an ECMP Group NOTE: An ecmp-group index is generated automatically for each unique ecmp-group when you configure multipath routes to the same network. The system can generate a maximum of 512 unique ecmp-groups. The ecmp-group indices are generated in even numbers (0, 2, 4, 6... 1022) and are for information only.
• Packet Header parameters for the first portion of the RTAG7 hash can be controlled. By default, all the listed parameters from the Packet header are considered for hash computation. Few parameters [on demand] can be removed using the given CLIs.
Figure 40. Before Polarization Effect Router B performs the same hash as router A and all the traffic goes through the same path to router D, while no traffic is redirected to router E. Some of the anti-polarization techniques used generally to mitigate unequal traffic distribution in LAG/ECMP as follows: 1. Configuring different hash-seed values at each node - Hash seed is the primary parameter in hash computations that determine distribution of traffic among the ECMP paths.
xor1 bits of xor2 bits of xor4 bits of xor8 bits of xor16 xor1 xor2 xor4 xor8 CRC16_BISYNC_AND_XOR1 - Upper 8 bits of CRC16-BISYNC and lower 8 CRC16_BISYNC_AND_XOR2 - Upper 8 bits of CRC16-BISYNC and lower 8 CRC16_BISYNC_AND_XOR4 - Upper 8 bits of CRC16-BISYNC and lower 8 CRC16_BISYNC_AND_XOR8 - Upper 8 bits of CRC16-BISYNC and lower 8 CR16 - 16 bit XOR] Example to view show hash-algorithm: Dell(conf)#hash-algorithm ecmp flow-based-hashing crc16 Dell(conf)#end Dell#show hash-algorithm Hash-Algorithm line
16 FCoE Transit The Fibre Channel over Ethernet (FCoE) Transit feature is supported on Ethernet interfaces. When you enable the switch for FCoE transit, the switch functions as a FIP snooping bridge. NOTE: FIP snooping is not supported on Fibre Channel interfaces or in a switch stack. Fibre Channel over Ethernet FCoE provides a converged Ethernet network that allows the combination of storage-area network (SAN) and LAN traffic on a Layer 2 link by encapsulating Fibre Channel data into Ethernet frames.
Table 26. FIP Functions FIP Function Description FIP VLAN discovery FCoE devices (ENodes) discover the FCoE VLANs on which to transmit and receive FIP and FCoE traffic. FIP discovery FCoE end-devices and FCFs are automatically discovered. Initialization FCoE devices learn ENodes from the FLOGI and FDISC to allow immediate login and create a virtual link with an FCoE switch. Maintenance A valid virtual link between an FCoE device and an FCoE switch is maintained and the LOGO functions properly.
Dynamic ACL generation on the switch operating as a FIP snooping bridge function as follows: Port-based ACLs These ACLs are applied on all three port modes: on ports directly connected to an FCF, server-facing ENode ports, and bridge-to-bridge links. Port-based ACLs take precedence over global ACLs. FCoE-generated ACLs These take precedence over user-configured ACLs. A user-configured ACL entry cannot deny FCoE and FIP snooping frames.
• Perform FIP snooping (allowing and parsing FIP frames) globally on all VLANs or on a per-VLAN basis. • To assign a MAC address to an FCoE end-device (server ENode or storage device) after a server successfully logs in, set the FCoE MAC address prefix (FC-MAP) value an FCF uses. The FC-MAP value is used in the ACLs installed in bridge-to-bridge links on the switch.
Important Points to Remember • Enable DCBx on the switch before enabling the FIP Snooping feature. • To enable the feature on the switch, configure FIP Snooping. • To allow FIP frames to pass through the switch on all VLANs, enable FIP snooping globally on a switch. • A switch can support a maximum eight VLANs. Configure at least one FCF/bridge-to-bridge port mode interface for any FIP snooping-enabled VLAN. • You can configure multiple FCF-trusted interfaces in a VLAN.
If you disable FCoE transit, FIP and FCoE traffic are handled as normal Ethernet frames and no FIP snooping ACLs are generated. The VLAN-specific and FIP snooping configuration is disabled and stored until you re-enable FCoE transit and the configurations are re-applied. Enable FIP Snooping on VLANs You can enable FIP snooping globally on a switch on all VLANs or on a specified VLAN.
Table 27. Impact of Enabling FIP Snooping Impact Description MAC address learning MAC address learning is not performed on FIP and FCoE frames, which are denied by ACLs dynamically created by FIP snooping on server-facing ports in ENode mode. MTU auto-configuration MTU size is set to mini-jumbo (2500 bytes) when a port is in Switchport mode, the FIP snooping feature is enabled on the switch, and FIP snooping is enabled on all or individual VLANs.
5. Enable FIP snooping on all VLANs or on a specified VLAN. CONFIGURATION mode or VLAN INTERFACE mode. fip-snooping enable 6. Configure the port for bridge-to-FCF links. INTERFACE mode or CONFIGURATION mode fip-snooping port-mode fcf NOTE: To disable the FCoE transit feature or FIP snooping on VLANs, use the no version of a command; for example, no feature fip-snooping or no fip-snooping enable. Displaying FIP Snooping Information Use the following show commands to display information on FIP snooping.
aa:bb:cc:00:00:00 aa:bb:cc:00:00:00 Te 1/42 Te 1/42 FCoE MAC 0e:fc:00:01:00:01 0e:fc:00:01:00:02 0e:fc:00:01:00:03 0e:fc:00:01:00:04 0e:fc:00:01:00:05 FC-ID 01:00:01 01:00:02 01:00:03 01:00:04 01:00:05 aa:bb:cd:00:00:00 aa:bb:cd:00:00:00 Te 1/43 Te 1/43 Port WWPN 31:00:0e:fc:00:00:00:00 41:00:0e:fc:00:00:00:00 41:00:0e:fc:00:00:00:01 41:00:0e:fc:00:00:00:02 41:00:0e:fc:00:00:00:03 100 100 Port WWNN 21:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00 21:00:0e:fc:00:00:00:00 21:00:
The following example shows the show fip-snooping fcf command. Dell# show fip-snooping fcf FCF MAC FCF Interface VLAN FC-MAP FKA_ADV_PERIOD No. of Enodes ------------------- ---- ------------------- ------------54:7f:ee:37:34:40 Po 22 100 0e:fc:00 4000 2 The following table describes the show fip-snooping fcf command fields. Table 31. show fip-snooping fcf Command Description Field Description FCF MAC MAC address of the FCF.
Number Number Number Number Number Number Number Number Number Number of of of of of of of of of of FLOGI Accepts FLOGI Rejects FDISC Accepts FDISC Rejects FLOGO Accepts FLOGO Rejects CVL FCF Discovery Timeouts VN Port Session Timeouts Session failures due to Hardware Config :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 The following example shows the show fip-snooping statistics port-channel command.
Field Description Number of VN Port Keep Alives Number of FIP-snooped VN port keep-alive frames received on the interface. Number of Multicast Discovery Advertisements Number of FIP-snooped multicast discovery advertisements received on the interface. Number of Unicast Discovery Advertisements Number of FIP-snooped unicast discovery advertisements received on the interface. Number of FLOGI Accepts Number of FIP FLOGI accept frames received on the interface.
FCoE Transit Configuration Example The following illustration shows a switch used as a FIP snooping bridge for FCoE traffic between an ENode (server blade) and an FCF (ToR switch). The ToR switch operates as an FCF and FCoE gateway. Figure 44. Configuration Example: FIP Snooping on a Switch In this example, DCBx and PFC are enabled on the FIP snooping bridge and on the FCF ToR switch.
Example of Configuring the ENode Server-Facing Port Dell(conf)# interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)# portmode hybrid Dell(conf-if-te-1/1)# switchport Dell(conf-if-te-1/1)# protocol lldp Dell(conf-if-te-1/1-lldp)# dcbx port-role auto-downstream NOTE: A port is enabled by default for bridge-ENode links.
17 FIPS Cryptography Federal information processing standard (FIPS) cryptography provides cryptographic algorithms conforming to various FIPS standards published by the National Institute of Standards and Technology (NIST), a non-regulatory agency of the US Department of Commerce. FIPS mode is also validated for numerous platforms to meet the FIPS-140-2 standard for a software-based cryptographic module. This chapter describes how to enable FIPS cryptography requirements on Dell Networking platforms.
• • • All open SSH and Telnet sessions, as well as all SCP and FTP file transfers, are closed. Any existing host keys (both RSA and RSA1) are deleted from system memory and NVRAM storage. FIPS mode is enabled. – If you enable the SSH server when you enter the fips mode enable command, it is re-enabled for version 2 only. – If you re-enable the SSH server, a new RSA host key-pair is generated automatically. You can also manually create this keypair using the crypto key generate command.
Reload Type : normal-reload [Next boot : normal-reload] -- Unit 0 -Unit Type Status Next Boot Required Type Current Type Master priority Hardware Rev Num Ports Up Time Dell Networking Jumbo Capable POE Capable FIPS Mode Burned In MAC No Of MACs ... : Management Unit : online : online : S4810 - 52-port GE/TE/FG (SE) : S4810 - 52-port GE/TE/FG (SE) : 0 : 3.
Boot Selector Memory Size Serial Number Part Number Vendor Id Date Code Country Code Piece Part ID PPID Revision Service Tag Expr Svc Code Auto Reboot Last Restart Burned In MAC No Of MACs : : : : : : : : : : : : : : : 3.2.0.0a 3203928064 bytes Rev N/A N/A N/A N/A disabled powered-on 74:86:7a:ff:71:8c 3 -- Linecard 1 -Unit Type : Linecard Status : online Next Boot : online Required Type : Z9500LC12 - 12-port TE/FG (ZC) Hardware Rev : 1.
-- Power Supplies -Unit Bay Status Type FanStatus FanSpeed(rpm) Power Usage (W) ----------------------------------------------------------------------------0 0 up UNKNOWN up 3536 0.0 0 1 up UNKNOWN up 3504 0.0 0 2 up UNKNOWN up 3440 0.0 0 3 up UNKNOWN up 3440 0.0 Total power: 0.
18 Force10 Resilient Ring Protocol (FRRP) FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses. FRRP is similar to what can be achieved with the spanning tree protocol (STP), though even with optimizations, STP can take up to 50 seconds to converge (depending on the size of network and node of failure) and may require 4 to 5 seconds to reconverge.
Ring Checking At specified intervals, the Master node sends a ring health frame (RHF) through the ring. If the ring is complete, the frame is received on its secondary port and the Master node resets its fail-period timer and continues normal operation. If the Master node does not receive the RHF before the fail-period timer expires (a configurable timer), the Master node moves from the Normal state to the Ring-Fault state and unblocks its Secondary port.
Figure 45. Example of Multiple Rings Connected by Single Switch Important FRRP Points FRRP provides a convergence time that can generally range between 150ms and 1500ms for Layer 2 networks. The Master node originates a high-speed frame that circulates around the ring. This frame, appropriately, sets up or breaks down the ring. • The Master node transmits ring status check frames at specified intervals. • You can run multiple physical rings on the same switch.
Important FRRP Concepts The following table lists some important FRRP concepts. Concept Explanation Ring ID Each ring has a unique 8-bit ring ID through which the ring is identified (for example, FRRP 101 and FRRP 202, as shown in the illustration in Member VLAN Spanning Two Rings Connected by One Switch. Control VLAN Each ring has a unique Control VLAN through which tagged ring health frames (RHF) are sent. Control VLANs are used only for sending RHF, and cannot be used for any other purpose.
Implementing FRRP • FRRP is media and speed independent. • FRRP is a Dell proprietary protocol that does not interoperate with any other vendor. • You must disable the spanning tree protocol (STP) on both the Primary and Secondary interfaces before you can enable FRRP. • All ring ports must be Layer 2 ports. This is required for both Master and Transit nodes. • A VLAN configured as a control VLAN for a ring cannot be configured as a control or member VLAN for any other ring.
• Tag control VLAN ports. • All ports on the ring must use the same VLAN ID for the control VLAN. • You cannot configure a VLAN as both a control VLAN and member VLAN on the same ring. • Only two interfaces can be members of a control VLAN (the Master Primary and Secondary ports). • Member VLANs across multiple rings are not supported in Master nodes. To create the control VLAN for this FRRP group, use the following commands on the switch that is to act as the Master node. 1.
Configuring and Adding the Member VLANs Control and member VLANS are configured normally for Layer 2. Their status as Control or Member is determined at the FRRP group commands. For more information about configuring VLANS in Layer 2 mode, refer to the Layer 2 chapter. Be sure to follow these guidelines: • All VLANS must be in Layer 2 mode. • Tag control VLAN ports. Member VLAN ports, except the Primary/Secondary interface, can be tagged or untagged.
no disable Setting the FRRP Timers To set the FRRP timers, use the following command. NOTE: Set the Dead-Interval time 3 times the Hello-Interval. • Enter the desired intervals for Hello-Interval or Dead-Interval times. CONFIG-FRRP mode. timer {hello-interval|dead-interval} milliseconds – Hello-Interval: the range is from 50 to 2000, in increments of 50 (default is 500). – Dead-Interval: the range is from 50 to 6000, in increments of 50 (default is 1500).
Troubleshooting FRRP To troubleshoot FRRP, use the following information. Configuration Checks • • • • • Each Control Ring must use a unique VLAN ID. Only two interfaces on a switch can be Members of the same control VLAN. There can be only one Master node for any FRRP group. You can configure FRRP on Layer 2 interfaces only. Spanning Tree (if you enable it globally) must be disabled on both Primary and Secondary interfaces when you enable FRRP.
no shutdown ! interface Vlan 201 no ip address tagged TenGigabitEthernet 2/14,31 no shutdown ! protocol frrp 101 interface primary TenGigabitEthernet 2/14 secondary TenGigabitEthernet 2/31 control-vlan 101 member-vlan 201 mode transit no disable Example of R3 TRANSIT interface TenGigabitEthernet 3/14 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/21 no ip address switchport no shutdown ! interface Vlan 101 no ip address tagged TenGigabitEthernet 3/14,21 no shutdown ! interface Vlan 20
19 GARP VLAN Registration Protocol (GVRP) The generic attribute registration protocol (GARP) VLAN registration protocol (GVRP), defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches. GVRP-compliant switches use GARP to register and de-register attribute values, such as VLAN IDs, with each other.
Configure GVRP To begin, enable GVRP. To facilitate GVRP communications, enable GVRP globally on each switch. Then, GVRP configuration is per interface on a switch-byswitch basis. Enable GVRP on each port that connects to a switch where you want GVRP information exchanged. In the following example, GVRP is configured on VLAN trunk ports. Figure 46. Global GVRP Configuration Example Basic GVRP configuration is a two-step process: 1. Enabling GVRP Globally 2.
CONFIGURATION mode gvrp enable Example of Configuring GVRP Dell(conf)#protocol gvrp Dell(config-gvrp)#no disable Dell(config-gvrp)#show config ! protocol gvrp no disable Dell(config-gvrp)# To inspect the global configuration, use the show gvrp brief command. Enabling GVRP on a Layer 2 Interface To enable GVRP on a Layer 2 interface, use the following command. • Enable GVRP on a Layer 2 interface.
! interface TenGigabitEthernet 1/21 no ip address switchport gvrp enable gvrp registration fixed 34-35 gvrp registration forbidden 45-46 no shutdown Dell(conf-if-te-1/21)# Configure a GARP Timer Set GARP timers to the same values on all devices that are exchanging information using GVRP. There are three GARP timer settings. • Join — A GARP device reliably transmits Join messages to other devices by sending each Join message two times.
20 High Availability (HA) High availability (HA) is supported on Dell Networking OS. HA is a collection of features that preserves system continuity by maximizing uptime and minimizing packet loss during system disruptions. To support all the features within the HA collection, you should have the latest boot code. The following table lists the boot code requirements as of this Dell Networking OS release. Table 33. Boot Code Requirements Component Boot Code S4820T 1 2.0.
Boot the Chassis with Dual RPMs When you boot the system with two RPMs installed, the RPM in slot R0 is the primary RPM by default. Both RPMs must be running the same version of Dell Networking OS. To configure either RPM to be the primary after the next chassis reboot, use the redundancy primary command from CONFIGURATION mode. Version Compatibility Between RPMs In general, the two RPMs should have the same Dell Networking OS version.
Automatic and Manual Stack Unit Failover Stack unit failover is the process of the standby unit becoming a management unit. Dell Networking OS fails over to the standby stack unit when: 1. Communication is lost between the standby and primary stack unit. 2. You request a failover via the CLI. To display the reason for the last failover, use the show redundancy command from EXEC Privilege mode.
Platform Failover Type Failover Behavior running configuration is synchronized at runtime so it does not need to be reapplied during failover. Synchronization between Management and Standby Units Data between the Management and Standby units is synchronized immediately after bootup. After the Management and Standby units have done an initial full synchronization (block sync), Dell Networking OS only updates changed data (incremental sync).
CONFIGURATION mode redundancy auto-failover-limit • Re-Enable the auto-failover-limit with its default parameters. CONFIGURATION mode redundancy auto-failover-limit (no parameters) Disabling Auto-Reboot To disable auto-reboot, use the following command. • Prevent a failed stack unit from rebooting after a failover.
Linecard Online Insertion and Removal Dell Networking OS detects the line card type when you insert a line card into a online chassis. Dell Networking OS writes the line card type to the running-config and maintains this information as a logical configuration if you remove the card (or the card fails).
Removing a Provisioned Logical Stack Unit To remove the line card configuration, use the following command. • To remove a logical stack-unit configuration, use the following command: CONFIGURATION mode no stack-unit unit_id provision Hitless Behavior Hitless is a protocol-based system behavior that makes a stack unit failover on the local system transparent to remote systems.
System Health Monitoring Dell Networking OS also monitors the overall health of the system. Key parameters such as CPU utilization, free memory, and error counters (for example, CRC failures and packet loss) are measured, and after exceeding a threshold can be used to initiate recovery mechanism. Failure and Event Logging Dell Networking systems provide multiple options for logging failures and events. Trace Log Developers interlace messages with software code to track the execution of a program.
Process Restartability Process restartability is an extension to the Dell Networking OS high availability system component that enables application processes and system protocol tasks to be restarted. This extension increases system reliability and uptime by attempting to restart the crashed process on primary RPM before executing the failover procedure as a last resort. Currently, if a software exception occurs, Dell Networking OS executes a failover procedure.
21 Internet Group Management Protocol (IGMP) Internet group management protocol (IGMP) is a Layer 3 multicast protocol that hosts use to join or leave a multicast group. Multicast is premised on identifying many hosts by a single destination IP address; hosts represented by the same IP address are a multicast group. Multicast routing protocols (such as protocol-independent multicast [PIM]) use the information in IGMP messages to discover which groups are active and to populate the multicast routing table.
Figure 47. IGMP Messages in IP Packets Join a Multicast Group There are two ways that a host may join a multicast group: it may respond to a general query from its querier or it may send an unsolicited report to its querier. Responding to an IGMP Query The following describes how a host can join a multicast group. 1. One router on a subnet is elected as the querier. The querier periodically multicasts (to all-multicast-systems address 224.0.0.1) a general query to all hosts on the subnet. 2.
• To enable filtering, routers must keep track of more state information, that is, the list of sources that must be filtered. An additional query type, the Group-and-Source-Specific Query, keeps track of state changes, while the Group-Specific and General queries still refresh the existing state.
3. The host’s third message indicates that it is only interested in traffic from sources 10.11.1.1 and 10.11.1.2. Because this request again prevents all other sources from reaching the subnet, the router sends another group-and-source query so that it can satisfy all other hosts. There are no other interested hosts so the request is recorded. Figure 50.
Figure 51. Membership Queries: Leaving and Staying Configure IGMP Configuring IGMP is a two-step process. 1. Enable multicast routing using the ip multicast-routing command. 2. Enable a multicast routing protocol.
Viewing IGMP Enabled Interfaces Interfaces that are enabled with PIM-SM are automatically enabled with IGMP. To view IGMP-enabled interfaces, use the following command. • View IGMP-enabled interfaces. EXEC Privilege mode show ip igmp interface Example of the show ip igmp interface Command Dell#show ip igmp interface TenGigabitEthernet 3/10 Inbound IGMP access group is not set Internet address is 165.87.34.
EXEC Privilege mode show ip igmp groups Example of the show ip igmp groups Command Dell# show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface 225.1.1.1 TenGigabitEthernet 1/1 225.1.2.1 TenGigabitEthernet 1/1 Mode IGMPV2 IGMPV2 Uptime 00:11:19 00:10:19 Expires 00:01:50 00:01:50 Last Reporter 165.87.34.100 165.87.31.100 Adjusting Timers The following sections describe viewing and adjusting timers.
Enabling IGMP Immediate-Leave If the querier does not receive a response to a group-specific or group-and-source query, it sends another (querier robustness value). Then, after no response, it removes the group from the outgoing interface for the subnet. IGMP immediate leave reduces leave latency by enabling a router to immediately delete the group membership on an interface after receiving a Leave message (it does not send any group-specific or group-and-source queries before deleting the entry).
Related Configuration Tasks • Removing a Group-Port Association • Disabling Multicast Flooding • Specifying a Port as Connected to a Multicast Router • Configuring the Switch as Querier Example of ip igmp snooping enable Command Dell(conf)#ip igmp snooping enable Dell(conf)#do show running-config igmp ip igmp snooping enable Dell(conf)# Removing a Group-Port Association To configure or view the remove a group-port association feature, use the following commands.
show ip igmp snooping mrouter Configuring the Switch as Querier To configure the switch as a querier, use the following command. Hosts that do not support unsolicited reporting wait for a general query before sending a membership report. When the multicast source and receivers are in the same VLAN, multicast traffic is not routed and so there is no querier. Configure the switch to be the querier for a VLAN so that hosts send membership reports and the switch can generate a forwarding table by snooping.
• Received in the front-end port with destination IP equal to management port IP address or management port subnet broadcast address is dropped. • Received in the management port with destination IP not equal to management IP address or management subnet broadcast address is dropped. Traffic (switch initiated management traffic or responses to switch-destined traffic with management port IP address as the source IP address) for user-specified management protocols must exit out of the management port.
If you configure a source interface is for any EIS management application, EIS might not coexist with that interface and the behavior is undefined in such a case. You can configure the source interface for the following applications: FTP, ICMP (ping and traceroute utilities), NTP, RADIUS, TACACS, Telnet, TFTP, syslog, and SNMP traps. Out of these applications, EIS can coexist with only syslog and SNMP traps because these applications do not require a response after a packet is sent.
Handling of Management Route Configuration When the EIS feature is enabled, the following processing occurs: • All existing management routes (connected, static and default) are duplicated and added to the management EIS routing table. • Any management static route newly added using the management route CLI is installed to both the management EIS routing table and default routing table.
• Because fallback support is removed, if the management port is down or the route lookup in EIS table fails packets are dropped. Therefore, switch-initiated traffic sessions that used to work previously via fallback may not work now. Handling of Switch-Destined Traffic • The switch processes all traffic received on the management port destined to the management port IP address or the front-end port destined to the front-end IP address.
Table 37. Mapping of Management Applications and Traffic Type Traffic type / Application type Switch initiated traffic Switch-destined traffic Transit Traffic EIS Management Application Management is the preferred egress port selected based on route lookup in EIS table. If the management port is down or the route lookup fails, packets are dropped.
Behavior of Various Applications for Switch-Initiated Traffic This section describes the different system behaviors that occur when traffic is originating from the switch: EIS Behavior: If the destination TCP/UDP port matches a configured management application, a route lookup is done in the EIS table and the management port gets selected as the egress port. If management port is down or the route lookup fails, packets are dropped. EIS Behavior for ICMP: ICMP packets do not have TCP/UDP ports.
EIS behavior for ICMP: ICMP packets do not have TCP/UDP ports. In this case, to perform an EIS route lookup for ICMP-based applications (ping and traceroute), you must configure ICMP as a management application. If the management port is down or the route lookup fails, packets are dropped. If source IP address does not match the management port IP address route lookup is done in the default routing table.
Designating a Multicast Router Interface To designate an interface as a multicast router interface, use the following command. Dell Networking OS also has the capability of listening in on the incoming IGMP general queries and designate those interfaces as the multicast router interface when the frames have a non-zero IP source address. All IGMP control packets and IP multicast data traffic originating from receivers is forwarded to multicast router interfaces.
22 Interfaces This chapter describes interface types, both physical and logical, and how to configure them with Dell Networking Operating System (OS). • The system supports 10 Gigabit Ethernet and 40 Gigabit Ethernet interfaces. NOTE: Only Dell-qualified optics are supported on these interfaces. Non-Dell optics are set to error-disabled state by default.
Interface Types The following table describes different interface types. Table 40.
Input Statistics: 0 packets, 0 bytes 0 Vlans 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 0 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics: 3 packets, 192 bytes, 0 underruns 3 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 0 Multicasts, 3 Broadcasts, 0 Unicasts 0 Vlans, 0 throttles, 0 discarded, 0 co
Resetting an Interface to its Factory Default State You can reset the configurations applied on an interface to its factory default state. To reset the configuration, perform the following steps: 1. View the configurations applied on an interface. INTERFACE mode show config Dell(conf-if-te-1/5)#show config ! interface TenGigabitEthernet 1/5 no ip address portmode hybrid switchport rate-interval 8 mac learning-limit 10 no-station-move no shutdown 2. Reset an interface to its factory default state.
Physical Interfaces The Management Ethernet interface is a single RJ-45 Fast Ethernet port on a switch. The interface provides dedicated management access to the system. Stack-unit interfaces support Layer 2 and Layer 3 traffic over the 10-Gigabit Ethernet and 40-Gigabit Ethernet, 25–Gigabit Ethernet, 40–Gigabit Ethernet, 50–Gigabit Ethernet, and 100–Gigabit Ethernet interfaces. These interfaces can also become part of virtual interfaces such as virtual local area networks (VLANs) or port channels.
Configuring Layer 2 (Data Link) Mode Do not configure switching or Layer 2 protocols such as spanning tree protocol (STP) on an interface unless the interface has been set to Layer 2 mode. To set Layer 2 data transmissions through an individual interface, use the following command. • Enable Layer 2 data transmissions through an individual interface.
interface TenGigabitEthernet 1/2 no ip address switchport no shutdown Dell(conf-if)#ip address 10.10.1.1 /24 % Error: Port is in Layer 2 mode Te 1/2. Dell(conf-if)# To determine the configuration of an interface, use the show config command in INTERFACE mode or the various show interface commands in EXEC mode. Configuring Layer 3 (Interface) Mode To assign an IP address, use the following commands. • Enable the interface.
Important Points to Remember • Deleting a management route removes the route from both the EIS routing table and the default routing table. • If the management port is down or route lookup fails in the management EIS routing table, the outgoing interface is selected based on route lookup from the default routing table. • If a route in the EIS table conflicts with a front-end port route, the front-end port route has precedence.
Viewing Two Global IPv6 Addresses Important Points to Remember — virtual-ip You can configure two global IPv6 addresses on the system in EXEC Privilege mode. To view the addresses, use the show interface managementethernet command, as shown in the following example. If you try to configure a third IPv6 address, an error message displays. If you enable auto-configuration, all IPv6 addresses on that management interface are auto-configured.
• Primary and secondary management interface IP and virtual IP must be in the same subnet. To view the Primary RPM Management port, use the show interface Managementethernet command in EXEC Privilege mode. If there are two RPMs, you cannot view information on that interface. Configuring a Management Interface on an Ethernet Port You can manage the system through any port using remote access such as Telnet. To configure an IP address for the port, use the following commands.
NOTE: You cannot simultaneously use egress rate shaping and ingress rate policing on the same VLAN. Dell Networking OS supports Inter-VLAN routing (Layer 3 routing in VLANs). You can add IP addresses to VLANs and use them in routing protocols in the same manner that physical interfaces are used. For more information about configuring different routing protocols, refer to the chapters on the specific protocol.
Null Interfaces The Null interface is another virtual interface. There is only one Null interface. It is always up, but no traffic is transmitted through this interface. To enter INTERFACE mode of the Null interface, use the following command. • Enter INTERFACE mode of the Null interface. CONFIGURATION mode interface null 0 The only configurable command in INTERFACE mode of the Null interface is the ip unreachable command.
Member ports of a LAG are added and programmed into the hardware in a predictable order based on the port ID, instead of in the order in which the ports come up. With this implementation, load balancing yields predictable results across line card resets and chassis reloads. A physical interface can belong to only one port channel at a time. Each port channel must contain interfaces of the same interface type/speed. Port channels can contain a mix of 1G/10G/40G.
After you enable the port channel, you can place it in Layer 2 or Layer 3 mode. To place the port channel in Layer 2 mode or configure an IP address to place the port channel in Layer 3 mode, use the switchport command. You can configure a port channel as you would a physical interface by enabling or configuring protocols or assigning access control lists.
The following example shows the port channel’s mode (L2 for Layer 2 and L3 for Layer 3 and L2L3 for a Layer 2-port channel assigned to a routed VLAN), the status, and the number of interfaces belonging to the port channel. Dell>show interface port-channel 20 Port-channel 20 is up, line protocol is up Hardware address is 00:01:e8:01:46:fa Internet address is 1.1.120.
INTERFACE PORT-CHANNEL mode interface port-channel id number 3. Add the interface to the second port channel. INTERFACE PORT-CHANNEL mode channel-member interface Example of Moving an Interface to a New Port Channel The following example shows moving the TenGigabitEthernet 1/8 interface from port channel 4 to port channel 3.
untagged port-channel id number • An interface without tagging enabled can belong to only one VLAN. Remove the port channel with tagging enabled from the VLAN. INTERFACE VLAN mode no tagged port-channel id number or no untagged port-channel id number • Identify which port channels are members of VLANs. EXEC Privilege mode show vlan Configuring VLAN Tags for Member Interfaces To configure and verify VLAN tags for individual members of a port channel, perform the following: 1.
– secondary: the IP address is the interface’s backup IP address. You can configure up to eight secondary IP addresses. Deleting or Disabling a Port Channel To delete or disable a port channel, use the following commands. • Delete a port channel. CONFIGURATION mode • no interface portchannel channel-number Disable a port channel. shutdown When you disable a port channel, all interfaces within the port channel are operationally down also.
The hash-algorithm command is specific to ECMP group. The default ECMP hash configuration is crc-lower. This command takes the lower 32 bits of the hash key to compute the egress port.
Bulk Configuration Examples Use the interface range command for bulk configuration. • Create a Single-Range • Create a Multiple-Range • Exclude Duplicate Entries • Exclude a Smaller Port Range • Overlap Port Ranges • Commas • Add Ranges Create a Single-Range The following is an example of a single range.
Commas The following is an example of how to use commas to add different interface types to the range, enabling TenGigabitEthernet interfaces in the range 5/1 to 5/23 and both Ten Gigabit Ethernet interfaces 1/1 and 1/2.
• View the interface’s statistics. EXEC Privilege mode Enter the type of interface and slot/port information: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Example of the monitor interface Command The information displays in a continuous run, refreshing every 2 seconds by default. To manage the output, use the following keys.
TDR is useful for troubleshooting an interface that is not establishing a link; that is, when the link is flapping or not coming up. TDR is not intended to be used on an interface that is passing traffic. When a TDR test is run on a physical cable, it is important to shut down the port on the far end of the cable. Otherwise, it may lead to incorrect test results. NOTE: TDR is an intrusive test. Do not run TDR on a link that is up and passing traffic.
Converting a QSFP or QSFP+ Port to an SFP or SFP+ Port You can convert a QSFP or QSFP+ port to an SFP or SFP+ port using the Quad to Small Form Factor Pluggable Adapter (QSA). QSA provides smooth connectivity between devices that use Quad Lane Ports (such as the 40 Gigabit Ethernet adapters) and 10 Gigabit hardware that uses SFP+ based cabling. Using this adapter, you can effectively use a QSFP or QSFP+ module to connect to a lower-end switch or server that uses an SFP or SFP+ based module.
• QSFP port 4 is connected to a QSA with SFP optical cables plugged in. • QSFP port 8 in fanned-out mode is plugged in with QSFP optical cables. • QSFP port 12 in 40 G mode is plugged in with QSFP optical cables.
SFP 0 Voltage High Alarm threshold SFP 0 Bias High Alarm threshold = 0.000V = 0.000mA NOTE: In the following show interfaces tengigbitethernet transceiver commands, the ports 5,6, and 7 are inactive and no physical SFP or SFP+ connection actually exists on these ports. However, Dell Networking OS still perceives these ports as valid and the output shows that pluggable media (optical cables) is inserted into these ports. This is a software limitation for this release.
QSFP 0 Voltage High Alarm threshold = 0.000V QSFP 0 Bias High Alarm threshold = 0.
Pluggable media present, SFP type is 1GBASE …………………… LineSpeed 1000 Mbit Dell#show interfaces tengigabitethernet 0/8 TenGigabitEthernet 0/0 is up, line protocol is up Hardware is DellEth, address is 90:b1:1c:f4:9a:fa Current address is 90:b1:1c:f4:9a:fa Pluggable media present, QSFP type is 4x10GBASE-CR1-3M ……..
Enabling Link Dampening To enable link dampening, use the following command. • Enable link dampening. INTERFACE mode dampening Examples of the show interfaces dampening Commands To view the link dampening configuration on an interface, use the show config command. R1(conf-if-te-1/1)#show config ! interface TenGigabitEthernet 1/1 ip address 10.10.19.
Configure MTU Size on an Interface In Dell Networking OS, Maximum Transmission Unit (MTU) is defined as the entire Ethernet packet (Ethernet header + FCS + payload). The link MTU is the frame size of a packet, and the IP MTU size is used for IP fragmentation. If the system determines that the IP packet must be fragmented as it leaves the interface, Dell Networking OS divides the packet into fragments no bigger than the size set in the ip mtu command.
If a port is over-subscribed, Ethernet Pause Frame flow control does not ensure no-loss behavior. Restriction: Ethernet Pause Frame flow control is not supported if PFC is enabled on an interface. Control how the system responds to and generates 802.3x pause frames on Ethernet interfaces. The default is rx off tx off. INTERFACE mode. flowcontrol rx [off | on] tx [off | on] Where: rx on: Processes the received flow control frames on this port. rx off: Ignores the received flow control frames on this port.
Configure the MTU Size on an Interface If a packet includes a Layer 2 header, the difference in bytes between the link MTU and IP MTU must be enough to include the Layer 2 header. For example, for VLAN packets, if the IP MTU is 1400, the Link MTU must be no less than 1422: 1400-byte IP MTU + 22-byte VLAN Tag = 1422-byte link MTU The following table lists the various Layer 2 overheads found in Dell Networking OS and the number of bytes.
NOTE: When you use a copper SFP2 module with catalog number GP-SFP2-1T in the S25P model, you can manually set its speed with the speed command. When the speed is set to 10Mbps or 100Mbps, you can use the duplex command. The local interface and the directly connected remote interface must have the same setting, and auto-negotiation is the easiest way to accomplish that, as long as the remote interface is capable of auto-negotiation.
Example of the show interfaces status Command to View Link Status NOTE: The show interfaces status command displays link status, but not administrative status. For both link and administrative status, use the show ip interface [interface | brief | linecard slot-number] [configuration] command.
Adjusting the Keepalive Timer To change the time interval between keepalive messages on the interfaces, use the keepalive command. The interface sends keepalive messages to itself to test network connectivity on the interface. To change the default time interval between keepalive messages, use the following command. • Change the default interval between keepalive messages. INTERFACE mode keepalive [seconds] • View the new setting.
Configuring the Interface Sampling Size Although you can enter any value between 30 and 299 seconds (the default), software polling is done once every 15 seconds. So, for example, if you enter “19”, you actually get a sample of the past 15 seconds. All LAG members inherit the rate interval configuration from the LAG. The following example shows how to configure rate interval when changing the default value.
Output 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate Time since last interface status change: 1d23h42m Dynamic Counters By default, counting is enabled for IPFLOW, IPACL, L2ACL, L2FIB. For the remaining applications, Dell Networking OS automatically turns on counting when you enable the application, and is turned off when you disable the application. NOTE: If you enable more than four counter-dependent applications on a port pipe, there is an impact on line rate performance.
Example of the clear counters Command When you enter this command, confirm that you want Dell Networking OS to clear the interface counters for that interface. Dell#clear counters te 1/1 Clear counters on TenGigabitEthernet 1/1 [confirm] Dell# Compressing Configuration Files The functionality to optimize and reduce the sizes of the configuration files is supported on the device. You can compress the running configuration by grouping all the VLANs and the physical interfaces with the same property.
interface TenGigabitEthernet 1/2 no ip address shutdown ! interface TenGigabitEthernet 1/3 no ip address shutdown ! interface TenGigabitEthernet 1/4 no ip address shutdown ! interface TenGigabitEthernet 1/10 no ip address shutdown ! interface TenGigabitEthernet 1/34 ip address 2.1.1.
shutdown ! interface Vlan 5 tagged te 1/1 no ip address shutdown ! interface Vlan 100 no ip address no shutdown ! interface Vlan 1000 ip address 1.1.1.1/16 no shutdown Uncompressed config size – 52 lines write memory compressed The write memory compressed CLI will write the operating configuration to the startup-config file in the compressed mode. In stacking scenario, it will also take care of syncing it to all the standby and member units.
23 Internet Protocol Security (IPSec) Internet protocol security (IPSec) is an end-to-end security scheme for protecting IP communications by authenticating and encrypting all packets in a communication session. Use IPSec between hosts, between gateways, or between hosts and gateways. IPSec is compatible with Telnet and FTP protocols. It supports two operational modes: Transport and Tunnel. • Transport mode — (default) Use to encrypt only the payload of the packet. Routing information is unchanged.
CONFIGURATION mode crypto ipsec policy myCryptoPolicy 10 ipsec-manual transform-set myXform-set session-key inbound esp 256 auth  encrypt  session-key outbound esp 257 auth  encrypt  match 0 tcp a::1 /128 0 a::2 /128 23 match 1 tcp a::1 /128 23 a::2 /128 0 match 2 tcp a::1 /128 0 a::2 /128 21 match 3 tcp a::1 /128 21 a::2 /128 0 match 4 tcp 1.1.1.1 /32 0 1.1.1.2 /32 23 match 5 tcp 1.1.1.1 /32 23 1.1.1.2 /32 0 match 6 tcp 1.1.1.1 /32 0 1.1.1.2 /32 21 match 7 tcp 1.1.1.1 /32 21 1.1.1.
24 IPv4 Routing The Dell Networking Operating System (OS) supports various IP addressing features. This chapter describes the basics of domain name service (DNS), address resolution protocol (ARP), and routing principles and their implementation in the Dell Networking OS.
Assigning IP Addresses to an Interface Assign primary and secondary IP addresses to physical or logical (for example, [virtual local area network [VLAN] or port channel) interfaces to enable IP communication between the system and hosts connected to that interface. You can assign one primary address and up to 255 secondary IP addresses to each interface. 1. Enter the keyword interface then the type of interface and slot/port information. CONFIGURATION mode interface slot/port 2.
Use the following required and optional parameters: – vrf vrf-name : use the VRF option after the ip route keyword to configure a static route on that particular VRF, use the VRF option after the next hop to specify which VRF the next hop belongs to. This will be used in route leaking cases. NOTE: For more information on route leaking, see the Route Leaking Between VRFs section. – ip-address: enter an address in dotted decimal format (A.B.C.D). – mask: enter a mask in slash prefix-length format (/X).
• Assign a static route to point to the management interface or forwarding router. CONFIGURATION mode management route ip-address mask {forwarding-router-address | ManagementEthernet slot/ port} Example of the show ip management-route Command To view the configured static routes for the management port, use the show ip management-route command in EXEC privilege mode. Dell#show ip management-route Destination ----------10.16.0.0/16 172.16.1.0/24 Gateway ------ManagementEthernet 1/1 10.16.151.
Configure the source to send the configured source interface IP address instead of using its front-end IP address in the ICMP unreachable messages and in the traceroute command output. Use the ip icmp source-interface interface or the ipv6 icmp source-interface interface commands in Configuration mode to enable the ICMP error messages to be sent with the source interface IP address. This functionality is supported on loopback, VLAN, port channel, and physical interfaces for IPv4 and IPv6 messages.
The following sections describe DNS and the resolution of host names. • Enabling Dynamic Resolution of Host Names • Specifying the Local System Domain and a List of Domains • Configuring DNS with Traceroute Name server, Domain name, and Domain list are VRF specific. The maximum number of Name servers and Domain lists per VRF is six. Enabling Dynamic Resolution of Host Names By default, dynamic resolution of host names (DNS) is disabled. To enable DNS, use the following commands.
ip domain-list name Configure this command up to six times to specify a list of possible domain names. Dell Networking OS searches the domain names in the order they were configured until a match is found or the list is exhausted. Configuring DNS with Traceroute To configure your switch to perform DNS with traceroute, use the following commands. • Enable dynamic resolution of host names. CONFIGURATION mode ip domain-lookup • Specify up to six name servers.
For more information about Proxy ARP, refer to RFC 925, Multi-LAN Address Resolution, and RFC 1027, Using ARP to Implement Transparent Subnet Gateways. Configuration Tasks for ARP For a complete listing of all ARP-related commands, refer to the Dell Networking OS Command Line Reference Guide.
To view if Proxy ARP is enabled on the interface, use the show config command in INTERFACE mode. If it is not listed in the show config command output, it is enabled. Only non-default information is displayed in the show config command output. Clearing ARP Cache To clear the ARP cache of dynamically learnt ARP information, use the following command. • Clear the ARP caches for all interfaces or for a specific interface by entering the following information.
Figure 52. ARP Learning via ARP Request Beginning with Dell Networking OS version 8.3.1.0, when you enable ARP learning via gratuitous ARP, the system installs a new ARP entry, or updates an existing entry for all received ARP requests. Figure 53. ARP Learning via ARP Request with ARP Learning via Gratuitous ARP Enabled Whether you enable or disable ARP learning via gratuitous ARP, the system does not look up the target IP.
The default is 30. • The range is from 1 to 3600. Display all ARP entries learned via gratuitous ARP. EXEC Privilege mode show arp retries ICMP For diagnostics, the internet control message protocol (ICMP) provides routing information to end stations by choosing the best route (ICMP redirect messages) or determining if a router is reachable (ICMP Echo or Echo Reply). ICMP error messages inform the router of problems in a particular packet. These messages are sent only on unicast traffic.
• The broadcast traffic rate should not exceed 200 packets per second when you enable UDP helper. • You may specify a maximum of 16 UDP ports. • UDP helper is compatible with IP helper (ip helper-address): – UDP broadcast traffic with port number 67 or 68 are unicast to the dynamic host configuration protocol (DHCP) server per the ip helper-address configuration whether or not the UDP port list contains those ports.
Queueing strategy: fifo Input Statistics: 0 packets, 0 bytes Time since last interface status change: 00:07:44 Configurations Using UDP Helper When you enable UDP helper and the destination IP address of an incoming packet is a broadcast address, Dell Networking OS suppresses the destination address of the packet. The following sections describe various configurations that employ UDP helper to direct broadcasts.
UDP Helper with Subnet Broadcast Addresses When the destination IP address of an incoming packet matches the subnet broadcast address of any interface, the system changes the address to the configured broadcast address and sends it to matching interface. In the following illustration, Packet 1 has the destination IP address 1.1.1.255, which matches the subnet broadcast address of VLAN 101.
UDP Helper with No Configured Broadcast Addresses The following describes UDP helper with no broadcast addresses configured. • If the incoming packet has a broadcast destination IP address, the unaltered packet is routed to all Layer 3 interfaces. • If the Incoming packet has a destination IP address that matches the subnet broadcast address of any interface, the unaltered packet is routed to the matching interfaces.
25 IPv6 Routing Internet protocol version 6 (IPv6) routing is the successor to IPv4. Due to the rapid growth in internet users and IP addresses, IPv4 is reaching its maximum usage. IPv6 will eventually replace IPv4 usage to allow for the constant expansion. This chapter provides a brief description of the differences between IPv4 and IPv6, and the Dell Networking support of IPv6. This chapter is not intended to be a comprehensive description of IPv6.
Dell Networking OS manipulation of IPv6 stateless autoconfiguration supports the router side only. Neighbor discovery (ND) messages are advertised so the neighbor can use this information to auto-configure its address. However, received ND messages are not used to create an IPv6 address. NOTE: Inconsistencies in router advertisement values between routers are logged per RFC 4861.
Version (4 bits) The Version field always contains the number 6, referring to the packet’s IP version. Traffic Class (8 bits) The Traffic Class field deals with any data that needs special handling. These bits define the packet priority and are defined by the packet Source. Sending and forwarding routers use this field to identify different IPv6 classes and priorities. Routers understand the priority settings and handle them appropriately during conditions of congestion.
Hop Limit (8 bits) The Hop Limit field shows the number of hops remaining for packet processing. In IPv4, this is known as the Time to Live (TTL) field and uses seconds rather than hops. Each time the packet moves through a forwarding router, this field decrements by 1. If a router receives a packet with a Hop Limit of 1, it decrements it to 0 (zero). The router discards the packet and sends an ICMPv6 message back to the sending router indicating that the Hop Limit was exceeded in transit.
10 Discard the packet and send an ICMP Parameter Problem Code 2 message to the packet’s Source IP Address identifying the unknown option type. 11 Discard the packet and send an ICMP Parameter Problem, Code 2 message to the packet’s Source IP Address only if the Destination IP Address is not a multicast address. The second byte contains the Option Data Length. The third byte specifies whether the information can change en route to the destination.
In IPv6, every interface, whether using static or dynamic address assignments, also receives a local-link address automatically in the fe80::/64 subnet. Implementing IPv6 with Dell Networking OS Dell Networking OS supports both IPv4 and IPv6 and both may be used simultaneously in your system. The following table lists the Dell Networking OS version in which an IPv6 feature became available for each platform. The sections following the table give greater detail about the feature. Table 44.
Feature and Functionality Dell Networking OS Release Introduction Documentation and Chapter Location S4820T IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. ISIS for IPv6 support for distribute lists and administrative distance 8.3.19 OSPF for IPv6 (OSPFv3) 9.1(0.0) Equal Cost Multipath for IPv6 8.3.19 Intermediate System to Intermediate System IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. OSPFv3 in the Dell Networking OS Command Line Reference Guide.
• • Error reporting messages indicate when the forwarding or delivery of the packet failed at the destination or intermediate node. These messages include Destination Unreachable, Packet Too Big, Time Exceeded and Parameter Problem messages. Informational messages provide diagnostic functions and additional host functions, such as Neighbor Discovery and Multicast Listener Discovery. These messages also include Echo Request and Echo Reply messages.
Figure 59. NDP Router Redirect IPv6 Neighbor Discovery of MTU Packets You can set the MTU advertised through the RA packets to incoming routers, without altering the actual MTU setting on the interface. The ipv6 nd mtu command sets the value advertised to routers. It does not set the actual MTU rate. For example, if you set ipv6 nd mtu to 1280, the interface still passes 1500-byte packets, if that is what is set with the mtu command.
• multicast addresses • invalid host addresses If you specify this information in the IPv6 RDNSS configuration, a DNS error is displayed. Example for Configuring an IPv6 Recursive DNS Server The following example configures a RDNNS server with an IPv6 address of 1000::1 and a lifetime of 1 second.
ff02::1 ff02::2 ff02::1:ff00:12 ff02::1:ff8b:7570 ND MTU is 0 ICMP redirects are not sent DAD is enabled, number of DAD attempts: 3 ND reachable time is 20120 milliseconds ND base reachable time is 30000 milliseconds ND advertised reachable time is 0 milliseconds ND advertised retransmit interval is 0 milliseconds ND router advertisements are sent every 198 to 600 seconds ND router advertisements live for 1800 seconds ND advertised hop limit is 64 IPv6 hop limit for originated packets is 64 ND dns-server ad
The default option sets the CAM Profile as follows: • L3 ACL (ipv4acl): 6 • L2 ACL(l2acl): 5 • IPv6 L3 ACL (ipv6acl): 0 • L3 QoS (ipv4qos): 1 • L2 QoS (l2qos): 1 To have the changes take effect, save the new CAM settings to the startup-config (write-mem or copy run start) then reload the system for the new settings. • Allocate space for IPV6 ACLs. Enter the CAM profile name then the allocated amount.
Assigning a Static IPv6 Route To configure IPv6 static routes, use the ipv6 route command. NOTE: After you configure a static IPv6 route (the ipv6 route command) and configure the forwarding router’s address (specified in the ipv6 route command) on a neighbor’s interface, the IPv6 neighbor does not display in the show ipv6 route command output. • Set up IPv6 static routes. CONFIGURATION mode ipv6 route [vrf vrf-name] prefix type {slot/port} forwarding router tag – vrf vrf-name:(OPTIONAL) name of the VRF.
• snmp-server community access-list-name ipv6 • snmp-server group ipv6 • snmp-server group access-list-name ipv6 Displaying IPv6 Information View specific IPv6 configuration with the following commands. • List the IPv6 show options.
Valid lifetime: 2592000, Preferred lifetime: 604800 Advertised by: fe80::201:e8ff:fe8b:3166 412::/64 onlink autoconfig Valid lifetime: 2592000, Preferred lifetime: 604800 Advertised by: fe80::201:e8ff:fe8b:3166 Global Anycast address(es): Joined Group address(es): ff02::1 ff02::1:ff8b:386e ND MTU is 0 ICMP redirects are not sent DAD is enabled, number of DAD attempts: 3 ND reachable time is 32000 milliseconds ND base reachable time is 30000 milliseconds ND retransmit interval is 1000 milliseconds ND hop lim
Gateway of last resort is not set Destination Dist/Metric, Gateway, Last Change ----------------------------------------------------C 600::/64 [0/0] Direct, Te 1/24, 00:34:42 C 601::/64 [0/0] Direct, Te 1/24, 00:34:18 C 912::/64 [0/0] Direct, Lo 2, 00:02:33 O IA 999::1/128 [110/2] via fe80::201:e8ff:fe8b:3166, Te 1/24, 00:01:30 L fe80::/10 [0/0] Direct, Nu 0, 00:34:42 Dell# The following example shows the show ipv6 route static command.
– mask: the prefix length is from 0 to 128. NOTE: IPv6 addresses are normally written as eight groups of four hexadecimal digits, where each group is separated by a colon (:). Omitting zeros is accepted as described in Addressing. Configuring IPv6 RA Guard The IPv6 Router Advertisement (RA) guard allows you to block or reject the unwanted router advertisement guard messages that arrive at the network device platform. To configure the IPv6 RA guard, perform the following steps: 1.
10. Set the router lifetime. POLICY LIST CONFIGURATION mode router—lifetime value The router lifetime range is from 0 to 9,000 seconds. 11. Apply the policy to trusted ports. POLICY LIST CONFIGURATION mode trusted-port 12. Set the maximum transmission unit (MTU) value. POLICY LIST CONFIGURATION mode mtu value The MTU range is from 1,280 to 11,982 bytes. 13. Set the advertised reachability time.
INTERFACE mode ipv6 nd ra-guard attach policy policy-name [vlan [vlan 1, vland 2, vlan 3.....]] 3. Display the configurations applied on all the RA guard policies or a specific RA guard policy. EXEC Privilege mode show ipv6 nd ra-guard policy policy-name The policy name string can be up to 140 characters.
26 iSCSI Optimization This chapter describes how to configure internet small computer system interface (iSCSI) optimization, which enables quality-ofservice (QoS) treatment for iSCSI traffic.
switch is configured to use dot1p priority-queue assignments to ensure that iSCSI traffic in these sessions receives priority treatment when forwarded on stacked switch hardware. Figure 60. iSCSI Optimization Example Monitoring iSCSI Traffic Flows The switch snoops iSCSI session-establishment and termination packets by installing classifier rules that trap iSCSI protocol packets to the CPU for examination.
You can configure whether the iSCSI optimization feature uses the VLAN priority or IP DSCP mapping to determine the traffic class queue. By default, iSCSI flows are assigned to dot1p priority 4. To map incoming iSCSI traffic on an interface to a dot1p priority-queue other than 4, use the CoS dot1p-priority command (refer to QoS dot1p Traffic Classification and Queue Assignment). Dell Networking recommends setting the CoS dot1p priority-queue to 0 (zero).
The following message displays the first time a Dell EqualLogic array is detected and describes the configuration changes that are automatically performed: %STKUNIT0-M:CP %IFMGR-5-IFM_ISCSI_AUTO_CONFIG: This switch is being configured for optimal conditions to support iSCSI traffic which will cause some automatic configuration to occur including jumbo frames and flow-control on all ports; no storm control and spanning-tree port fast to be enabled on the port of detection.
Enable and Disable iSCSI Optimization The following describes enabling and disabling iSCSI optimizaiton. NOTE: iSCSI monitoring is disabled by default. iSCSI auto-configuration and auto-detection is enabled by default. If you enable iSCSI, flow control is automatically enabled on all interfaces. To disable flow control on all interfaces, use the no flow control rx on tx off command and save the configuration.
iSCSI Optimization Prerequisites The following are iSCSI optimization prerequisites. • iSCSI optimization requires LLDP on the switch. LLDP is enabled by default (refer to Link Layer Discovery Protocol (LLDP)). • iSCSI optimization requires configuring two ingress ACL groups The ACL groups are allocated after iSCSI Optimization is configured. Configuring iSCSI Optimization To configure iSCSI optimization, use the following commands. 1. For a non-DCB environment: Enable session monitoring.
• tcp-port-n is the TCP port number or a list of TCP port numbers on which the iSCSI target listens to requests. You can configure up to 16 target TCP ports on the switch in one command or multiple commands. The default is 860, 3260. Separate port numbers with a comma. If multiple IP addresses are mapped to a single TCP port, use the no iscsi target port tcp-port-n command to remove all IP addresses assigned to the TCP number.
INTERFACE mode [no] iscsi profile-compellent. The default is: Compellent disk arrays are not detected. Displaying iSCSI Optimization Information To display information on iSCSI optimization, use the following show commands. • • • • Display the currently configured iSCSI settings. show iscsi Display information on active iSCSI sessions on the switch. show iscsi sessions Display detailed information on active iSCSI sessions on the switch .
Up Time:00:00:01:28(DD:HH:MM:SS) Time for aging out:00:00:09:34(DD:HH:MM:SS) ISID:806978696102 Initiator Initiator Target Target Connection IP Address TCP Port IP Address TCPPort ID 10.10.0.44 33345 10.10.0.101 3260 0 VLT PEER2 Session 0: ------------------------------------------------------------Target:iqn.2010-11.com.ixia:ixload:iscsi-TG1 Initiator:iqn.2010-11.com.ixia.
27 Intermediate System to Intermediate System The intermediate system to intermediate system (IS-IS) protocol that uses a shortest-path-first algorithm. Dell Networking supports both IPv4 and IPv6 versions of IS-IS. IS-IS Protocol Overview The IS-IS protocol, developed by the International Organization for Standardization (ISO), is an interior gateway protocol (IGP) that uses a shortest-path-first algorithm.
Figure 61. ISO Address Format Multi-Topology IS-IS Multi-topology IS-IS (MT IS-IS) allows you to create multiple IS-IS topologies on a single router with separate databases. Use this feature to place a virtual physical topology into logical routing domains, which can each support different routing and security policies. All routers on a LAN or point-to-point must have at least one common supported topology when operating in Multi-Topology IS-IS mode.
neighbor within its LSPs. The local router does not form an adjacency if both routers do not have at least one common MT over the interface. Graceful Restart Graceful restart is a protocol-based mechanism that preserves the forwarding table of the restarting router and its neighbors for a specified period to minimize the loss of packets. A graceful-restart router does not immediately assume that a neighbor is permanently down and so does not trigger a topology change.
By default, Dell Networking OS supports dynamic host name exchange to assist with troubleshooting and configuration. By assigning a name to an IS-IS NET address, you can track IS-IS information on that address easier. Dell Networking OS does not support ISO CLNS routing; however, the ISO NET format is supported for addressing. To support IPv6, the Dell Networking implementation of IS-IS performs the following tasks: • Advertises IPv6 information in the PDUs.
• Setting the Overload Bit • Debuging IS-IS Enabling IS-IS By default, IS-IS is not enabled. The system supports one instance of IS-IS. To enable IS-IS globally, create an IS-IS routing process and assign a NET address. To exchange protocol information with neighbors, enable IS-IS on an interface, instead of on a network as with other routing protocols. In IS-IS, neighbors form adjacencies only when they are same IS type. For example, a Level 1 router never forms an adjacency with a Level 2 router.
• ipv6 address: x:x:x:x::x • mask: The prefix length is from 0 to 128. The IPv6 address must be on the same subnet as other IS-IS neighbors, but the IP address does not need to relate to the NET address. 6. Enable IS-IS on the IPv4 interface. ROUTER ISIS mode ip router isis [tag] If you configure a tag variable, it must be the same as the tag variable assigned in step 1. 7. Enable IS-IS on the IPv6 interface.
IS-IS: LSP checksum errors received : 0 IS-IS: LSP authentication failures : 0 Dell# You can assign more NET addresses, but the System ID portion of the NET address must remain the same. Dell Networking OS supports up to six area addresses. Some address considerations are: • In order to be neighbors, configure Level 1 routers with at least one common area address. • A Level 2 router becomes a neighbor with another Level 2 router regardless of the area address configured.
graceful-restart interval minutes The range is from 1 to 120 minutes. • The default is 5 minutes. Enable the graceful restart maximum wait time before a restarting peer comes up. ROUTER-ISIS mode graceful-restart restart-wait seconds When implementing this command, be sure to set the t3 timer to adjacency on the restarting router. The range is from 1 to 120 minutes. • The default is 30 seconds.
Graceful Restart Interval/Blackout time T3 Timer T3 Timeout Value T2 Timeout Value T1 Timeout Value Adjacency wait time : : : : : : : Operational Timer Value ====================== Current Mode/State : T3 Time left : T2 Time left : Restart ACK rcv count : Restart Req rcv count : Suppress Adj rcv count : Restart CSNP rcv count : Database Sync count : Enabled 1 min Manual 30 30 (level-1), 30 (level-2) 5, retry count: 1 30 Normal/RUNNING 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 0 (level-1), 0 0 (leve
– seconds: the range is from 0 to 120. The default is 5 seconds. • The default level is Level 1. Set the LSP size. ROUTER ISIS mode lsp-mtu size – size: the range is from 128 to 9195. • The default is 1497. Set the LSP refresh interval. ROUTER ISIS mode lsp-refresh-interval seconds – seconds: the range is from 1 to 65535. • The default is 900 seconds. Set the maximum time LSPs lifetime. ROUTER ISIS mode max-lsp-lifetime seconds – seconds: the range is from 1 to 65535. The default is 1200 seconds.
Table 47. Metric Styles Metric Style Characteristics Cost Range Supported on IS-IS Interfaces narrow Sends and accepts narrow or old TLVs (Type, Length, Value). 0 to 63 wide Sends and accepts wide or new TLVs. 0 to 16777215 transition Sends both wide (new) and narrow (old) TLVs. 0 to 63 narrow transition Sends narrow (old) TLVs and accepts both narrow (old) and wide (new) TLVs. 0 to 63 wide transition Sends wide (new) TLVs and accepts both narrow (old) and wide (new) TLVs.
– default-metric: the range is from 0 to 63 if the metric-style is narrow, narrow-transition, or transition. • The range is from 0 to 16777215 if the metric style is wide or wide transition. Assign a metric for an IPv6 link or interface. INTERFACE mode isis ipv6 metric default-metric [level-1 | level-2] – default-metric: the range is from 0 to 63 for narrow and transition metric styles. The range is from 0 to 16777215 for wide metric styles. The default is 10. The default level is level-1.
Example of the show isis database Command to View Level 1-2 Link State Databases To view which IS-type is configured, use the show isis protocol command in EXEC Privilege mode. The show config command in ROUTER ISIS mode displays only non-default information. If you do not change the IS-type, the default value (level-1-2) is not displayed. The default is Level 1-2 router. When the IS-type is Level 1-2, the software maintains two Link State databases, one for each level.
– For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For a port channel interface, enter the keywords port-channel then a number. • – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.
– bgp: for BGP routes only. • Deny RTM download for pre-existing redistributed IPv6 routes. ROUTER ISIS-AF IPV6 mode distribute-list redistributed-override in Redistributing IPv4 Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the IS-IS process. With the redistribute command syntax, you can include BGP, OSPF, RIP, static, or directly connected routes in the IS-IS process.
redistribute {bgp as-number | connected | rip | static} [level-1 level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: – level-1, level-1-2, or level-2: assign all redistributed routes to a level. The default is level-2. – metric-value: the range is from 0 to 16777215. The default is 0. – metric-type: choose either external or internal. The default is internal. • – map-name: enter the name of a configured route map.
To remove a password, use either the no area-password or no domain-password commands in ROUTER ISIS mode. Setting the Overload Bit Another use for the overload bit is to prevent other routers from using this router as an intermediate hop in their shortest path first (SPF) calculations. For example, if the IS-IS routing database is out of memory and cannot accept new LSPs, Dell Networking OS sets the overload bit and IS-IS traffic continues to transit the system.
To view specific information, enter the following optional parameter: – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only. • View IS-IS SNP packets, include CSNPs and PSNPs. EXEC Privilege mode debug isis snp-packets [interface] To view specific information, enter the following optional parameter: – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only.
Metric Style Correct Value Range for the isis metric Command wide 0 to 16777215 narrow 0 to 63 wide transition 0 to 16777215 narrow transition 0 to 63 transition 0 to 63 Maximum Values in the Routing Table IS-IS metric styles support different cost ranges for the route. The cost range for the narrow metric style is 0 to 1023, while all other metric styles support a range of 0 to 0xFE000000. Change the IS-IS Metric Style in One Level Only By default, the IS-IS metric style is narrow.
Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value narrow transition wide original value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value wide transition wide original value wide transition narrow default value (10) if the original value is greater than 63. A message is sent to the console.
Level-1 Metric Style Level-2 Metric Style Resulting Metric Value wide narrow transition truncated value wide wide transition original value wide transition truncated value narrow transition wide original value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value transition wide original value transition narrow original value transition wide transition original value transition narrow transition
Figure 62. IPv6 IS-IS Sample Topography IS-IS Sample Configuration — Congruent Topology IS-IS Sample Configuration — Multi-topology IS-IS Sample Configuration — Multi-topology Transition The following is a sample configuration for enabling IPv6 IS-IS. Dell(conf-if-te-3/17)#show config ! interface TenGigabitEthernet 3/17 ip address 24.3.1.
exit-address-family Dell (conf-router_isis)# Dell (conf-if-te-3/17)#show config ! interface TenGigabitEthernet 3/17 ipv6 address 24:3::1/76 ipv6 router isis no shutdown Dell (conf-if-te-3/17)# Dell (conf-router_isis)#show config ! router isis net 34.0000.0000.AAAA.
28 Link Aggregation Control Protocol (LACP) A link aggregation group (LAG), referred to as a port channel by the Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic. Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic.
• You can configure link dampening on individual members of a LAG. LACP Modes Dell Networking OS provides three modes for configuration of LACP — Off, Active, and Passive. • Off — In this state, an interface is not capable of being part of a dynamic LAG. LACP does not run on any port that is configured to be in this state. • Active — In this state, the interface is said to be in the “active negotiating state.” LACP runs on any link that is configured to be in this state.
LACP Configuration Tasks The following configuration tasks apply to LACP. • Creating a LAG • Configuring the LAG Interfaces as Dynamic • Setting the LACP Long Timeout • Monitoring and Debugging LACP • Configuring Shared LAG State Tracking Creating a LAG To create a dynamic port channel (LAG), use the following command. First you define the LAG and then the LAG interfaces. • Create a dynamic port channel (LAG). CONFIGURATION mode • interface port-channel Create a dynamic port channel (LAG).
Dell(conf-if-te-4/16)#no shutdown Dell(conf-if-te-4/16)#port-channel-protocol lacp Dell(conf-if-te-4/16-lacp)#port-channel 32 mode active The port-channel 32 mode active command shown here may be successfully issued as long as there is no existing static channelmember configuration in LAG 32. Setting the LACP Long Timeout PDUs are exchanged between port channel (LAG) interfaces to maintain LACP sessions. PDUs are transmitted at either a slow or fast transmission rate, depending upon the LACP timeout value.
Shared LAG State Tracking Shared LAG state tracking provides the flexibility to bring down a port channel (LAG) based on the operational state of another LAG. At any time, only two LAGs can be a part of a group such that the fate (status) of one LAG depends on the other LAG. As shown in the following illustration, the line-rate traffic from R1 destined for R4 follows the lowest-cost route via R2. Traffic is equally distributed between LAGs 1 and 2.
port-channel failover-group group 1 port-channel 1 port-channel 2 As shown in the following illustration, LAGs 1 and 2 are members of a failover group. LAG 1 fails and LAG 2 is brought down after the failure. This effect is logged by Message 1, in which a console message declares both LAGs down at the same time. Figure 64.
LACP Basic Configuration Example The screenshots in this section are based on the following example topology. Two routers are named ALPHA and BRAVO, and their hostname prompts reflect those names. Figure 65. LACP Basic Configuration Example Configure a LAG on ALPHA The following example creates a LAG on ALPHA.
0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics 136 packets, 16718 bytes, 0 underruns 0 64-byte pkts, 15 over 64-byte pkts, 121 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 136 Multicasts, 0 Broadcasts, 0 Unicasts 0 Vlans, 0 throttles, 0 discarded, 0 collisions, 0 wreddrops Rate info (interval 299 seconds): Input 00.00 Mbits/sec,0 packets/sec, 0.00% of line-rate Output 00.00 Mbits/sec,0 packets/sec, 0.
Figure 67.
Figure 68.
Summary of the LAG Configuration on Bravo Bravo(conf-if-te-3/21)#int port-channel 10 Bravo(conf-if-po-10)#no ip add Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config ! interface Port-channel 10 no ip address switchport no shutdown ! Bravo(conf-if-po-10)#exit Bravo(conf)#int tengig 3/21 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-te-3/21)#port-channel-protocol lacp Bravo(conf-if-te-3/21-lacp)#port-channel 10 mode active Bravo(
Figure 69.
Figure 70.
Figure 71. Inspecting the LAG Status Using the show lacp command The point-to-point protocol (PPP) is a connection-oriented protocol that enables layer two links over various different physical layer connections. It is supported on both synchronous and asynchronous lines, and can operate in Half-Duplex or Full-Duplex mode. It was designed to carry IP traffic but is general enough to allow any type of network layer datagram to be sent over a PPP connection.
29 Layer 2 This chapter describes the Layer 2 features supported on the device. Manage the MAC Address Table You can perform the following management tasks in the MAC address table. • Clearing the MAC Address Table • Setting the Aging Time for Dynamic Entries • Configuring a Static MAC Address • Displaying the MAC Address Table Clearing the MAC Address Table You may clear the MAC address table of dynamic entries. To clear a MAC address table, use the following command.
• Create a static MAC address entry in the MAC address table. CONFIGURATION mode mac-address-table static Displaying the MAC Address Table To display the MAC address table, use the following command. • Display the contents of the MAC address table. EXEC Privilege mode show mac-address-table [address | aging-time [vlan vlan-id]| count | dynamic | interface | static | vlan] – address: displays the specified entry. – aging-time: displays the configured aging-time.
Setting the MAC Learning Limit To set a MAC learning limit on an interface, use the following command. • Specify the number of MAC addresses that the system can learn off a Layer 2 interface. INTERFACE mode mac learning-limit address_limit Three options are available with the mac learning-limit command: – dynamic – no-station-move – station-move NOTE: An SNMP trap is available for mac learning-limit station-move. No other SNMP traps are available for MAC Learning Limit, including limit violations.
mac learning-limit no-station-move The no-station-move option, also known as “sticky MAC,” provides additional port security by preventing a station move. When you configure this option, the first entry in the table is maintained instead of creating an entry on the new interface. nostation-move is the default behavior. Entries created before you set this option are not affected. To display a list of all interfaces with a MAC learning limit, use the following command.
station-move-violation shutdown-offending • Shut down both the first and second port to learn the MAC address. INTERFACE mode station-move-violation shutdown-both • Display a list of all of the interfaces configured with MAC learning limit or station move violation. CONFIGURATION mode show mac learning-limit violate-action NOTE: When the MAC learning limit (MLL) is configured as no-station-move, the MLL will be processed as static entries internally.
Figure 72. Redundant NICs with NIC Teaming When you use NIC teaming, consider that the server MAC address is originally learned on Port 0/1 of the switch (shown in the following) and Port 0/5 is the failover port. When the NIC fails, the system automatically sends an ARP request for the gateway or host NIC to resolve the ARP and refresh the egress interface.
(as shown in the following illustration). The redundant pairs feature allows you to create redundant links in networks that do not use STP by configuring backup interfaces for the interfaces on either side of the primary link. NOTE: For more information about STP, refer to Spanning Tree Protocol (STP). Assign a backup interface to an interface using the switchport backup command. The backup interface remains in a Down state until the primary fails, at which point it transitions to Up state.
To ensure that existing network applications see no difference when a primary interface in a redundant pair transitions to the backup interface, be sure to apply identical configurations of other traffic parameters to each interface. If you remove an interface in a redundant link (remove the line card of a physical interface or delete a port channel with the no interface port-channel command), the redundant pair configuration is also removed.
2 L2 up 00:00:02 Te 2/1 (Up) Dell#configure Dell(conf)#interface port-channel 1 Dell(conf-if-po-1)#switchport backup interface port-channel 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-L2BKUP_WARN: Do not run any Layer2 protocols on Po 1 and Po 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Po 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-STATE_ACT_STBY: Changed interface state to standby: Po 2 Dell(conf-if-po-1)# Dell# Dell#show interfaces switchport backup Interface Status
In the event of a far-end failure, the device stops receiving frames and, after the specified time interval, assumes that the far-end is not available. The connecting line protocol is brought down so that upper layer protocols can detect the neighbor unavailability faster. FEFD State Changes FEFD has two operational modes, Normal and Aggressive.
• Enable FEFD globally on all interfaces. CONFIGURATION mode fefd-global To report interval frequency and mode adjustments, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Enable the necessary ports administratively. INTERFACE mode no shutdown 3. Enable fefd globally.
To set up and activate two or more connected interfaces, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Activate the necessary ports administratively. INTERFACE mode no shutdown 3.
Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Te 4/1) Sender hold time -- 3 (second) An RPM Failover In the event that an RPM failover occurs, FEFD becomes operationally down on all enabled ports for approximately 8-10 seconds before automatically becoming operational again. 02-05-2009 12:40:38 Local7.Debug 10.16.151.12 Feb 5 07:06:09: %RPM1-S:CP %RAM-6-FAILOVER_REQ: RPM failover request from active peer: User request. 02-05-2009 12:40:38 Local7.Debug 10.16.151.
30 Link Layer Discovery Protocol (LLDP) This chapter describes how to configure and use the link layer discovery protocol (LLDP). 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices.
Type TLV Description 2 Port ID An administratively assigned name that identifies a port through which TLVs are sent and received. 3 Time to Live An administratively assigned name that identifies a port through which TLVs are sent and received. — Optional Includes sub-types of TLVs that advertise specific configuration information. These sub-types are Management TLVs, IEEE 802.1, IEEE 802.3, and TIA-1057 Organizationally Specific TLVs. Figure 77.
IEEE Organizationally Specific TLVs Eight TLV types have been defined by the IEEE 802.1 and 802.3 working groups as a basic part of LLDP; the IEEE OUI is 00-80-C2. You can configure the Dell Networking system to advertise any or all of these TLVs. Table 53. Optional TLV Types Type TLV Description 4 Port description A user-defined alphanumeric string that describes the port. Dell Networking OS does not currently support this TLV.
Type TLV Description 127 Link Aggregation Indicates whether the link is capable of being aggregated, whether it is currently in a LAG, and the port identification of the LAG. Dell Networking OS does not currently support this TLV. 127 Maximum Frame Size Indicates the maximum frame size capability of the MAC and PHY.
Type SubType TLV Description 127 3 Location Identification Indicates that the physical location of the device expressed in one of three possible formats: • • • 127 4 Inventory Management TLVs Implementation of this set of TLVs is optional in LLDP-MED devices. None or all TLVs must be supported. Dell Networking OS does not currently support these TLVs.
Figure 79. LLDP-MED Capabilities TLV Table 55. Dell Networking OS LLDP-MED Capabilities Bit Position TLV Dell Networking OS Support 0 LLDP-MED Capabilities Yes 1 Network Policy Yes 2 Location Identification Yes 3 Extended Power via MDI-PSE Yes 4 Extended Power via MDI-PD No 5 Inventory No 6–15 reserved No Table 56.
Table 57. Network Policy Applications Type Application Description 0 Reserved — 1 Voice Specify this application type for dedicated IP telephony handsets and other appliances supporting interactive voice services. 2 Voice Signaling Specify this application type only if voice control packets use a separate network policy than voice data.
Figure 81. Extended Power via MDI TLV Configure LLDP Configuring LLDP is a two-step process. 1. Enable LLDP globally. 2. Advertise TLVs out of an interface. Related Configuration Tasks • Viewing the LLDP Configuration • Viewing Information Advertised by Adjacent LLDP Agents • Configuring LLDPDU Intervals • Configuring Transmit and Receive Mode • Configuring a Time to Live • Debugging LLDP Important Points to Remember • LLDP is enabled by default.
no show Negate a command or set its defaults Show LLDP configuration Dell(conf-lldp)#exit Dell(conf)#interface tengigabitethernet 1/3 Dell(conf-if-te-1/3)#protocol lldp Dell(conf-if-te-1/3-lldp)#? advertise Advertise TLVs disable Disable LLDP protocol on this interface end Exit from configuration mode exit Exit from LLDP configuration mode hello LLDP hello configuration mode LLDP mode configuration (default = rx and tx) multiplier LLDP multiplier configuration no Negate a command or set its defaults show
advertise {dcbx-appln-tlv | dcbx-tlv | dot3-tlv | interface-port-desc | management-tlv | med } Include the keyword for each TLV you want to advertise. • For management TLVs: system-capabilities, system-description. • For 802.1 TLVs: port-protocol-vlan-id, port-vlan-id vlan-name. • For 802.3 TLVs: max-frame-size.
advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description hello 10 no disable Dell(conf-lldp)# Dell(conf-lldp)#exit Dell(conf)#interface tengigabitethernet 1/31 Dell(conf-if-te-1/31)#show config ! interface TenGigabitEthernet 1/31 no ip address switchport no shutdown Dell(conf-if-te-1/31)#protocol lldp Dell(conf-if-te-1/31-lldp)#show config ! protocol lldp Dell(conf-if-te-1/31-lldp)# Viewing Information Advertised
Time since last information change of this neighbor: 01:50:16 Remote MTU: 1554 Remote System Desc: Dell Networks Real Time Operating System Software Dell Operating System Version: 1.0. Dell Application Software Version: 9.4.0.0.
• Receive only. CONFIGURATION mode or INTERFACE mode • mode rx Return to the default setting.
R1(conf-lldp)#multiplier ? <2-10> Multiplier (default=4) R1(conf-lldp)#multiplier 5 R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description multiplier 5 no disable R1(conf-lldp)#no multiplier R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-
Figure 83. The debug lldp detail Command — LLDPDU Packet Dissection Relevant Management Objects Dell Networking OS supports all IEEE 802.1AB MIB objects. The following tables list the objects associated with: • received and transmitted TLVs • the LLDP configuration on the local agent • IEEE 802.1AB Organizationally Specific TLVs • received and transmitted LLDP-MED TLVs Table 58.
MIB Object Category LLDP Statistics LLDP Variable LLDP MIB Object Description mibMgmtAddrInstanceTxEnable lldpManAddrPortsTxEnable The management addresses defined for the system and the ports through which they are enabled for transmission. statsAgeoutsTotal lldpStatsRxPortAgeoutsTotal Total number of times that a neighbor’s information is deleted on the local system due to an rxInfoTTL timer expiration.
TLV Type TLV Name TLV Variable management address length management address subtype management address interface numbering subtype interface number OID System LLDP MIB Object Remote lldpRemSysCapEnabled Local lldpLocManAddrLen Remote lldpRemManAddrLen Local lldpLocManAddrSubtype Remote lldpRemManAddrSubtype Local lldpLocManAddr Remote lldpRemManAddr Local lldpLocManAddrIfSubtype Remote lldpRemManAddrIfSubtyp e Local lldpLocManAddrIfId Remote lldpRemManAddrIfId Local lldpLoc
Table 61.
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object 4 Extended Power via MDI Power Device Type Local lldpXMedLocXPoEDevice Type Remote lldpXMedRemXPoEDevice Type Local lldpXMedLocXPoEPSEPo werSource Power Source lldpXMedLocXPoEPDPow erSource Remote lldpXMedRemXPoEPSEP owerSource lldpXMedRemXPoEPDPo werSource Power Priority Local lldpXMedLocXPoEPDPow erPriority lldpXMedLocXPoEPSEPor tPDPriority Remote lldpXMedRemXPoEPSEP owerPriority lldpXMedRemXPoEPDPo werPriority Power Value
31 Microsoft Network Load Balancing Network load balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems (OSs). NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group.
In Multicast NLB mode, configure a static ARP configuration command to associate the cluster IP address with a multicast cluster MAC address.
Configuring a Switch for NLB To enable a switch for Unicast NLB mode, perform the following steps: Enter the ip vlan-flooding command to specify that all Layer 3 unicast routed data traffic going through a VLAN member port floods across all the member ports of that VLAN. CONFIGURATION mode ip vlan-flooding There might be some ARP table entries that are resolved through ARP packets, which had the Ethernet MAC SA different from the MAC information inside the ARP packet.
32 Multicast Source Discovery Protocol (MSDP) Multicast source discovery protocol (MSDP) is supported on Dell Networking OS. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
Figure 85. MSDP SA Message Format Anycast RP Using MSDP, anycast RP provides load sharing and redundancy in PIM-SM networks. Anycast RP allows two or more rendezvous points (RPs) to share the load for source registration and the ability to act as hot backup routers for each other. Anycast RP allows you to configure two or more RPs with the same IP address on Loopback interfaces. The Anycast RP Loopback address are configured with a 32-bit mask, making it a host address.
3. Enable MSDP. 4. Peer the RPs in each routing domain with each other. Refer to Enable MSDP. Related Configuration Tasks The following lists related MSDP configuration tasks.
Figure 86.
Figure 87.
Figure 88.
Figure 89. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. 1. Enable MSDP. CONFIGURATION mode ip multicast-msdp 2. Peer PIM systems in different administrative domains. CONFIGURATION mode ip msdp peer connect-source Examples of Configuring and Viewing MSDP R3(conf)#ip multicast-msdp R3(conf)#ip msdp peer 192.168.0.
Peer Addr Description Local Addr State Source SA Up/Down To view details about a peer, use the show ip msdp peer command in EXEC privilege mode. Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache). The system does not create entries in the multicast routing table until there is a local receiver for the corresponding multicast group. R3#show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.
Clearing the Source-Active Cache To clear the source-active cache, use the following command. • Clear the SA cache of all, local, or rejected entries, or entries for a specific group. CONFIGURATION mode clear ip msdp sa-cache [group-address | local | rejected-sa] Enabling the Rejected Source-Active Cache To cache rejected sources, use the following command.
Figure 90.
Figure 91.
Figure 92.
Figure 93. MSDP Default Peer, Scenario 4 Specifying Source-Active Messages To specify messages, use the following command. • Specify the forwarding-peer and originating-RP from which all active sources are accepted without regard for the RPF check. CONFIGURATION mode ip msdp default-peer ip-address list If you do not specify an access list, the peer accepts all sources that peer advertises. All sources from RPs that the ACL denies are subject to the normal RPF check.
229.0.50.2 229.0.50.3 229.0.50.4 24.0.50.2 24.0.50.3 24.0.50.4 200.0.0.50 200.0.0.50 200.0.0.50 10.0.50.2 10.0.50.2 10.0.50.2 Dell#ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 3 rejected SAs received, cache-size 32766 UpTime GroupAddr SourceAddr RPAddr 00:33:18 229.0.50.64 24.0.50.64 200.0.1.50 00:33:18 229.0.50.65 24.0.50.65 200.0.1.50 00:33:18 229.0.50.66 24.0.50.66 200.0.1.50 73 73 73 00:13:49 00:13:49 00:13:49 LearnedFrom 10.0.50.2 10.0.50.2 10.0.50.
R1_E600(conf)#do show ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 1 rejected SAs received, cache-size 1000 UpTime GroupAddr SourceAddr RPAddr LearnedFrom 00:02:20 239.0.0.1 10.11.4.2 192.168.0.1 local Reason Redistribute Preventing MSDP from Caching a Remote Source To prevent MSDP from caching a remote source, use the following commands. 1. OPTIONAL: Cache sources that the SA filter denies in the rejected SA cache. CONFIGURATION mode ip msdp cache-rejected-sa 2.
Example of Verifying the System is not Advertising Local Sources In the following example, R1 stops advertising source 10.11.4.2. Because it is already in the SA cache of R3, the entry remains there until it expires. [Router 1] R1(conf)#do show run msdp ! ip multicast-msdp ip msdp peer 192.168.0.3 connect-source Loopback 0 ip msdp sa-filter out 192.168.0.3 list mylocalfilter R1(conf)#do show run acl ! ip access-list extended mylocalfilter seq 5 deny ip host 239.0.0.1 host 10.11.4.
Input (S,G) filter: myremotefilter Output (S,G) filter: none [Router 1] R1(conf)#do show ip msdp peer Peer Addr: 192.168.0.3 Local Addr: 0.0.0.0(0) Connect Source: Lo 0 State: Inactive Up/Down Time: 00:00:03 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 0/0 SAs learned from this peer: 0 SA Filtering: Clearing Peer Statistics To clear the peer statistics, use the following command. • Reset the TCP connection to the peer and clear all peer statistics.
03:17:09 : MSDP-0: Peer 192.168.0.3, 03:17:10 : MSDP-0: Peer 192.168.0.3, 03:17:27 : MSDP-0: Peer 192.168.0.3, Input (S,G) filter: none Output (S,G) filter: none sent Keepalive msg rcvd Keepalive msg sent Source Active msg MSDP with Anycast RP Anycast RP uses MSDP with PIM-SM to allow more than one active group to use RP mapping.
Figure 94. MSDP with Anycast RP Configuring Anycast RP To configure anycast RP, use the following commands. 1. In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback 2. Make this address the RP for the group. CONFIGURATION mode ip pim rp-address 3.
CONFIGURATION mode ip msdp peer 5. Advertise the network of each of the unique Loopback addresses throughout the network. ROUTER OSPF mode network Reducing Source-Active Message Flooding RPs flood source-active messages to all of their peers away from the RP. When multiple RPs exist within a domain, the RPs forward received active source information back to the originating RP, which violates the RFP rule. You can prevent this unnecessary flooding by creating a mesh-group.
network 10.11.1.0/24 area 0 network 10.11.3.0/24 area 0 network 192.168.0.11/32 area 0 ! ip ip ip ip ip multicast-msdp msdp peer 192.168.0.3 connect-source Loopback 1 msdp peer 192.168.0.22 connect-source Loopback 1 msdp mesh-group AS100 192.168.0.22 msdp originator-id Loopback 1! ip pim rp-address 192.168.0.1 group-address 224.0.0.0/4 The following example shows an R2 configuration for MSDP with Anycast RP. ip multicast-routing ! interface TenGigabitEthernet 2/1 ip pim sparse-mode ip address 10.11.4.
ip pim sparse-mode ip address 10.11.0.32/24 no shutdown interface TenGigabitEthernet 3/41 ip pim sparse-mode ip address 10.11.6.34/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.3/32 no shutdown ! router ospf 1 network 10.11.6.0/24 area 0 network 192.168.0.3/32 area 0 redistribute static redistribute connected redistribute bgp 200 ! router bgp 200 redistribute ospf 1 neighbor 192.168.0.22 remote-as 100 neighbor 192.168.0.22 ebgp-multihop 255 neighbor 192.168.0.
ip ip ip ip ! ip ip ! ip multicast-msdp msdp peer 192.168.0.11 connect-source Loopback 0 msdp peer 192.168.0.22 connect-source Loopback 0 msdp sa-filter out 192.168.0.22 route 192.168.0.1/32 10.11.0.23 route 192.168.0.22/32 10.11.0.23 pim rp-address 192.168.0.3 group-address 224.0.0.0/4 MSDP Sample Configurations The following examples show the running-configurations described in this chapter. For more information, see the illustrations in the Related Configuration Tasks section.
ip address 10.11.0.23/24 no shutdown ! interface Loopback 0 ip address 192.168.0.2/32 no shutdown ! router ospf 1 network 10.11.1.0/24 area 0 network 10.11.4.0/24 area 0 network 192.168.0.2/32 area 0 redistribute static redistribute connected redistribute bgp 100 ! router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.3 ebgp-multihop 255 neighbor 192.168.0.3 update-source Loopback 0 neighbor 192.168.0.3 no shutdown ! ip route 192.168.0.3/32 10.11.0.
ip address 10.11.5.1/24 no shutdown ! interface TenGigabitEthernet 4/22 ip address 10.10.42.1/24 no shutdown ! interface TenGigabitEthernet 4/31 ip pim sparse-mode ip address 10.11.6.43/24 no shutdown ! interface Loopback 0 ip address 192.168.0.4/32 no shutdown ! router ospf 1 network 10.11.5.0/24 area 0 network 10.11.6.0/24 area 0 network 192.168.0.4/32 area 0 ! ip pim rp-address 192.168.0.3 group-address 224.0.0.
33 Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances. Protocol Overview MSTP — specified in IEEE 802.
Spanning Tree Variations The Dell Networking OS supports four variations of spanning tree, as shown in the following table. Table 62. Spanning Tree Variations Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .
Enable Multiple Spanning Tree Globally MSTP is not enabled by default. To enable MSTP globally, use the following commands. When you enable MSTP, all physical, VLAN, and port-channel interfaces that are enabled and in Layer 2 mode are automatically part of the MSTI 0. • Within an MSTI, only one path from any bridge to any other bridge is enabled. • Bridges block a redundant path by disabling one of the link ports. 1. Enter PROTOCOL MSTP mode. CONFIGURATION mode protocol spanning-tree mstp 2.
Dell(conf-mstp)#show config ! protocol spanning-tree mstp no disable MSTI 1 VLAN 100 MSTI 2 VLAN 200-300 All bridges in the MSTP region must have the same VLAN-to-instance mapping. To view which instance a VLAN is mapped to, use the show spanning-tree mst vlan command from EXEC Privilege mode.
The default is 32768. Example of Assigning and Verifying the Root Bridge Priority By default, the simple configuration shown previously yields the same forwarding path for both MSTIs. The following example shows how R3 is assigned bridge priority 0 for MSTI 2, which elects a different root bridge than MSTI 2. To view the bridge priority, use the show config command from PROTOCOL MSTP mode.
1 2 100 200-300 Modifying Global Parameters The root bridge sets the values for forward-delay, hello-time, max-age, and max-hops and overwrites the values set on other MSTP bridges. • Forward-delay — the amount of time an interface waits in the Listening state and the Learning state before it transitions to the Forwarding state. • Hello-time — the time interval in which the bridge sends MSTP bridge protocol data units (BPDUs).
Example of the forward-delay Parameter To view the current values for MSTP parameters, use the show running-config spanning-tree mstp command from EXEC privilege mode.
To view the current values for these interface parameters, use the show config command from INTERFACE mode. Configuring an EdgePort The EdgePort feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner. In this mode, an interface forwards frames by default until it receives a BPDU that indicates that it should behave otherwise; it does not go through the Learning and Listening states.
To view the enable status of this feature, use the show running-config spanning-tree mstp command from EXEC Privilege mode. MSTP Sample Configurations The running-configurations support the topology shown in the following illustration. The configurations are from Dell Networking OS systems. Figure 96. MSTP with Three VLANs Mapped to Two Spanning Tree Instances Router 1 Running-Configuration This example uses the following steps: 1.
! interface Vlan 200 no ip address tagged TenGigabitEthernet 1/21,31 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/21,31 no shutdown Router 2 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
MSTI 1 VLAN 100 MSTI 2 VLAN 200,300 ! (Step 2) interface TenGigabitEthernet 3/11 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/21 no ip address switchport no shutdown ! (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 3/11,21 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 3/11,21 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 3/11,21 no shutdown SFTOS Example Running-Configuration This example uses the following
tagged 1/0/31 tagged 1/0/32 exit interface vlan 300 tagged 1/0/31 tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. • Display BPDUs. EXEC Privilege mode debug spanning-tree mstp bpdu • Display MSTP-triggered topology change messages.
The following example shows viewing the debug log of a successful MSTP configuration. Dell#debug spanning-tree mstp bpdu MSTP debug bpdu is ON Dell# 4w0d4h : MSTP: Sending BPDU on Te 2/21 : ProtId: 0, Ver: 3, Bpdu Type: MSTP, Flags 0x6e CIST Root Bridge Id: 32768:0001.e806.953e, Ext Path Cost: 0 Regional Bridge Id: 32768:0001.e806.
34 Multicast Features Dell Networking OS supports the following multicast protocols: NOTE: Multicast routing is supported on secondary IP addresses; it is not supported on IPv6. NOTE: Multicast routing is supported across default and non-default VRFs. • PIM Sparse-Mode (PIM-SM) • Internet Group Management Protocol (IGMP) • Multicast Source Discovery Protocol (MSDP) Enabling IP Multicast Before enabling any multicast protocols, you must enable IP multicast routing.
• The Dell Networking OS implementation of MTRACE is in accordance with IETF draft draft-fenner-traceroute-ipm. • Multicast is not supported on secondary IP addresses. • Egress L3 ACL is not applied to multicast data traffic if you enable multicast routing. Multicast Policies The Dell Networking OS supports multicast features for IPv4. IPv4 Multicast Policies The following sections describe IPv4 multicast policies.
Preventing a Host from Joining a Group You can prevent a host from joining a particular group by blocking specific IGMP reports. Create an extended access list containing the permissible source-group pairs. NOTE: For rules in IGMP access lists, source is the multicast source, not the source of the IGMP packet. For IGMPv2, use the keyword any for source (as shown in the following example) because the IGMPv2 hosts do not know in advance who the source is for the group in which they are interested.
Figure 97. Preventing a Host from Joining a Group The following table lists the location and description shown in the previous illustration. Table 64. Preventing a Host from Joining a Group — Description Location Description 1/21 • • • • Interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31 • • • • Interface TenGigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.
Location Description • • ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface TenGigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1 • • • • Interface TenGigabitEthernet 3/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown 3/11 • • • • Interface TenGigabitEthernet 3/11 ip pim sparse-mode ip address 10.11.13.
Preventing a Source from Registering with the RP To prevent the PIM source DR from sending register packets to RP for the specified multicast source and group, use the following command. If the source DR never sends register packets to the RP, no hosts can ever discover the source and create a shortest path tree (SPT) to it. • Prevent a source from transmitting to a particular group.
Table 65. Preventing a Source from Transmitting to a Group — Description Location Description 1/21 • • • • Interface TenGigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31 • • • • Interface TenGigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.1/24 no shutdown 2/1 • • • • Interface TenGigabitEthernet 2/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface TenGigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.
Location Description • no shutdown Preventing a PIM Router from Processing a Join To permit or deny PIM Join/Prune messages on an interface using an extended IP access list, use the following command. NOTE: Dell Networking recommends not using the ip pim join-filter command on an interface between a source and the RP router.
35 Object Tracking IPv4 or IPv6 object tracking is available on Dell Networking OS. Object tracking allows the Dell Networking OS client processes, such as virtual router redundancy protocol (VRRP), to monitor tracked objects (for example, interface or link status) and take appropriate action when the state of an object changes. NOTE: In Dell Networking OS release version 8.4.1.0, object tracking is supported only on VRRP.
Figure 99. Object Tracking Example When you configure a tracked object, such as an IPv4/IPv6 a route or interface, you specify an object number to identify the object. Optionally, you can also specify: • UP and DOWN thresholds used to report changes in a route metric. • A time delay before changes in a tracked object’s state are reported to a client. Track Layer 2 Interfaces You can create an object to track the line-protocol state of a Layer 2 interface.
A tracked route matches a route in the routing table only if the exact address and prefix length match an entry in the routing table. For example, when configured as a tracked route, 10.0.0.0/24 does not match the routing table entry 10.0.0.0/8. If no route-table entry has the exact address and prefix length, the tracked route is considered to be DOWN.
If you do not configure a delay, a notification is sent when a change in the state of a tracked object is detected. The time delay in communicating a state change is specified in seconds. VRRP Object Tracking As a client, VRRP can track up to 20 objects (including route entries, and Layer 2 and Layer 3 interfaces) in addition to the 12 tracked interfaces supported for each VRRP group. You can assign a unique priority-cost value from 1 to 254 to each tracked VRRP object or group interface.
3. (Optional) Identify the tracked object with a text description. OBJECT TRACKING mode description text The text string can be up to 80 characters. 4. (Optional) Display the tracking configuration and the tracked object’s status.
Valid delay times are from 0 to 180 seconds. The default is 0. 3. (Optional) Identify the tracked object with a text description. OBJECT TRACKING mode description text The text string can be up to 80 characters. 4. (Optional) Display the tracking configuration and the tracked object’s status.
cache ages out for a route tracked for its reachability, an attempt is made to regenerate the ARP cache entry to see if the nexthop address appears before considering the route DOWN. • By comparing the threshold for a route’s metric with current entries in the route table. The UP/DOWN state of the tracked route is determined by the threshold for the current value of the route metric in the routing table.
3. (Optional) Identify the tracked object with a text description. OBJECT TRACKING mode description text The text string can be up to 80 characters. 4. (Optional) Display the tracking configuration and the tracked object’s status. EXEC Privilege mode show track object-id Examples of IPv4 and IPv6 Tracking Route Reachability Examples of IPv4 and IPv6 Tracking Route Reachability The following example configures object tracking on the reachability of an IPv4 route: Dell(conf)#track 104 ip route 10.0.0.
track object-id {ip route ip-address/prefix-len | ipv6 route ipv6-address/prefix-len} metric threshold [vrf vrf-name] Valid object IDs are from 1 to 65535. Enter an IPv4 address in dotted decimal format. Valid IPv4 prefix lengths are from /0 to /32. Enter an IPv6 address in X:X:X:X::X format. Valid IPv6 prefix lengths are from /0 to /128. (Optional) E-Series only: For an IPv4 route, you can enter a VRF name. 3.
Displaying Tracked Objects To display the currently configured objects used to track Layer 2 and Layer 3 interfaces, and IPv4 and IPv6 routes, use the following show commands. To display the configuration and status of currently tracked Layer 2 or Layer 3 interfaces, IPv4 or IPv6 routes, or a VRF instance, use the show track command. You can also display the currently configured per-protocol resolution values used to scale route metrics when tracking metric thresholds.
IPv6 Route Resolution ISIS 1 Example of the show track vrf Command Dell#show track vrf red Track 5 IP route 192.168.0.0/24 reachability, Vrf: red Reachability is Up (CONNECTED) 3 changes, last change 00:02:39 First-hop interface is TenGigabitEthernet 1/4 Example of Viewing Object Tracking Configuration Dell#show running-config track track 1 ip route 23.0.0.
36 Open Shortest Path First (OSPFv2 and OSPFv3) Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on Dell Networking OS. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell Networking Operating System (OS). NOTE: The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same between OSPFv2 and OSPFv3.
Figure 100. Autonomous System Areas Area Types The backbone of the network is Area 0. It is also called Area 0.0.0.0 and is the core of any AS. All other areas must connect to Area 0. Areas can be defined in such a way that the backbone is not contiguous. In this case, backbone connectivity must be restored through virtual links. Virtual links are configured between any backbone routers that share a link to a non-backbone area and function as if they were direct links.
Networks and Neighbors As a link-state protocol, OSPF sends routing information to other OSPF routers concerning the state of the links between them. The state (up or down) of those links is important. Routers that share a link become neighbors on that segment. OSPF uses the Hello protocol as a neighbor discovery and keep alive mechanism. After two routers are neighbors, they may proceed to exchange and synchronize their databases, which creates an adjacency.
Figure 101. OSPF Routing Examples Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example. Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone.
Autonomous System Border Router (ASBR) The autonomous system border area router (ASBR) connects to more than one AS and exchanges information with the routers in other ASs. Generally, the ASBR connects to a non-interior gate protocol (IGP) such as BGP or uses static routes. Internal Router (IR) The internal router (IR) has adjacencies with ONLY routers in the same area, as Router E, M, and I shown in the example in the Router Types.
For all LSA types, there are 20-byte LSA headers. One of the fields of the LSA header is the link-state ID. Each router link is defined as one of four types: type 1, 2, 3, or 4. The LSA includes a link ID field that identifies, by the network number and mask, the object this link connects to. Depending on the type, the link ID has different meanings. • 1: point-to-point connection to another router/neighboring router. • 2: connection to a transit network IP address of the DR.
Figure 102. Priority and Cost Examples OSPF with Dell Networking OS The Dell Networking OS supports up to 10,000 OSPF routes for OSPFv2. Within the that 10,000 routes, you can designate up to 8,000 routes as external and up to 2,000 as inter/intra area routes. Dell Networking OS version 9.4(0.0) and later support only one OSPFv2 process per VRF. Dell Networking OS version 9.7(0.0) and later support OSPFv3 in VRF. Also, on OSPFv3, Dell Networking OS supports only one OSPFv3 process per VRF.
Graceful Restart Graceful restart for OSPFv2 and OSPFv3 are supported on the S4820T platform in Helper and Restart modes. When a router goes down without a graceful restart, there is a possibility for loss of access to parts of the network due to ongoing network topology changes. Additionally, LSA flooding and reconvergence can cause substantial delays. It is, therefore, desirable that the network maintains a stable topology if it is possible for data flow to continue uninterrupted.
To display the configuration values for OSPF graceful restart, enter the show run ospf command for OSPFv2 and the show run ospf and show ipv6 ospf [vrf vrf-name] database database-summary commands for OSPFv3. Fast Convergence (OSPFv2, IPv4 Only) Fast convergence allows you to define the speeds at which LSAs are originated and accepted, and reduce OSPFv2 end-to-end convergence time.
aid:1500 chk:0xdbee aut:0 auk: keyid:0 from:Vl 1000 LSType:Type-5 AS External id:160.1.1.0 adv:6.1.0.0 seq:0x8000000c LSType:Type-5 AS External id:160.1.2.0 adv:6.1.0.0 seq:0x8000000c 00:10:41 : OSPF(1000:00): Rcv. v:2 t:5(LSAck) l:64 Acks 2 rid:2.2.2.2 aid:1500 chk:0xdbee aut:0 auk: keyid:0 from:Vl 100 LSType:Type-5 AS External id:160.1.1.0 adv:6.1.0.0 seq:0x8000000c LSType:Type-5 AS External id:160.1.2.0 adv:6.1.0.0 seq:0x8000000c 00:10:41 : OSPF(1000:00): Rcv. v:2 t:4(LSUpd) l:100 rid:6.1.0.
Internet Address 20.0.0.1/24, Area 0 Process ID 10, Router ID 1.1.1.2, Network Type BROADCAST, Cost: 1 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 1.1.1.2, Interface address 30.0.0.1 Backup Designated Router (ID) 1.1.1.1, Interface address 30.0.0.2 Timer intervals configured, Hello 20, Dead 80, Wait 20, Retransmit 5 Hello due in 00:00:04 Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 1.1.1.
Dell(conf-router_ospf-1)#timer spf 2 5 Dell(conf-router_ospf-1)# Dell(conf-router_ospf-1)#show config ! router ospf 1 timers spf 2 5 Dell(conf-router_ospf-1)# Dell(conf-router_ospf-1)#end Dell# For a complete list of the OSPF commands, refer to the OSPF section in the Dell Networking OS Command Line Reference Guide document. Enabling OSPFv2 To enable Layer 3 routing, assign an IP address to an interface (physical or Loopback). By default, OSPF, similar to all routing protocols, is disabled.
router-id ip address • Disable OSPF. CONFIGURATION mode no router ospf process-id • Reset the OSPFv2 process. EXEC Privilege mode clear ip ospf process-id • View the current OSPFv2 status. EXEC mode show ip ospf process-id Example of Viewing the Current OSPFv2 Status Dell#show ip ospf 55555 Routing Process ospf 55555 with ID 10.10.10.
Assigning an OSPFv2 Area After you enable OSPFv2, assign the interface to an OSPF area. Set up OSPF areas and enable OSPFv2 on an interface with the network command. You must have at least one AS area: Area 0. This is the backbone area. If your OSPF network contains more than one area, configure a backbone area (Area ID 0.0.0.0). Any area besides Area 0 can have any number ID assigned to it. The OSPFv2 process evaluates the network commands in the order they are configured.
To view currently active interfaces and the areas assigned to them, use the show ip ospf interface command. Example of Viewing Active Interfaces and Assigned Areas Dell>show ip ospf 1 interface TenGigabitEthernet 1/17 is up, line protocol is up Internet Address 10.2.2.1/24, Area 0.0.0.0 Process ID 1, Router ID 11.1.2.1, Network Type BROADCAST, Cost: 1 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 11.1.2.1, Interface address 10.2.2.1 Backup Designated Router (ID) 0.0.0.
show ip ospf process-id [vrf] database database-summary 2. Enter CONFIGURATION mode. EXEC Privilege mode configure 3. Enter ROUTER OSPF mode. CONFIGURATION mode router ospf process-id [vrf] Process ID is the ID assigned when configuring OSPFv2 globally. 4. Configure the area as a stub area. CONFIG-ROUTER-OSPF-id mode area area-id stub [no-summary] Use the keywords no-summary to prevent transmission into the area of summary ASBR LSAs. Area ID is the number or IP address assigned when creating the area.
– For a VLAN interface, enter the keyword vlan then a number from 1 to 4094 (for example, passive-interface vlan 2222 ). The keyword default sets all interfaces on this OSPF process as passive. To remove the passive interface from select interfaces, use the no passive-interface interface command while passive interface default is configured. To enable both receiving and sending routing updates, use the no passive-interface interface command.
NOTE: A higher convergence level can result in occasional loss of OSPF adjacency. Generally, convergence level 1 meets most convergence requirements. Only select higher convergence levels following consultation with Dell Technical Support. Examples of the fast-converge Command In the following examples, Convergence Level shows the fast-converge parameter setting and Min LSA origination shows the LSA parameters (shown in bold).
– seconds: the range is from 1 to 65535 (the default is 10 seconds). • The hello interval must be the same on all routers in the OSPF network. Use the MD5 algorithm to produce a message digest or key, which is sent instead of the key. CONFIG-INTERFACE mode ip ospf message-digest-key keyid md5 key – keyid: the range is from 1 to 255. – Key: a character string. NOTE: Be sure to write down or otherwise record the key. You cannot learn the key after it is configured.
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:06 Neighbor Count is 0, Adjacent neighbor count is 0 Dell# Enabling OSPFv2 Authentication To enable or change various OSPF authentication parameters, use the following commands. • Set a clear text authentication scheme on the interface. CONFIG-INTERFACE mode ip ospf authentication-key key Configure a key that is a text string no longer than eight characters.
graceful-restart helper-reject router-id • Planned-only — the OSPFv2 router supports graceful-restart for planned restarts only. A planned restart is when you manually enter a fail-over command to force the primary RPM over to the secondary RPM. During a planned restart, OSPF sends out a Grace LSA before the system switches over to the secondary RPM. OSPF also is notified that a planned restart is happening. • Unplanned-only — the OSPFv2 router supports graceful-restart for only unplanned restarts.
CONFIG- PREFIX LIST mode seq sequence-number {deny |permit} ip-prefix [ge min-prefix-length] [le max-prefixlength] The optional parameters are: – ge min-prefix-length: is the minimum prefix length to match (from 0 to 32). – le max-prefix-length: is the maximum prefix length to match (from 0 to 32). For configuration information about prefix lists, refer to Access Control Lists (ACLs). Applying Prefix Lists To apply prefix lists to incoming or outgoing OSPF routes, use the following commands.
Troubleshooting OSPFv2 Use the information in this section to troubleshoot OSPFv2 operation on the switch. Be sure to check the following, as these questions represent typical issues that interrupt an OSPFv2 process. NOTE: The following tasks are not a comprehensive; they provide some examples of typical troubleshooting checks.
– event: view OSPF event messages. – packet: view OSPF packet information. – spf: view SPF information. – database-timers rate-limit: view the LSAs currently in the queue. Example of Viewing OSPF Configuration Dell#show run ospf ! router ospf 4 router-id 4.4.4.4 network 4.4.4.0/28 area 1 ! ipv6 router ospf 999 default-information originate always router-id 10.10.10.10 Dell# Sample Configurations for OSPFv2 The following configurations are examples for enabling OSPFv2.
interface TenGigabitEthernet 1/2 ip address 10.2.12.2/24 no shutdown ! interface Loopback 10 ip address 192.168.100.100/24 no shutdown OSPF Area 0 — Te 3/1 and 3/2 router ospf 33333 network 192.168.100.0/24 area 0 network 10.0.13.0/24 area 0 network 10.0.23.0/24 area 0 ! interface Loopback 30 ip address 192.168.100.100/24 no shutdown ! interface TenGigabitEthernet 3/1 ip address 10.1.13.3/24 no shutdown ! interface TenGigabitEthernet 3/2 ip address 10.2.13.
NOTE: The OSPFv2 network area command enables OSPF on multiple interfaces with the single command. Use the OSPFv3 ipv6 ospf area command on each interface that runs OSPFv3. All IPv6 addresses on an interface are included in the OSPFv3 process that is created on the interface. Enable OSPFv3 for IPv6 by specifying an OSPF process ID and an area in INTERFACE mode. If you have not created an OSPFv3 process, it is created automatically.
Assigning IPv6 Addresses on an Interface To assign IPv6 addresses to an interface, use the following commands. 1. Assign an IPv6 address to the interface. CONF-INT-type slot/port mode ipv6 address ipv6 address IPv6 addresses are normally written as eight groups of four hexadecimal digits; separate each group by a colon (:). The format is A:B:C::F/128. 2. Bring up the interface.
CONFIGURATION mode no ipv6 router ospf process-id • Reset the OSPFv3 process. EXEC Privilege mode clear ipv6 ospf process Assigning OSPFv3 Process ID and Router ID to a VRF To assign, disable, or reset OSPFv3 on a non-default VRF, use the following commands. • Enable the OSPFv3 process on a non-default VRF and enter OSPFv3 mode. CONFIGURATION mode ipv6 router ospf {process ID} vrf {vrf-name} • The process ID range is from 0 to 65535. Assign the router ID for this OSPFv3 process.
passive-interface {interface slot/port} Interface: identifies the specific interface that is passive. – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a port channel interface, enter the keywords port-channel then a number. – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.
By default, OSPFv3 graceful restart is disabled and functions only in a helper role to help restarting neighbor routers in their graceful restarts when it receives a Grace LSA. To enable OSPFv3 graceful restart, enter the ipv6 router ospf process-id command to enter OSPFv3 configuration mode. Then configure a grace period using the graceful-restart grace-period command. The grace period is the time that the OSPFv3 neighbors continue to advertise the restarting router as though it is fully adjacent.
EXEC Privilege mode show ipv6 ospf database [vrf vrf-name] database-summary Examples of the Graceful Restart show Commands The following example shows the show run ospf command. Dell#show run ospf ! router ospf 1 router-id 200.1.1.1 log-adjacency-changes graceful-restart grace-period 180 network 20.1.1.0/24 area 0 network 30.1.1.0/24 area 0 ! ipv6 router ospf 1 log-adjacency-changes graceful-restart grace-period 180 The following example shows the show ipv6 ospf database database-summary command.
OSPFv3 Authentication Using IPsec OSPFv3 uses IPsec to provide authentication for OSPFv3 packets. IPsec authentication ensures security in the transmission of OSPFv3 packets between IPsec-enabled routers. IPsec is a set of protocols developed by the internet engineering task force (IETF) to support secure exchange of packets at the IP layer. IPsec supports two encryption modes: transport and tunnel. • Transport mode — encrypts only the data portion (payload) of each packet, but leaves the header untouched.
• In an OSPFv3 authentication policy: – AH is used to authenticate OSPFv3 headers and certain fields in IPv6 headers and extension headers. – MD5 and SHA1 authentication types are supported; encrypted and unencrypted keys are supported. • In an OSPFv3 encryption policy: – Both encryption and authentication are used. – IPsec security associations (SAs) are supported only in Transport mode (Tunnel mode is not supported).
• Display the security associations set up for OSPFv3 interfaces in authentication policies. show crypto ipsec sa ipv6 Configuring IPsec Encryption on an Interface To configure, remove, or display IPsec encryption on an interface, use the following commands.
The configuration of IPSec authentication on an interface-level takes precedence over an area-level configuration. If you remove an interface configuration, an area authentication policy that has been configured is applied to the interface. • Enable IPSec authentication for OSPFv3 packets in an area. CONF-IPV6-ROUTER-OSPF mode area-id authentication ipsec spi number {MD5 | SHA1} [key-encryption-type] key – area area-id: specifies the area for which OSPFv3 traffic is to be authenticated.
– authentication-algorithm: specifies the authentication algorithm to use for encryption. The valid values are MD5 or SHA1. – key: specifies the text string used in authentication. All neighboring OSPFv3 routers must share key to exchange information. For MD5 authentication, the key must be 32 hex digits (non-encrypted) or 64 hex digits (encrypted). For SHA-1 authentication, the key must be 40 hex digits (non-encrypted) or 80 hex digits (encrypted).
Inbound AH Key Outbound AH Key Transform set : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba8ed8bb5efe91e97e : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba8ed8bb5efe91e97e : ah-md5-hmac Crypto IPSec client security policy data Policy name : OSPFv3-0-501 Policy refcount : 1 Inbound ESP SPI : 501 (0x1F5) Outbound ESP SPI : 501 (0x1F5) Inbound ESP Auth Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba8ed8bb5efe91e97eb7c0c30808825fb5 Outbound ESP Auth Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9
Troubleshooting OSPFv3 The system provides several tools to troubleshoot OSPFv3 operation on the switch. This section describes typical, OSPFv3 troubleshooting scenarios. NOTE: The following troubleshooting section is meant to be a comprehensive list, but only to provide some examples of typical troubleshooting checks.
37 Policy-based Routing (PBR) Policy-based Routing (PBR) allows a switch to make routing decisions based on policies applied to an interface. Overview When a router receives a packet it normally decides where to forward it based on the destination address in the packet, which is used to look up an entry in a routing table. However, in some cases, there may be a need to forward the packet based on other criteria: size, source, protocol type, destination, and so on.
• Destination port • TCP Flags After a redirect-list is applied to an interface, all traffic passing through it is subjected to the rules defined in the redirect-list. The traffic is forwarded based on the following: • Next-hop addresses are verified. If the specified next hop is reachable, the traffic is forwarded to the specified next-hop. • If the specified next-hops are not reachable, the normal routing table is used to forward the traffic.
• Create a Track-id list. For complete tracking information, refer to Object Tracking chapter. • Apply a Redirect-list to an Interface using a Redirect-group PBR Exceptions (Permit) Use the command permit to create an exception to a redirect list. Exceptions are used when a forwarding decision should be based on the routing table rather than a routing policy.
• number is the number in sequence to initiate this rule • ip-address is the Forwarding router’s address • tunnel is used to configure the tunnel settings • tunnel-id is used to redirect the traffic • track  is used to track the object-id • track is to enable the tracking • FORMAT: A.B.C.
You can apply multiple rules to a single redirect-list. The rules are applied in ascending order, starting with the rule that has the lowest sequence number in a redirect-list displays the correct method for applying multiple rules to one list.
interface TenGigabitEthernet 1/1 no ip address ip redirect-group test ip redirect-group xyz shutdown Dell(conf-if-te-1/2)# Dell(conf-if-gi-1/1)#ip redirect-group test Dell(conf-if-gi-1/1)#ip redirect-group xyz Dell(conf-if-gi-1/1)#show config ! interface GigabitEthernet 1/1 no ip address ip redirect-group test ip redirect-group xyz shutdown Dell(conf-if-te-1/2)# In addition to supporting multiple redirect-lists in a redirect-group, multiple redirect-groups are supported on a single interface.
200 [up], Next-hop reachable (via Te 2/19) , Track Use the show ip redirect-list (without the list name) to display all the redirect-lists configured on the device. Dell#show ip redirect-list IP redirect-list rcl0: Defined as: seq 5 permit ip 200.200.200.200 200.200.200.200 199.199.199.199 199.199.199.199 seq 10 redirect 1.1.1.2 tcp 234.224.234.234 255.234.234.234 222.222.222.
Create the Redirect-List GOLD EDGE_ROUTER(conf-if-Te-2/23)#ip redirect-list GOLD EDGE_ROUTER(conf-redirect-list)#description Route GOLD traffic to ISP_GOLD. EDGE_ROUTER(conf-redirect-list)#direct 10.99.99.254 ip 192.168.1.0/24 any EDGE_ROUTER(conf-redirect-list)#redirect 10.99.99.254 ip 192.168.2.0/24 any EDGE_ROUTER(conf-redirect-list)# seq 15 permit ip any any EDGE_ROUTER(conf-redirect-list)#show config ! ip redirect-list GOLD description Route GOLD traffic to ISP_GOLD. seq 5 redirect 10.99.99.254 ip 192.
IP redirect-list GOLD: Defined as: seq 5 redirect 10.99.99.254 ip 192.168.1.0/24 any, Next-hop reachable (via Te 3/23) seq 10 redirect 10.99.99.254 ip 192.168.2.0/24 any, Next-hop reachable (via Te 3/23) seq 15 permit ip any any Applied interfaces: Te 2/11 EDGE_ROUTER# Configuration Tasks for Creating a PBR list using Explicit Track Objects for Redirect IP's Create Track Objects to track the Redirect IP's: Dell#configure terminal Dell(conf)#track 3 ip host 42.1.1.
Configuration Tasks for Creating a PBR list using Explicit Track Objects for Tunnel Interfaces Creating steps for Tunnel Interfaces: Dell#configure terminal Dell(conf)#interface tunnel 1 Dell(conf-if-tu-1)#tunnel destination 40.1.1.2 Dell(conf-if-tu-1)#tunnel source 40.1.1.1 Dell(conf-if-tu-1)#tunnel mode ipip Dell(conf-if-tu-1)#tunnel keepalive 60.1.1.2 Dell(conf-if-tu-1)#ip address 60.1.1.
IP redirect-list explicit_tunnel: Defined as: seq 5 redirect tunnel 1 track 1 tcp 155.55.2.0/24 222.22.2.0/24, Track 1 [up], Next-hop reachable (via Te 1/32) seq 10 redirect tunnel 1 track 1 tcp any any, Track 1 [up], Next-hop reachable (via Te 1/32) seq 15 redirect tunnel 1 track 1 udp 155.55.0.0/16 host 144.144.144.144, Track 1 [up], Next-hop reachable (via Te 1/32) seq 20 redirect tunnel 2 track 2 tcp 155.55.2.0/24 222.22.2.
38 PIM Sparse-Mode (PIM-SM) Protocol-independent multicast sparse-mode (PIM-SM) is a multicast protocol that forwards multicast traffic to a subnet only after a request using a PIM Join message; this behavior is the opposite of PIM-Dense mode, which forwards multicast traffic to all subnets until a request to stop. Implementation Information The following information is necessary for implementing PIM-SM.
Refuse Multicast Traffic A host requesting to leave a multicast group sends an IGMP Leave message to the last-hop DR. If the host is the only remaining receiver for that group on the subnet, the last-hop DR is responsible for sending a PIM Prune message up the RPT to prune its branch to the RP. 1. After receiving an IGMP Leave message, the gateway removes the interface on which it is received from the outgoing interface list of the (*,G) entry.
ip multicast-routing Related Configuration Tasks The following are related PIM-SM configuration tasks. • • • • Configuring S,G Expiry Timers Configuring a Static Rendezvous Point Configuring a Designated Router Creating Multicast Boundaries and Domains Enable PIM-SM You must enable PIM-SM on each participating interface. 1. Enable multicast routing on the system. CONFIGURATION mode ip multicast-routing 2. Enable PIM-Sparse mode.
(10.87.31.5, 192.1.2.1), uptime 00:01:24, expires 00:02:26, flags: FT Incoming interface: TenGigabitEthernet 2/11, RPF neighbor 0.0.0.0 Outgoing interface list: TenGigabitEthernet 1/11 TenGigabitEthernet 1/12 TenGigabitEthernet 2/13 --More-- Configuring S,G Expiry Timers By default, S, G entries expire in 210 seconds. You can configure a global expiry time (for all [S,G] entries) or configure an expiry time for a particular entry.
Configuring a Static Rendezvous Point The rendezvous point (RP) is a PIM-enabled interface on a router that acts as the root a group-specific tree; every group must have an RP. • Identify an RP by the IP address of a PIM-enabled or Loopback interface. ip pim rp-address Example of Viewing an RP on a Loopback Interface Dell#sh run int loop0 ! interface Loopback 0 ip address 1.1.1.1/32 ip pim sparse-mode no shutdown Dell#sh run pim ! ip pim rp-address 1.1.1.1 group-address 224.0.0.
• Change the interval at which a router sends hello messages. INTERFACE mode ip pim query-interval seconds • Display the current value of these parameter. EXEC Privilege mode show ip pim interface Creating Multicast Boundaries and Domains A PIM domain is a contiguous set of routers that all implement PIM and are configured to operate within a common boundary defined by PIM multicast border routers (PMBRs). PMBRs connect each PIM domain to the rest of the Internet.
39 PIM Source-Specific Mode (PIM-SSM) PIM source-specific mode (PIM-SSM) is a multicast protocol that forwards multicast traffic from a single source to a subnet. In the other versions of protocol independent multicast (PIM), a receiver subscribes to a group only. The receiver receives traffic not just from the source in which it is interested but from all sources sending to that group.
Enabling PIM-SSM To enable PIM-SSM, follow these steps. 1. Create an ACL that uses permit rules to specify what range of addresses should use SSM. CONFIGURATION mode ip access-list standard name 2. Enter the ip pim ssm-range command and specify the ACL you created. CONFIGURATION mode ip pim ssm-range acl-name Enabling PIM-SSM To display address ranges in the PIM-SSM range, use the show ip pim ssm-range command from EXEC Privilege mode. R1(conf)#do show run pim ! ip pim rp-address 10.11.12.
R1(conf)#do show run acl ! ip access-list standard map seq 5 permit host 239.0.0.2 ! ip access-list standard ssm seq 5 permit host 239.0.0.2 R1(conf)#ip igmp ssm-map map 10.11.5.2 R1(conf)#do show ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface Mode Uptime Expires 239.0.0.2 Vlan 300 IGMPv2-Compat 00:00:07 Never Member Ports: Te 1/1 239.0.0.1 Vlan 400 INCLUDE 00:00:10 Never 10.11.4.2 R1(conf)#show ip igmp ssm-map Last Reporter 10.11.3.
SSM Map Information Group : 239.0.0.2 Source(s) : 10.11.5.2 R1(conf)#do show ip igmp groups detail Interface Group Uptime Expires Router mode Last reporter Last reporter mode Last report Group source Source address 10.11.5.2 00:00:01 Vlan 300 239.0.0.2 00:00:01 Never IGMPv2-Compat 10.11.3.2 IGMPv2 received Join list Uptime Expires Never Interface Vlan 400 Group 239.0.0.1 Uptime 00:00:05 Expires Never Router mode INCLUDE Last reporter 10.11.4.
40 Port Monitoring Port monitoring (also referred to as mirroring ) allows you to monitor ingress and/or egress traffic on specified ports. The mirrored traffic can be sent to a port to which a network analyzer is connected to inspect or troubleshoot the traffic. Mirroring is used for monitoring Ingress or Egress or both Ingress and Egress traffic on a specific port(s). This mirrored traffic can be sent to a port where a network sniffer can connect and monitor the traffic.
In the following examples, ports 1/13, 1/14, 1/15, and 1/16 all belong to the same port-pipe. They are pointing to four different destinations (1/1, 1/2, 1/3, and 1/37). Now it is not possible for another source port from the same port-pipe (for example, 1/17) to point to another new destination (for example, 1/4). If you attempt to configure another destination (to create 5 MG port), this message displays: % Error will be thrown in case of RPM and ERPM features.
Figure 104. Port Monitoring Configurations Dell Networking OS Behavior: All monitored frames are tagged if the configured monitoring direction is egress (TX), regardless of whether the monitored port (MD) is a Layer 2 or Layer 3 port. If the MD port is a Layer 2 port, the frames are tagged with the VLAN ID of the VLAN to which the MD belongs. If the MD port is a Layer 3 port, the frames are tagged with VLAN ID 4095.
0 Te 1/1 Te 1/2 rx Port N/A N/A Dell(conf)#monitor session 0 Dell(conf-mon-sess-0)#source po 10 dest ten 1/2 dir rx Dell(conf-mon-sess-0)#do show monitor session SessID Source Destination Dir Mode Source IP ------ ------------------ ---- --------0 Te 1/1 Te 1/2 rx Port N/A 0 Po 10 Te 1/2 rx Port N/A Dest IP -------N/A N/A Dell(conf)#monitor session 1 Dell(conf-mon-sess-1)#source vl 40 dest ten 1/3 dir rx Dell(conf-mon-sess-1)#flow-based enable Dell(conf-mon-sess-1)#exit Dell(conf)#do show monitor s
MONITOR SESSION mode flow-based enable 2. Define in access-list rules that include the keyword monitor. For port monitoring, Dell Networking OS only considers traffic matching rules with the keyword monitor. CONFIGURATION mode ip access-list Refer to Access Control Lists (ACLs). 3. Apply the ACL to the monitored port.
intermediate switch that participates in the transport of mirrored traffic must be configured with the reserved L2 VLAN. Remote port monitoring supports mirroring sessions in which multiple source and destination ports are distributed across multiple switches Remote Port Mirroring Example Remote port mirroring uses the analyzers shown in the aggregation network in Site A. The VLAN traffic on monitored links from the access network is tagged and assigned to a dedicated L2 VLAN.
• A remote port mirroring session mirrors monitored traffic by prefixing the reserved VLAN tag to monitored packets so that they are copied to the reserve VLAN. • Mirrored traffic is transported across the network using 802.1Q-in-802.1Q tunneling. The source address, destination address and original VLAN ID of the mirrored packet are preserved with the tagged VLAN header. Untagged source packets are tagged with the reserve VLAN ID.
• You cannot configure a source port channel or source VLAN in a source session if the port channel or VLAN has a member port that is configured as a destination port in a remote-port mirroring session. • A destination port for remote port mirroring cannot be used as a source port, including the session in which the port functions as the destination port. • A destination port cannot be used in any spanning tree instance. • The reserved VLAN used to transport mirrored traffic must be a L2 VLAN.
3 source Interface | Range Specify the port or list of ports that needs to be monitored 4 direction Specify rx, tx or both in case to monitor ingress/egress or both ingress and egress packets on the specified port.. 5 rpm source-ip  dest-ip  Specify the source ip address and the destination ip where the packet needs to be sent. 6  flow-based enable Specify flow-based enable for mirroring on a flow by flow basis and also for vlan as source.
Dell(conf)#end Dell# Dell#show monitor session SessID Source Destination ------ ---------------1 Te 1/5 remote-vlan 10 2 Vl 100 remote-vlan 20 3 Po 10 remote-vlan 30 Dell# Dir --rx rx both Mode ---Port Flow Port Source IP --------N/A N/A N/A Dest IP -------N/A N/A N/A Configuring the sample Source Remote Port Mirroring Dell(conf)#inte te 1/1 Dell(conf-if-te-1/1)#switchport Dell(conf-if-te-1/1)#no shutdown Dell(conf-if-te-1/1)#exit Dell(conf)#interface te 1/2 Dell(conf-if-te-1/2)#switchport Dell(conf-if
1. Enable control plane egress acl using the following command: 2. Create an extended MAC access list and add a deny rule of (0x0180c2xxxxxx) packets using the following commands: mac control-plane egress-acl mac access-list extended mac2 seq 5 deny any 01:80:c2:00:00:00 00:00:00:ff:ff:ff count 3. Apply ACL on that RPM VLAN. In this example RPM vlan is 10.
• Same port can be configured as both source and destination in an ERSPAN session. • TTL and ToS values can be configured in IP header of ERSPAN traffic. Configuration steps for ERPM To configure an ERPM session: Table 67. Configuration steps for ERPM Step Command Purpose 1 configure terminal Enter global configuration mode. 2 monitor session  type erpm Specify a session ID and ERPM as the type of monitoring session, and enter Monitoring-Session configuration mode.
interface Vlan 11 no ip address tagged TenGigabitEthernet 1/1-3 mac access-group flow in <<<<<<<<<<<<<< Only ingress packets are supported for mirroring shutdown Dell# ERPM Behavior on a typical Dell Networking OS The Dell Networking OS is designed to support only the Encapsulation of the data received / transmitted at the specified source port (Port A). An ERPM destination session / decapsulation of the ERPM packets at the destination Switch are not supported. Figure 107.
– Some tools support options to edit the capture file. We can make use of such features (for example: editcap ) and chop the ERPM header part and save it to a new trace file. This new file (i.e. the original mirrored packet) can be converted back into stream and fed to any egress interface. b. Using Python script – Either have a Linux server's ethernet port ip as the ERPM destination ip or connect the ingress interface of the server to the ERPM MirrorToPort.
41 Private VLANs (PVLAN) The private VLAN (PVLAN) feature is supported on Dell Networking OS. For syntax details about the commands described in this chapter, refer to the Private VLANs commands chapter in the Dell Networking OS Command Line Reference Guide. Private VLANs extend the Dell Networking OS security suite by providing Layer 2 isolation between ports within the same virtual local area network (VLAN).
– There are two types of secondary VLAN — community VLAN and isolated VLAN. PVLAN port types include: • Community port — a port that belongs to a community VLAN and is allowed to communicate with other ports in the same community VLAN and with promiscuous ports. • Host port — in the context of a private VLAN, is a port in a secondary VLAN: – The port must first be assigned that role in INTERFACE mode. – A port assigned the host role cannot be added to a regular VLAN.
• Display primary-secondary VLAN mapping. EXEC mode or EXEC Privilege mode show vlan private-vlan mapping • Set the PVLAN mode of the selected port. INTERFACE switchport mode private-vlan {host | promiscuous | trunk} NOTE: Secondary VLANs are Layer 2 VLANs, so even if they are operationally down while primary VLANs are operationally up, Layer 3 traffic is still transmitted across secondary VLANs. NOTE: The outputs of the show arp and show vlan commands provide PVLAN data.
The following example shows the switchport mode private-vlan command on a port and on a port channel.
ip address ip address 7. (OPTIONAL) Enable/disable Layer 3 communication between secondary VLANs. INTERFACE VLAN mode ip local-proxy-arp NOTE: If a promiscuous or host port is untagged in a VLAN and it receives a tagged packet in the same VLAN, the packet is NOT dropped. Creating a Community VLAN A community VLAN is a secondary VLAN of the primary VLAN in a private VLAN. The ports in a community VLAN can talk to each other and with the promiscuous ports in the primary VLAN. 1.
INTERFACE VLAN mode tagged interface or untagged interface You can enter the interfaces singly or in range format, either comma-delimited (slot/port,port,port) or hyphenated (slot/ port-port). You can only add ports defined as host to the VLAN. Example of Configuring Private VLAN Members The following example shows the use of the PVLAN commands that are used in VLAN INTERFACE mode to configure the PVLAN member VLANs (primary, community, and isolated VLANs).
Private VLAN Configuration Example The following example shows a private VLAN topology. Figure 108. Sample Private VLAN Topology The following configuration is based on the example diagram for the Z9500: • • • • • Te 1/1 and Te 1/23 are configured as promiscuous ports, assigned to the primary VLAN, VLAN 4000. Te 1/25 is configured as a PVLAN trunk port, also assigned to the primary VLAN 4000. Te 1/24 and Te 1/47 are configured as host ports and assigned to the isolated VLAN, VLAN 4003.
• Te 1/3 is a promiscuous port and Te 1/25 is a PVLAN trunk port, assigned to the primary VLAN 4000. • Te 1/4-6 are host ports. Te 1/4 and Te 1/5 are assigned to the community VLAN 4001, while Te 1/6 is assigned to the isolated VLAN 4003. The result is that: • The S4810 ports would have the same intra-switch communication characteristics as described for the Z9500.
The following example shows using the show vlan private-vlan mapping command. S50-1#show vlan private-vlan mapping Private Vlan: Primary : 4000 Isolated : 4003 Community : 4001 NOTE: In the following example, notice the addition of the PVLAN codes – P, I, and C – in the left column. The following example shows viewing the VLAN status.
42 Per-VLAN Spanning Tree Plus (PVST+) Per-VLAN spanning tree plus (PVST+) is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN). Protocol Overview PVST+ is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN).
Dell Networking Term IEEE Specification Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information • The Dell Networking OS implementation of PVST+ is based on IEEE Standard 802.1w. • The Dell Networking OS implementation of PVST+ uses IEEE 802.1s costs as the default costs (as shown in the following table). Other implementations use IEEE 802.1w costs as the default costs.
• Disable PVST+ globally. PROTOCOL PVST mode disable • Disable PVST+ on an interface, or remove a PVST+ parameter configuration. INTERFACE mode no spanning-tree pvst Example of Viewing PVST+ Configuration To display your PVST+ configuration, use the show config command from PROTOCOL PVST mode.
The bridge with the bridge value for bridge priority is elected root. Because all bridges use the default priority (until configured otherwise), the lowest MAC address is used as a tie-breaker. To increase the likelihood that a bridge is selected as the STP root, assign bridges a low non-default value for bridge priority. To assign a bridge priority, use the following command. • Assign a bridge priority. PROTOCOL PVST mode vlan bridge-priority The range is from 0 to 61440. The default is 32768.
• The default is 15 seconds. Change the hello-time parameter. PROTOCOL PVST mode vlan hello-time NOTE: With large configurations (especially those configurations with more ports), Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • The default is 2 seconds. Change the max-age parameter. PROTOCOL PVST mode vlan max-age The range is from 6 to 40. The default is 20 seconds. The values for global PVST+ parameters are given in the output of the show spanning-tree pvst command.
• Refer to the table for the default values. Change the port priority of an interface. INTERFACE mode spanning-tree pvst vlan priority. The range is from 0 to 240, in increments of 16. The default is 128. The values for interface PVST+ parameters are given in the output of the show spanning-tree pvst command, as previously shown. Configuring an EdgePort The EdgePort feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner.
Networking OS from executing this action, use the no spanning-tree pvst err-disable cause invalid-pvstbpdu command. After you configure this command, if the port receives a PVST+ BPDU, the BPDU is dropped and the port remains operational. Enabling PVST+ Extend System ID In the following example, ports P1 and P2 are untagged members of different VLANs. These ports are untagged because the hub is VLAN unaware.
switchport no shutdown ! interface TenGigabitEthernet 1/32 no ip address switchport no shutdown ! protocol spanning-tree pvst no disable vlan 100 bridge-priority 4096 interface Vlan 100 no ip address tagged TenGigabitEthernet 1/22,32 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 1/22,32 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/22,32 no shutdown ! protocol spanning-tree pvst no disable vlan 100 bridge-priority 4096 Example of PVST+ Configuration (
no shutdown ! interface Vlan 100 no ip address tagged TenGigabitEthernet 3/12,22 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 3/12,22 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 3/12,22 no shutdown ! protocol spanning-tree pvst no disable vlan 300 bridge-priority 4096 668 Per-VLAN Spanning Tree Plus (PVST+)
43 Quality of Service (QoS) This chapter describes how to use and configure Quality of Service service (QoS) features on the switch. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 70.
Feature Direction Create Input Policy Maps Ingress Honor DSCP Values on Ingress Packets Ingress Honoring dot1p Values on Ingress Packets Ingress Create Output Policy Maps Egress Specify an Aggregate QoS Policy Egress Create Output Policy Maps Egress Enabling QoS Rate Adjustment Enabling Strict-Priority Queueing Egress Weighted Random Early Detection Create WRED Profiles Egress Figure 112.
• RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 Headers • RFC 2475, An Architecture for Differentiated Services • RFC 2597, Assured Forwarding PHB Group • RFC 2598, An Expedited Forwarding PHB You cannot configure port-based and policy-based QoS on the same interface. Port-Based QoS Configurations You can configure the following QoS features on an interface.
NOTE: You cannot configure service-policy input and service-class dynamic dot1p on the same interface. • Honor dot1p priorities on ingress traffic. INTERFACE mode service-class dynamic dot1p Example of Configuring an Interface to Honor dot1p Priorities on Ingress Traffic Dell#configure terminal Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#service-class dynamic dot1p Dell(conf-if-te-1/1)#end Priority-Tagged Frames on the Default VLAN Priority-tagged frames are 802.
Dell Networking OS Behavior: Rate shaping is effectively rate limiting because of its smaller buffer size. Rate shaping on tagged ports is slightly greater than the configured rate and rate shaping on untagged ports is slightly less than configured rate. Rate shaping buffers, rather than drops, traffic exceeding the specified rate until the buffer is exhausted. If any stream exceeds the configured bandwidth on a continuous basis, it can consume all of the buffer space that is allocated to the port.
Classify Traffic Class maps differentiate traffic so that you can apply separate quality of service policies to different types of traffic. For both class maps, Layer 2 and Layer 3, Dell Networking OS matches packets against match criteria in the order that you configure them. Creating a Layer 3 Class Map A Layer 3 class map differentiates ingress packets based on the DSCP value or IP precedence, and characteristics defined in an IP ACL.
The following example matches IPv6 traffic with a DSCP value of 40. Dell(conf)# class-map match-all test Dell(conf-class-map)# match ipv6 dscp 40 The following example matches IPv4 and IPv6 traffic with a precedence value of 3. Dell(conf)# class-map match-any test1 Dell(conf-class-map)#match ip-any precedence 3 Creating a Layer 2 Class Map All class maps are Layer 3 by default; however, you can create a Layer 2 class map by specifying the layer2 option with the class-map command.
Displaying Configured Class Maps and Match Criteria To display all class-maps or a specific class map, use the following command. Dell Networking OS Behavior: An explicit “deny any" rule in a Layer 3 ACL used in a (match any or match all) class-map creates a "default to Queue 0" entry in the CAM, which causes unintended traffic classification. In the following example, traffic is classified in two Queues, 1 and 2. Class-map ClassAF1 is “match any,” and ClassAF2 is “match all”.
The following example shows correct traffic classifications. Dell#show cam layer3-qos interface tengigabitethernet 2/4 Cam Port Dscp Proto Tcp Src Dst SrcIp DstIp DSCP Queue Index Flag Port Port Marking ------------------------------------------------------------------------20416 1 18 IP 0x0 0 0 23.64.0.5/32 0.0.0.0/0 20 2 20417 1 0 IP 0x0 0 0 23.64.0.2/32 0.0.0.0/0 10 1 20418 1 0 IP 0x0 0 0 23.64.0.3/32 0.0.0.0/0 12 1 20419 1 10 0 0x0 0 0 0.0.0.0/0 0.0.0.0/0 14 1 24511 1 0 0 0x0 0 0 0.0.0.0/0 0.0.0.
Setting a dot1p Value for Egress Packets To set a dot1p value for egress packets, use the following command. • Set a dscp or dot1p value for egress packets. QOS-POLICY-IN mode set mac-dot1p Creating an Output QoS Policy To create an output QoS policy, use the following commands. 1. Create an output QoS policy. CONFIGURATION mode qos-policy-output 2.
When you assign a percentage to one queue, note that this change also affects the amount of bandwidth that is allocated to other queues. Therefore, whenever you are allocating bandwidth to one queue, Dell Networking recommends evaluating your bandwidth requirements for all other queues as well. • Assign each queue a bandwidth percentage ranging from 1 to 100%, in increments of 1%. bandwidth-percentage Specifying WRED Drop Precedence You can configure the WRED drop precedence in an output QoS policy.
Honoring DSCP Values on Ingress Packets Dell Networking OS provides the ability to honor DSCP values on ingress packets using Trust DSCP feature. The following table lists the standard DSCP definitions and indicates to which queues Dell Networking OS maps DSCP values. When you configure trust DSCP, the matched packets and matched bytes counters are not incremented in the show qos statistics. Table 73.
dot1p Queue ID 5 3 6 3 7 3 The dot1p value is also honored for frames on the default VLAN. For more information, refer to Priority-Tagged Frames on the Default VLAN. • Enable the trust dot1p feature. POLICY-MAP-IN mode trust dot1p Mapping dot1p Values to Service Queues All traffic is by default mapped to the same queue, Queue 0. If you honor dot1p on ingress, you can create service classes based the queueing strategy in Honoring dot1p Values on Ingress Packets.
Creating Output Policy Maps 1. Create an output policy map. CONFIGURATION mode policy-map-output 2. After you create an output policy map, do one or more of the following: Applying an Output QoS Policy to a Queue Specifying an Aggregate QoS Policy Applying an Output Policy Map to an Interface 3. Apply the policy map to an interface. Applying an Output QoS Policy to a Queue To apply an output QoS policy to a queue, use the following command. • Apply an output QoS policy to queues.
The default setting for each DSCP value (0-63) is green (low drop precedence). The DSCP color map allows you to set the number of specific DSCP values to yellow or red. Traffic marked as yellow delivers traffic to the egress interface, which will either transmit or drop the packet based on configured queuing behavior. Traffic marked as red (high drop precedence) is dropped. Important Points to Remember • All DSCP values that are not specified as yellow or red are colored green (low drop precedence).
red 20,30 Dscp-color-map mapTWO yellow 16,55 Display a specific DSCP color map. Dell# show qos dscp-color-map mapTWO Dscp-color-map mapTWO yellow 16,55 Displaying a DSCP Color Policy Configuration To display the DSCP color policy configuration for one or all interfaces, use the show qos dscp-color-policy {summary [interface] | detail {interface}} command in EXEC mode. summary: Displays summary information about a color policy on one or more interfaces.
QoS rate adjustment is disabled by default. • Specify the number of bytes of packet overhead to include in rate limiting, policing, and shaping calculations. CONFIGURATION mode qos-rate-adjust overhead-bytes For example, to include the Preamble and SFD, type qos-rate-adjust 8. For variable length overhead fields, know the number of bytes you want to include. The default is disabled. The range is from 1 to 31.
Figure 114. Packet Drop Rate for WRED You can create a custom WRED profile or use one of the five pre-defined profiles. Table 76. Pre-Defined WRED Profiles Default Profile Name Minimum Threshold Maximum Threshold Maximum Drop Rate wred_drop 0 0 100 wred_teng_y 467 4671 100 wred_teng_g 467 4671 50 wred_fortyg_y 467 4671 50 wred_fortyg_g 467 4671 25 Creating WRED Profiles To create WRED profiles, use the following commands. 1. Create a WRED profile.
• If you do not configure Dell Networking OS to honor DSCP values on ingress (refer to Honoring DSCP Values on Ingress Packets), all traffic defaults to green drop precedence. • Assign a WRED profile to either yellow or green traffic. QOS-POLICY-OUT mode wred Displaying Default and Configured WRED Profiles To display the default and configured WRED profiles, use the following command. • Display default and configured WRED profiles and their threshold values.
Example of the show qos statistics egress-queue Command Pre-Calculating Available QoS CAM Space Before Dell Networking OS version 7.3.1, there was no way to measure the number of CAM entries a policy-map would consume (the number of CAM entries that a rule uses is not predictable; from 1 to 16 entries might be used per rule depending upon its complexity). Therefore, it was possible to apply to an interface a policy-map that requires more entries than are available.
space on the buffer and traffic manager (BTM) (ingress or egress) can be consumed by only one or few types of traffic, leaving no space for other types. You can apply a WRED profile to a policy-map so that the specified traffic can be prevented from consuming too much of the BTM resources. WRED drops packets when the average queue length exceeds the configured threshold value to signify congestion.
The following table describes the WRED and ECN operations that occur for various scenarios of WRED and ECN configuration on the queue and service pool. (X denotes not-applicable in the table, 1 indicates that the setting is enabled, 0 represents a disabled setting. ) Table 77.
Dell(conf-wred) #threshold min 300 max 400 max-drop-rate 80 4. Create a global buffer pool that is a shared buffer pool accessed by multiple queues when the minimum guaranteed buffers for the queue are consumed. S4820T platform supports four global service-pools in the egress direction. mode Dell(conf) #service-pool wred green pool0 thresh-1 pool1 thresh-2 Dell(conf) #service-pool wred yellow pool0 thresh-3 pool1 thresh-4 Dell(conf) #service-pool wred weight pool0 11 pool1 4 5.
class-map match-any ecn_0_cmap match ip access-group ecn_0 set-color yellow ! policy-map-input ecn_0_pmap service-queue 0 class-map ecn_0_cmap Applying this policy-map “ecn_0_pmap” will mark all the packets with ‘ecn == 0’ as yellow packets on queue0 (default queue). Classifying Incoming Packets Using ECN and Color-Marking Explicit Congestion Notification (ECN) is a capability that enhances WRED by marking the packets instead of causing WRED to drop them when the threshold value is exceeded.
You can use the ecn keyword with the ip access-list standard, ip access-list extended, seq, and permit commands for standard and extended IPv4 ACLs to match incoming packets with the specified ECN values. Similar to ‘dscp’ qualifier in the existing L3 ACL command, the ‘ecn’ qualifier can be used along with all other supported ACL match qualifiers such as SIP/DIP/TCP/UDP/SRC PORT/DST PORT/ ICMP. Until Release 9.3(0.
Approach without explicit ECN match qualifiers for ECN packets: ! ip access-list standard dscp_50 seq 5 permit any dscp 50 ! ip access-list standard dscp_40 seq 5 permit any dscp 40 ! ip access-list standard dscp_50_non_ecn seq 5 permit any dscp 50 ecn 0 ! ip access-list standard dscp_40_non_ecn seq 5 permit any dscp 40 ecn 0 ! class-map match-any class_dscp_40 match ip access-group dscp_40_non_ecn set-color yellow match ip access-group dscp_40 ! class-map match-any class_dscp_50 match ip access-group dscp_
Applying Layer 2 Match Criteria on a Layer 3 Interface To process Layer 3 packets that contain a dot1p (IEEE 802.1p) VLAN Layer 2 header, configure VLAN tags on a Layer 3 port interface which is configured with an IP address but has no VLAN associated with it. You can also configure a VLAN sub-interface on the port interface and apply a policy map that classifies packets using the dot1p VLAN ID.
CONFIGURATION mode Dell(conf)#qos-policy-input pp_qospolicy 5. Configure the DSCP value to be set on matched packets. QOS-POLICY-IN mode Dell(conf-qos-policy-in)#set ip-dscp 5 6. Create an input policy map. CONFIGURATION mode Dell(conf)#policy-map-input pp_policmap 7. Create a service queue to associate the class map and QoS policy map.
Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 9 (interface Fo 1/152) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 13 (interface Fo 1/156) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 17 (interface Fo 1/160) --------------------------------------Q# TYPE Q# TOTAL BUFFERE
UCAST UCAST UCAST UCAST UCAST UCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST 698 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 Quality of Service (QoS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 Routing Information Protocol (RIP) The Routing Information Protocol (RIP) tracks distances or hop counts to nearby routers when establishing network connections and is based on a distance-vector algorithm. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter. Protocol Overview RIP is the oldest interior gateway protocol.
Table 78. RIP Defaults Feature Default Interfaces running RIP • • Listen to RIPv1 and RIPv2 Transmit RIPv1 RIP timers • • • • update timer = 30 seconds invalid timer = 180 seconds holddown timer = 180 seconds flush timer = 240 seconds Auto summarization Enabled ECMP paths supported 16 Configuration Information By default, RIP is disabled in Dell Networking OS. To configure RIP, you must use commands in two modes: ROUTER RIP and INTERFACE.
Examples of Verifying RIP is Enabled and Viewing RIP Routes After designating networks with which the system is to exchange RIP information, ensure that all devices on that network are configured to exchange RIP information. The Dell Networking OS default is to send RIPv1 and to receive RIPv1 and RIPv2. To change the RIP version globally, use the version command in ROUTER RIP mode.
8.0.0.0/8 auto-summary 12.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 12.0.0.0/8 auto-summary 20.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 20.0.0.0/8 auto-summary 29.10.10.0/24 directly connected,Fa 1/49 29.0.0.0/8 auto-summary 31.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 31.0.0.0/8 auto-summary 192.162.2.0/24 [120/1] via 29.10.10.12, 00:01:21, Fa 192.162.2.0/24 auto-summary 192.161.1.0/24 [120/1] via 29.10.10.12, 00:00:27, Fa 192.161.1.0/24 auto-summary 192.162.3.0/24 [120/1] via 29.10.10.
ROUTER RIP mode distribute-list prefix-list-name in • Assign a configured prefix list to all outgoing RIP routes. ROUTER RIP mode distribute-list prefix-list-name out To view the current RIP configuration, use the show running-config command in EXEC mode or the show config command in ROUTER RIP mode. Adding RIP Routes from Other Instances In addition to filtering routes, you can add routes from other routing instances or protocols to the RIP process.
• version {1 | 2} Set the RIP versions received on that interface. INTERFACE mode • ip rip receive version [1] [2] Set the RIP versions sent out on that interface. INTERFACE mode ip rip send version [1] [2] Examples of the RIP Process To see whether the version command is configured, use the show config command in ROUTER RIP mode. The following example shows the RIP configuration after the ROUTER RIP mode version command is set to RIPv2.
Routing Information Sources: Gateway Distance Last Update Distance: (default is 120) Dell# Generating a Default Route Traffic is forwarded to the default route when the traffic’s network is not explicitly listed in the routing table. Default routes are not enabled in RIP unless specified. Use the default-information originate command in ROUTER RIP mode to generate a default route into RIP.
– weight: the range is from 1 to 255. The default is 120. – ip-address mask: the IP address in dotted decimal format (A.B.C.D), and the mask in slash format (/x). • – access-list-name: the name of a configured IP ACL. Apply an additional number to the incoming or outgoing route metrics.
Figure 115. RIP Topology Example RIP Configuration on Core2 The following example shows how to configure RIPv2 on a host named Core2. Example of Configuring RIPv2 on Core 2 Core2(conf-if-te-2/3)# Core2(conf-if-te-2/3)#router rip Core2(conf-router_rip)#ver 2 Core2(conf-router_rip)#network 10.200.10.0 Core2(conf-router_rip)#network 10.300.10.0 Core2(conf-router_rip)#network 10.11.10.0 Core2(conf-router_rip)#network 10.11.20.0 Core2(conf-router_rip)#show config ! router rip network 10.0.0.
Codes: C - connected, S - static, R - RIP, B - BGP, IN - internal BGP, EX - external BGP,LO - Locally Originated, O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Dist/Metric Last Change ----------- ------- ----------- -
network 192.168.1.0 network 192.168.2.0 version 2 Core3(conf-router_rip)# Core 3 RIP Output The examples in this section show the core 2 RIP output. • • • To display Core 3 RIP database, use the show ip rip database command. To display Core 3 RIP setup, use the show ip route command. To display Core 3 RIP activity, use the show ip protocols command.
Default redistribution metric is 1 Default version control: receive version 2, send version 2 Interface Recv Send TenGigabitEthernet 3/21 2 2 TenGigabitEthernet 3/11 2 2 TenGigabitEthernet 3/24 2 2 TenGigabitEthernet 3/23 2 2 Routing for Networks: 10.11.20.0 10.11.30.0 192.168.2.0 192.168.1.0 Routing Information Sources: Gateway Distance Last Update 10.11.20.
no shutdown ! router rip version 2 network 10.11.20.0 network 10.11.30.0 network 192.168.1.0 network 192.168.2.
45 Remote Monitoring (RMON) RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell Networking Ethernet interfaces. RMON operates with the simple network management protocol (SNMP) and monitors all nodes on a local area network (LAN) segment. RMON monitors traffic passing through the router and segment traffic not destined for the router.
Setting the RMON Alarm To set an alarm on any MIB object, use the rmon alarm or rmon hc-alarm command in GLOBAL CONFIGURATION mode. • Set an alarm on any MIB object.
– number: assigned event number, which is identical to the eventIndex in the eventTable in the RMON MIB. The value must be an integer from 1 to 65,535 and be unique in the RMON Event Table. – log: (Optional) generates an RMON log entry when the event is triggered and sets the eventType in the RMON MIB to log or log-and-trap. Default is no log. – trap community: (Optional) SNMP community string used for this trap.
– integer: a value from 1 to 65,535 that identifies the RMON group of statistics. The value must be a unique index in the RMON History Table. – owner: (Optional) specifies the name of the owner of the RMON group of statistics. The default is a null-terminated string. – ownername: (Optional) records the name of the owner of the RMON group of statistics. – buckets: (Optional) specifies the maximum number of buckets desired for the RMON collection history group of statistics.
46 Rapid Spanning Tree Protocol (RSTP) The Rapid Spanning Tree Protocol (RSTP) is a Layer 2 protocol — specified by IEEE 802.1w — that is essentially the same as spanning-tree protocol (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). Protocol Overview RSTP is a Layer 2 protocol — specified by IEEE 802.
• Adding a group of ports to a range of VLANs sends multiple messages to the rapid spanning tree protocol (RSTP) task, avoid using the range command. When using the range command, Dell Networking recommends limiting the range to five ports and 40 VLANs. RSTP and VLT Virtual link trunking (VLT) provides loop-free redundant topologies and does not require RSTP. RSTP can cause temporary port state blocking and may cause topology changes after link or node failures.
• Bridges block a redundant path by disabling one of the link ports. To enable RSTP globally for all Layer 2 interfaces, use the following commands. 1. Enter PROTOCOL SPANNING TREE RSTP mode. CONFIGURATION mode protocol spanning-tree rstp 2. Enable RSTP. PROTOCOL SPANNING TREE RSTP mode no disable Examples of the RSTP show Commands To disable RSTP globally for all Layer 2 interfaces, enter the disable command from PROTOCOL SPANNING TREE RSTP mode.
Configured hello time 2, max age 20, forward delay 15, max hops 0 We are the root Current root has priority 32768, Address 0001.e801.cbb4 Number of topology changes 4, last change occurred 00:02:17 ago on Te 1/26 Port 377 (TenGigabitEthernet 2/1) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.377 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.
Adding and Removing Interfaces To add and remove interfaces, use the following commands. To add an interface to the Rapid Spanning Tree topology, configure it for Layer 2 and it is automatically added. If you previously disabled RSTP on the interface using the command no spanning-tree 0 command, re-enable it using the spanning-tree 0 command. • Remove an interface from the Rapid Spanning Tree topology. no spanning-tree 0 Modifying Global Parameters You can modify RSTP parameters.
PROTOCOL SPANNING TREE RSTP mode hello-time seconds NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • The default is 2 seconds. Change the max-age parameter. PROTOCOL SPANNING TREE RSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree rstp command from EXEC privilege mode.
Enabling SNMP Traps for Root Elections and Topology Changes To enable SNMP traps collectively, use this command. Enable SNMP traps for RSTP, MSTP, and PVST+ collectively. snmp-server enable traps xstp Influencing RSTP Root Selection RSTP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it is selected as the root bridge. To change the bridge priority, use the following command.
– Disable the shutdown-on-violation command on the interface (the no spanning-tree stp-id portfast [bpduguard | [shutdown-on-violation]] command). – Disable spanning tree on the interface (the no spanning-tree command in INTERFACE mode). – Disable global spanning tree (the no spanning-tree command in CONFIGURATION mode). To enable EdgePort on an interface, use the following command. • Enable EdgePort on an interface.
47 Software-Defined Networking (SDN) Dell Networking operating software supports Software-Defined Networking (SDN). For more information, refer to the SDN Deployment Guide.
48 Security This chapter describes several ways to provide security to the Dell Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell Networking OS Command Reference Guide. AAA Accounting Accounting, authentication, and authorization (AAA) accounting is part of the AAA security model. For details about commands related to AAA security, refer to the Security chapter in the Dell Networking OS Command Reference Guide.
– start-stop: use for more accounting information, to send a start-accounting notice at the beginning of the requested event and a stop-accounting notice at the end. – wait-start: ensures that the TACACS+ security server acknowledges the start notice before granting the user's process request. – stop-only: use for minimal accounting; instructs the TACACS+ server to send a stop record accounting notice at the end of the requested user process. – tacacs+: designate the security service.
To obtain accounting records displaying information about users currently logged in, use the following command. • Step through all active sessions and print all the accounting records for the actively accounted functions.
cannot be verified. Only the console port behaves this way, and does so to ensure that users are not locked out of the system if network-wide issue prevents access to these servers. 1. Define an authentication method-list (method-list-name) or specify the default. CONFIGURATION mode aaa authentication login {method-list-name | default} method1 [... method4] The default method-list is applied to all terminal lines. Possible methods are: 2.
CONFIGURATION mode aaa authentication enable default radius tacacs 2. Establish a host address and password. CONFIGURATION mode radius-server host x.x.x.x key some-password 3. Establish a host address and password. CONFIGURATION mode tacacs-server host x.x.x.x key some-password Examples of the enable commands for RADIUS To get enable authentication from the RADIUS server and use TACACS as a backup, issue the following commands. The following example shows enabling authentication from the RADIUS server.
To enable the obscuring of passwords and keys, use the following command. • Turn on the obscuring of passwords and keys in the configuration. CONFIGURATION mode service obscure-passwords Example of Obscuring Password and Keys Dell(config)# service obscure-passwords AAA Authorization Dell Networking OS enables AAA new-model by default. You can set authorization to be either local or remote. Different combinations of authentication and authorization yield different results.
• Enabling and Disabling Privilege Levels (optional) For a complete listing of all commands related to Dell Networking OS privilege levels and passwords, refer to the Security chapter in the Dell Networking OS Command Reference Guide. Configuring a Username and Password In Dell Networking OS, you can assign a specific username to limit user access to the system. To configure a username and password, use the following command. • Assign a user name and password.
Configuring Custom Privilege Levels In addition to assigning privilege levels to the user, you can configure the privilege levels of commands so that they are visible in different privilege levels. Within Dell Networking OS, commands have certain privilege levels. With the privilege command, you can change the default level or you can reset their privilege level back to the default. • Assign the launch keyword (for example, configure) for the keyword’s command mode.
also assign the launch command for CONFIGURATION mode, configure, to the same privilege level as the snmp-server commands. Line 1: The user john is assigned privilege level 8 and assigned a password. Line 2: All other users are assigned a password to access privilege level 8. Line 3: The configure command is assigned to privilege level 8 because it needs to reach CONFIGURATION mode where the snmp-server commands are located.
• Configure a custom privilege level for the terminal lines. LINE mode privilege level level • – level level: The range is from 0 to 15. Levels 0, 1, and 15 are pre-configured. Levels 2 to 14 are available for custom configuration. Specify either a plain text or encrypted password. LINE mode password [encryption-type] password Configure the following optional and required parameters: – encryption-type: Enter 0 for plain text or 7 for encrypted text.
Example 1 Example 2 Version 2.00.1201. Copyright (C) 2009 American Megatrends, Inc. EVALUATION COPY. Press  or  to enter setup. Grub 1.99~rc1 (Dell Force10) Built by root at bsdlab on Thu_Aug_18_06:51:21_UTC_2011 Z9000 Boot selector Label 3.0.1.1 NetBoot Label 0.0.0.0 Entering Menu Grub 1.99~rc1 (Dell Force10) Built by root at bsdlab on Thu_Aug_18_06:51:21_UTC_2011 Z9000 Boot selector Label 3.0.1.1 NetBoot Label 0.0.0.
• ACL Configuration Information • Auto-Command • Privilege Levels After gaining authorization for the first time, you may configure these attributes. NOTE: RADIUS authentication/authorization is done for every login. There is no difference between first-time login and subsequent logins. Idle Time Every session line has its own idle-time. If the idle-time value is not changed, the default value of 30 minutes is used. RADIUS specifies idle-time allow for a user during a session before timeout.
For a complete listing of all Dell Networking OS commands related to RADIUS, refer to the Security chapter in the Dell Networking OS Command Reference Guide. NOTE: RADIUS authentication and authorization are done in a single step. Hence, authorization cannot be used independent of authentication. However, if you have configured RADIUS authorization and have not configured authentication, a message is logged stating this.
radius-server host {hostname | ip-address} [auth-port port-number] [retransmit retries] [timeout seconds] [key [encryption-type] key] Configure the optional communication parameters for the specific host: – auth-port port-number: the range is from 0 to 65535. Enter a UDP port number. The default is 1812. – retransmit retries: the range is from 0 to 100. Default is 3. – timeout seconds: the range is from 0 to 1000. Default is 5 seconds.
– seconds: the range is from 0 to 1000. Default is 5 seconds. To view the configuration of RADIUS communication parameters, use the show running-config command in EXEC Privilege mode. Monitoring RADIUS To view information on RADIUS transactions, use the following command. • View RADIUS transactions to troubleshoot problems. EXEC Privilege mode debug radius TACACS+ Dell Networking OS supports terminal access controller access control system (TACACS+ client, including support for login authentication.
4. Assign the method-list to the terminal line. LINE mode login authentication {method-list-name | default} Example of a Failed Authentication To view the configuration, use the show config in LINE mode or the show running-config tacacs+ command in EXEC Privilege mode. If authentication fails using the primary method, Dell Networking OS employs the second method (or third method, if necessary) automatically.
TACACS+ Remote Authentication The system takes the access class from the TACACS+ server. Access class is the class of service that restricts Telnet access and packet sizes. If you have configured remote authorization, the system ignores the access class you have configured for the VTY line and gets this access class information from the TACACS+ server. The system must know the username and password of the incoming user before it can fetch the access class from the server.
Command Authorization The AAA command authorization feature configures Dell Networking OS to send each configuration command to a TACACS server for authorization before it is added to the running configuration. By default, the AAA authorization commands configure the system to check both EXEC mode and CONFIGURATION mode commands. Use the no aaa authorization config-commands command to enable only EXEC mode command checking.
SSH server macs : hmac-md5,hmac-md5-96,hmac-sha1,hmac-sha1-96,hmac-sha2-256,hmacsha2-256-96. SSH server kex algorithms : diffie-hellman-group-exchange-sha1,diffie-hellman-group1sha1,diffie-hellman-group14-sha1. Password Authentication : enabled. Hostbased Authentication : disabled. RSA Authentication : disabled. Vty Encryption HMAC Remote IP Dell(conf)# To disable SSH server functions, use the no ip ssh server enable command.
• show crypto : display the public part of the SSH host-keys. • show ip ssh client-pub-keys : display the client public keys used in host-based authentication. • show ip ssh rsa-authentication : display the authorized-keys for the RSA authentication. Dell#copy scp: flash: Address or name of remote host []: 10.10.10.1 Port number of the server [22]: 99 Source file name []: test.
• diffie-hellman-group14-sha1 The default key exchange algorithms are the following: • diffie-hellman-group-exchange-sha1 • diffie-hellman-group1-sha1 • diffie-hellman-group14-sha1 When FIPS is enabled, the default is diffie-hellman-group14-sha1. Example of Configuring a Key Exchange Algorithm The following example shows you how to configure a key exchange algorithm.
cipher-list-: Enter a space-delimited list of ciphers the SSH server will support. The following ciphers are available. • 3des-cbc • aes128-cbc • aes192-cbc • aes256-cbc • aes128-ctr • aes192-ctr • aes256-ctr The default cipher list is 3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,aes128-ctr,aes192-ctr,aes256-ctr Example of Configuring a Cipher List The following example shows you how to configure a cipher list.
Using RSA Authentication of SSH The following procedure authenticates an SSH client based on an RSA key using RSA authentication. This method uses SSH version 2. 1. On the SSH client (Unix machine), generate an RSA key, as shown in the following example. 2. Copy the public key id_rsa.pub to the Dell Networking system. 3. Disable password authentication if enabled. CONFIGURATION mode no ip ssh password-authentication enable 4. Enable RSA authentication in SSH.
ip ssh pub-key-file flash://filename or ip ssh rhostsfile flash://filename Examples of Creating shosts and rhosts The following example shows creating shosts. admin@Unix_client# cd /etc/ssh admin@Unix_client# ls moduli sshd_config ssh_host_dsa_key.pub ssh_host_key.pub ssh_host_rsa_key.pub ssh_config ssh_host_dsa_key ssh_host_key ssh_host_rsa_key admin@Unix_client# cat ssh_host_rsa_key.
If the IP address in the RSA key does not match the IP address from which you attempt to log in, the following message appears. In this case, verify that the name and IP address of the client is contained in the file /etc/hosts: RSA Authentication Error. Telnet To use Telnet with SSH, first enable SSH, as previously described. By default, the Telnet daemon is enabled. If you want to disable the Telnet daemon, use the following command, or disable Telnet in the startup config.
excluded them from the VTY line with a deny-all access class. After users identify themselves, Dell Networking OS retrieves the access class from the local database and applies it. (Dell Networking OS then can close the connection if a user is denied access.) NOTE: If a VTY user logs in with RADIUS authentication, the privilege level is applied from the RADIUS server only if you configure RADIUS authentication. The following example shows how to allow or deny a Telnet connection to a user.
Role-Based Access Control With Role-Based Access Control (RBAC), access and authorization is controlled based on a user’s role. Users are granted permissions based on their user roles, not on their individual user ID. User roles are created for job functions and through those roles they acquire the permissions to perform their associated job function.
For greater security, the ability to view event, audit, and security system log is associated with user roles. For information about these topics, see Audit and Security Logs. Privilege-or-Role Mode versus Role-only Mode By default, the system provides access to commands determined by the user’s role or by the user’s privilege level. The user’s role takes precedence over a user’s privilege level.
authorization exec test line vty 1 login authentication test authorization exec test To enable role-based only AAA authorization: Dell(conf)#aaa authorization role-only System-Defined RBAC User Roles By default, the Dell Networking OS provides 4 system defined user roles. You can create up to 8 additional user roles. NOTE: You cannot delete any system defined roles.
Consider the following when creating a user role: • Only the system administrator and user-defined roles inherited from the system administrator can create roles and user names. Only the system administrator, security administrator, and roles inherited from these can use the "role" command to modify command permissions. The security administrator and roles inherited by security administrator can only modify permissions for commands they already have access to.
The following output displays the modes available for the role command. Dell (conf)#role configure exec interface line route-map router ? Global configuration mode Exec Mode Interface configuration mode Line Configuration mode Route map configuration mode Router configuration mode Examples: Deny Network Administrator from Using the show users Command.
The following example removes the secadmin access to LINE mode and then verifies that the security administrator can no longer access LINE mode, using the show role mode configure line command in EXEC Privilege mode.
• Configuring AAA Authentication for Roles • Configuring AAA Authorization for Roles • Configuring TACACS+ and RADIUS VSA Attributes for RBAC Configure AAA Authentication for Roles Authentication services verify the user ID and password combination. Users with defined roles and users with privileges are authenticated with the same mechanism. There are six methods available for authentication: radius, tacacs+, local, enable, line, and none.
The following configuration example applies a method list other than default to each VTY line. NOTE: Note that the methods were not applied to the console so the default methods (if configured) are applied there.
The format to create a Dell Network OS AV pair for privilege level is shell:priv-lvl= where number is a value between 0 and 15. Force10-avpair= ”shell:priv-lvl=15“ Example for Creating a AVP Pair for System Defined or User-Defined Role The following section shows you how to create an AV pair to allow a user to login from a network access server to have access to commands based on the user’s role.
Active accounted actions on tty2, User john Priv 1 Role netoperator Task ID 1, EXEC Accounting record, 00:00:30 Elapsed, service=shell Active accounted actions on tty3, User admin Priv 15 Role sysadmin Task ID 2, EXEC Accounting record, 00:00:26 Elapsed, service=shell Display Information About User Roles This section describes how to display information about user roles.
Displaying Information About Users Logged into the Switch To display information on all users logged into the switch, using the show users command in EXEC Privilege mode. The output displays privilege level and/or user role. The mode is displayed at the start of the output and both the privilege and roles for all users is also displayed. If the role is not defined, the system displays "unassigned" .
49 Service Provider Bridging Service provider bridging provides the ability to add a second VLAN ID tag in an Ethernet frame and is referred to as VLAN stacking in the Dell Networking OS. VLAN Stacking VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.
Figure 117. VLAN Stacking in a Service Provider Network Important Points to Remember • Interfaces that are members of the Default VLAN and are configured as VLAN-Stack access or trunk ports do not switch untagged traffic. To switch traffic, add these interfaces to a non-default VLAN-Stack-enabled VLAN. • Dell Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN.
Related Configuration Tasks • Configuring the Protocol Type Value for the Outer VLAN Tag • Configuring Dell Networking OS Options for Trunk Ports • Debugging VLAN Stacking • VLAN Stacking in Multi-Vendor Networks Creating Access and Trunk Ports To create access and trunk ports, use the following commands. • Access port — a port on the service provider edge that directly connects to the customer. An access port may belong to only one service provider VLAN.
Example of Viewing VLAN Stack Member Status To display the status and members of a VLAN, use the show vlan command from EXEC Privilege mode. Members of a VLANStacking-enabled VLAN are marked with an M in column Q.
portmode hybrid switchport vlan-stack trunk shutdown Dell(conf-if-te-1/1)#interface vlan 100 Dell(conf-if-vl-100)#untagged tengigabitethernet 1/1 Dell(conf-if-vl-100)#interface vlan 101 Dell(conf-if-vl-101)#tagged tengigabitethernet 1/1 Dell(conf-if-vl-101)#interface vlan 103 Dell(conf-if-vl-103)#vlan-stack compatible Dell(conf-if-vl-103-stack)#member tengigabitethernet 1/1 Dell(conf-if-vl-103-stack)#do show vlan Codes: Q: U x G - * - Default VLAN, G - GVRP VLANs Untagged, T - Tagged Dot1x untagged, X - Do
VLAN Stacking The default TPID for the outer VLAN tag is 0x9100. The system allows you to configure both bytes of the 2 byte TPID. Previous versions allowed you to configure the first byte only, and thus, the systems did not differentiate between TPIDs with a common first byte. For example, 0x8100 and any other TPID beginning with 0x81 were treated as the same TPID, as shown in the following illustration. Dell Networking OS Versions 8.2.1.
Figure 118.
Figure 119.
Figure 120. Single and Double-Tag TPID Mismatch The following table details the outcome of matched and mismatched TPIDs in a VLAN-stacking network with the S-Series. Table 82. Behaviors for Mismatched TPID Network Position Incoming Packet TPID System TPID Match Type Pre-Version 8.2.1.0 Version 8.2.1.
Network Position Incoming Packet TPID System TPID Match Type Pre-Version 8.2.1.0 Version 8.2.1.
Precedence Description Green High-priority packets that are the least preferred to be dropped. Yellow Lower-priority packets that are treated as best-effort. Red Lowest-priority packets that are always dropped (regardless of congestion status). • Honor the incoming DEI value by mapping it to an Dell Networking OS drop precedence. INTERFACE mode dei honor {0 | 1} {green | red | yellow} You may enter the command once for 0 and once for 1. Packets with an unmapped DEI value are colored green.
Figure 121. Statically and Dynamically Assigned dot1p for VLAN Stacking When configuring Dynamic Mode CoS, you have two options: • • Mark the S-Tag dot1p and queue the frame according to the original C-Tag dot1p. In this case, you must have other dot1p QoS configurations; this option is classic dot1p marking. Mark the S-Tag dot1p and queue the frame according to the S-Tag dot1p.
qos-policy-input 3 layer2 rate-police 30 ! interface TenGigabitEthernet 1/21 no ip address switchport vlan-stack access vlan-stack dot1p-mapping c-tag-dot1p 0-3 sp-tag-dot1p 7 service-policy input in layer2 no shutdown Mapping C-Tag to S-Tag dot1p Values To map C-Tag dot1p values to S-Tag dot1p values and mark the frames accordingly, use the following commands. 1. Allocate CAM space to enable queuing frames according to the C-Tag or the S-Tag.
Figure 122. VLAN Stacking without L2PT You might need to transport control traffic transparently through the intermediate network to the other region. Layer 2 protocol tunneling enables BPDUs to traverse the intermediate network by identifying frames with the Bridge Group Address, rewriting the destination MAC to a user-configured non-reserved address, and forwarding the frames.
Figure 123. VLAN Stacking with L2PT Implementation Information • • • L2PT is available for STP, RSTP, MSTP, and PVST+ BPDUs. No protocol packets are tunneled when you enable VLAN stacking. L2PT requires the default CAM profile. Enabling Layer 2 Protocol Tunneling To enable Layer 2 protocol tunneling, use the following command. 1. Verify that the system is running the default CAM profile. Use this CAM profile for L2PT. EXEC Privilege mode show cam-profile 2.
3. Tunnel BPDUs the VLAN. INTERFACE VLAN mode protocol-tunnel stp Specifying a Destination MAC Address for BPDUs By default, Dell Networking OS uses a Dell Networking-unique MAC address for tunneling BPDUs. You can configure another value. To specify a destination MAC address for BPDUs, use the following command. • Overwrite the BPDU with a user-specified destination MAC address when BPDUs are tunneled across the provider network.
Provider Backbone Bridging IEEE 802.1ad—Provider Bridges amends 802.1Q—Virtual Bridged Local Area Networks so that service providers can use 802.1Q architecture to offer separate VLANs to customers with no coordination between customers, and minimal coordination between customers and the provider. 802.
50 sFlow sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic. It is designed to provide traffic monitoring for high-speed networks with many switches and routers. Overview The Dell Networking Operating System (OS) supports sFlow version 5. sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic.
• • • • • • • • • By default, sFlow collection is supported only on data ports. If you want to enable sFlow collection through management ports, use the management egress-interface-selection and application sflow-collector commands in Configuration and EIS modes respectively. Dell Networking OS exports all sFlow packets to the collector. A small sampling rate can equate to many exported packets. A backoff mechanism is automatically applied to reduce this amount.
Global default sampling rate: 32768 Global default counter polling interval: 20 Global extended information enabled: none 0 collectors configured 0 UDP packets exported 0 UDP packets dropped 0 sFlow samples collected 0 sFlow samples dropped due to sub-sampling Enabling and Disabling sFlow on an Interface By default, sFlow is disabled on all interfaces. This CLI is supported on physical ports and link aggregation group (LAG) ports. To enable sFlow on a specific interface, use the following command.
sFlow type Configured sampling rate Actual sampling rate Counter polling interval Extended max header size Samples rcvd from h/w :Ingress :16384 :16384 :20 :256 :0 Example of the show running-config sflow Command Dell#show running-config sflow ! sflow collector 100.1.1.12 agent-addr 100.1.1.
Displaying Show sFlow on an Interface To view sFlow information on a specific interface, use the following command. • Display sFlow configuration information and statistics on a specific interface. EXEC mode show sflow interface interface-name Examples of the sFlow show Commands The following example shows the show sflow interface command.
sflow collector ip-address agent-addr ip-address [number [max-datagram-size number] ] | [max-datagram-size number ] The default UDP port is 6343. The default max-datagram-size is 1400. Changing the Polling Intervals The sflow polling-interval command configures the polling interval for an interface in the maximum number of seconds between successive samples of counters sent to the collector. This command changes the global default counter polling (20 seconds) interval.
• • Enable extended sFlow. sflow [extended-switch] [extended-router] [extended-gateway] enable By default packing of any of the extended information in the datagram is disabled. Confirm that extended information packing is enabled. show sflow Examples of Verifying Extended sFlow The bold line shows that extended sFlow settings are enabled on all three types.
IP SA IP DA srcAS and srcPeerAS dstAS and dstPeerAS Description is no AS information for IGP. BGP static/connected/IGP — — Exported Exported Prior to Dell Networking OS version 7.8.1.0, extended gateway data is not exported because IP DA is not learned via BGP. Version 7.8.1.0 allows extended gateway information in cases where the source and destination IP addresses are learned by different routing protocols, and for cases where is source is reachable over ECMP.
51 Simple Network Management Protocol (SNMP) The Simple Network Management Protocol (SNMP) is designed to manage devices on IP networks by monitoring device operation, which might require administrator intervention. NOTE: On Dell Networking routers, standard and private SNMP management information bases (MIBs) are supported, including all Get and a limited number of Set operations (such as set vlan and copy cmd).
Table 85.
• Subscribing to Managed Object Value Updates using SNMP • Copying Configuration Files via SNMP • Manage VLANs Using SNMP • Enabling and Disabling a Port using SNMP • Fetch Dynamic MAC Entries using SNMP • Deriving Interface Indices • Monitor Port-channels Important Points to Remember • Typically, 5-second timeout and 3-second retry values on an SNMP server are sufficient for both LAN and WAN applications.
Setting Up User-Based Security (SNMPv3) When setting up SNMPv3, you can set users up with one of the following three types of configuration for SNMP read/write operations. Users are typically associated to an SNMP group with permissions provided, such as OID view. • noauth — no password or privacy. Select this option to set up a user with no password or privacy privileges. This setting is the basic configuration. Users must have a group and profile that do not require password privileges.
Select a User-based Security Type Dell(conf)#snmp-server host 1.1.1.1 traps {oid tree} version 3 ? auth Use the SNMPv3 authNoPriv Security Level noauth Use the SNMPv3 noAuthNoPriv Security Level priv Use the SNMPv3 authPriv Security Level Dell(conf)#snmp-server host 1.1.1.1 traps {oid tree} version 3 noauth ? WORD SNMPv3 user name Reading Managed Object Values You may only retrieve (read) managed object values if your management station is a member of the same community as the SNMP agent.
Example of Writing the Value of a Managed Object > snmpset -v 2c -c mycommunity 10.11.131.161 sysName.0 s "R5" SNMPv2-MIB::sysName.0 = STRING: R5 Configuring Contact and Location Information using SNMP You may configure system contact and location information from the Dell Networking system or from the management station using SNMP. To configure system contact and location information from the Dell Networking system and from the management station using SNMP, use the following commands.
• Dell Networking enterpriseSpecific protocol traps — bgp, ecfm, stp, and xstp. To configure the system to send SNMP notifications, use the following commands. 1. Configure the Dell Networking system to send notifications to an SNMP server. CONFIGURATION mode snmp-server host ip-address [traps | informs] [version 1 | 2c |3] [community-string] To send trap messages, enter the keyword traps. To send informational messages, enter the keyword informs.
CARD_MISMATCH: Mismatch: line card %d is type %s - type %s required.
provider at Level 4 VLAN 3000 %ECFM-5-ECFM_REMOTE_ALARM: Remote CCM Defect detected by MEP 3 in Domain customer1 at Level 7 VLAN 1000 %ECFM-5-ECFM_RDI_ALARM: RDI Defect detected by MEP 3 in Domain customer1 at Level 7 VLAN 1000 entity Enable entity change traps Trap SNMPv2-MIB::sysUpTime.0 = Timeticks: (1487406) 4:07:54.06, SNMPv2-MIB::snmpTrapOID.0 = OID: SNMPv2-SMI::mib-2.47.2.0.1, SNMPv2-SMI::enterprises.6027.3.6.1.1.2.0 = INTEGER: 4 Trap SNMPv2-MIB::sysUpTime.0 = Timeticks: (1488564) 4:08:05.
SMI::enterprises.6027.3.30.1.1.1 SNMPv2-SMI::enterprises.6027.3.30.1.1 = STRING: "NOT_REACHABLE: Syslog server 10.11.226.121 (port: 9140) is not reachable" SNMPv2-SMI::enterprises.6027.3.6.1.1.2.0 = INTEGER: 2 Following is the sample audit log message that other syslog servers that are reachable receive: Oct 21 00:46:13: dv-fedgov-s4810-6: %EVL-6-NOT_REACHABLE:Syslog server 10.11.226.
MIB Object OID Object Values copySrcFileName .1.3.6.1.4.1.6027.3.5.1.1.1.1.4 Path (if the file is not in the Specifies name of the file. current directory) and filename. • If copySourceFileType is set to running-config or startup-config, copySrcFileName is not required. copyDestFileType .1.3.6.1.4.1.6027.3.5.1.1.1.1.5 1 = Dell Networking OS file 2 = running-config Description Specifies the type of file to copy to. • 3 = startup-config • copyDestFileLocation .1.3.6.1.4.1.6027.3.5.1.1.1.1.
snmp-server community community-name rw 2. Copy the f10-copy-config.mib MIB from the Dell iSupport web page to the server to which you are copying the configuration file. 3. On the server, use the snmpset command as shown in the following example. snmpset -v snmp-version -c community-name -m mib_path/f10-copy-config.mib force10systemip-address mib-object.index {i | a | s} object-value... • Every specified object must have an object value and must precede with the keyword i. Refer to the previous table.
Copying the Startup-Config Files to the Running-Config To copy the startup-config to the running-config from a UNIX machine, use the following command. • Copy the startup-config to the running-config from a UNIX machine. snmpset -c private -v 2c force10system-ip-address copySrcFileType.index i 3 copyDestFileType.index i 2 Examples of Copying Configuration Files from a UNIX Machine The following example shows how to copy configuration files from a UNIX machine using the object name.
Example of Copying Configuration Files via TFTP From a UNIX Machine .snmpset -v 2c -c private -m ./f10-copy-config.mib 10.10.10.10 copySrcFileType.4 i 3 copyDestFileType.4 i 1 copyDestFileLocation.4 i 3 copyDestFileName.4 s /home/myfilename copyServerAddress.4 a 11.11.11.11 Copy a Binary File to the Startup-Configuration To copy a binary file from the server to the startup-configuration on the Dell Networking system via FTP, use the following command.
MIB Object OID Values Description copyEntryRowStatus .1.3.6.1.4.1.6027.3.5.1.1.1.1.15 Row status Specifies the state of the copy operation. Uses CreateAndGo when you are performing the copy. The state is set to active when the copy is completed. Obtaining a Value for MIB Objects To obtain a value for any of the MIB objects, use the following command. • Get a copy-config MIB object value. snmpset -v 2c -c public -m ./f10-copy-config.mib force10system-ip-address [OID.index | mib-object.
Viewing the Available Flash Memory Size • To view the available flash memory using SNMP, use the following command. snmpget -v2c -c public 192.168.60.120 .1.3.6.1.4.1.6027.3.10.1.2.9.1.6.1 enterprises.6027.3.10.1.2.9.1.5.1 = Gauge32: 24 The output above displays that 24% of the flash memory is used. MIB Support to Display the Software Core Files Generated by the System Dell Networking provides MIB objects to display the software core files generated by the system.
enterprises.6027.3.10.1.2.10.1.3.1.2 enterprises.6027.3.10.1.2.10.1.3.1.3 enterprises.6027.3.10.1.2.10.1.3.2.1 enterprises.6027.3.10.1.2.10.1.4.1.1 enterprises.6027.3.10.1.2.10.1.4.1.2 enterprises.6027.3.10.1.2.10.1.4.1.3 enterprises.6027.3.10.1.2.10.1.4.2.1 enterprises.6027.3.10.1.2.10.1.5.1.1 enterprises.6027.3.10.1.2.10.1.5.1.2 enterprises.6027.3.10.1.2.10.1.5.1.3 enterprises.6027.3.10.1.2.10.1.5.2.
LineSpeed auto ARP type: ARPA, ARP Timeout 04:00:00 To display the ports in a VLAN, send an snmpget request for the object dot1qStaticEgressPorts using the interface index as the instance number, as shown for an S-Series. The following example shows viewing VLAN ports using SNMP with no ports assigned. > snmpget -v2c -c mycommunity 10.11.131.185 .1.3.6.1.2.1.17.7.1.4.3.1.2.1107787786 SNMPv2-SMI::mib-2.17.7.1.4.3.1.2.
• To add an untagged port to a VLAN, write the port to the dot1qVlanStaticEgressPorts and dot1qVlanStaticUntaggedPorts objects. NOTE: Whether adding a tagged or untagged port, specify values for both dot1qVlanStaticEgressPorts and dot1qVlanStaticUntaggedPorts. Example of Adding an Untagged Port to a VLAN using SNMP In the following example, Port 0/2 is added as an untagged member of VLAN 10. >snmpset -v2c -c mycommunity 10.11.131.185 .1.3.6.1.2.1.17.7.1.4.3.1.2.
1.3.6.1.4.1.6027.3.18.1.4 To set time to wait set 1.3.6.1.4.1.6027.3.18.1.2 and 1.3.6.1.4.1.6027.3.18.1.5 respectively To set time to wait till bgp session are up set 1.3.6.1.4.1.6027.3.18.1.3 and 1.3.6.1.4.1.6027.3.18.1.6 Enabling and Disabling a Port using SNMP To enable and disable a port using SNMP, use the following commands. 1. Create an SNMP community on the Dell system. CONFIGURATION mode snmp-server community 2.
In the following example, R1 has one dynamic MAC address, learned off of port TenGigabitEthernet 1/21, which a member of the default VLAN, VLAN 1. The SNMP walk returns the values for dot1dTpFdbAddress, dot1dTpFdbPort, and dot1dTpFdbStatus. Each object comprises an OID concatenated with an instance number. In the case of these objects, the instance number is the decimal equivalent of the MAC address; derive the instance number by converting each hex pair to its decimal equivalent.
The interface index is a binary number with bits that indicate the slot number, port number, interface type, and card type of the interface. Dell Networking OS converts this binary index number to decimal, and displays it in the output of the show interface command.
SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.3.1 = INTEGER: 1107755009 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.3.2 = INTEGER: 1107755010 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.4.1 = INTEGER: 1 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.4.2 = INTEGER: 1 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.5.1 = Hex-STRING: 00 00 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.5.2 = Hex-STRING: 00 00 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.1.6.1 = STRING: "Gi 5/84 " << Channel member for Po1 SNMPv2-SMI::enterprises.6027.3.2.1.1.1.
• When you query an icmpStatsInErrors object in the icmpStats table by using the snmpget or snmpwalk command, the output for IPv4 addresses may be incorrectly displayed. To correctly display this information under IP and ICMP statistics, use the show ip traffic command. • When you query an IPv4 icmpMsgStatsInPkts object in the ICMP table by using the snmpwalk command, the echo response output may not be displayed.
52 Stacking Using the Dell Networking OS stacking feature, you can interconnect multiple switch units with stacking ports or front end user ports. (The S4820T uses front end user ports for stacking.) The stack becomes manageable as a single switch through the stack management unit. The system accepts Unit ID numbers from 0 to 11 though the it supports stacking up to six units. Stacking Overview Dell Networking OS elects a management (master) unit, a standby unit, and all other units are member units.
Stack Master Election The stack elects a master and standby unit at bootup time based on two criteria. • • Unit priority — User-configurable. The range is from 1 to 14. A higher value (14) means a higher priority. The default is 1. By removing the stack-unit priority using the no stack-unit priority command, you can set the priority back to the default value of zero.
Failover Roles If the stack master fails (for example, is powered off), it is removed from the stack topology. The standby unit detects the loss of peering communication and takes ownership of the stack management, switching from the standby role to the master role. The distributed forwarding tables are retained during the failover, as is the stack MAC address. The lack of a standby unit triggers an election within the remaining units for a standby role.
Stack#show system Master priority : Stack#show system Master priority : stack-unit 0 | grep priority 0 stack-unit 1 | grep priority 0 Example of Adding a Standalone with a Lower MAC Address and Equal Priority to a Stack ---------------STANDALONE AFTER CONNECTION----------------Standalone#%STKUNIT0-M:CP %POLLMGR-2-ALT_STACK_UNIT_STATE: Alternate Stack-unit is present 00:20:20: %STKUNIT0-M:CP %CHMGR-5-STACKUNITDETECTED: Stack unit 1 present 00:20:22: %STKUNIT0-M:CP %CHMGR-5-STACKUNITDETECTED: Stack unit 2 p
Figure 124. Supported Stacking Topologies High Availability on Stacks Stacks have master and standby management units analogous to Dell Networking route processor modules (RPM). The master unit synchronizes the running configuration and protocol states so that the system fails over in the event of a hardware or software fault on the master unit. In such an event, or when the master unit is removed, the standby unit becomes the stack manager and Dell Networking OS elects a new standby unit.
-----------------------------------------------Failover Count: 0 Last failover timestamp: None Last failover Reason: None Last failover type: None -- Last Data Block Sync Record: ------------------------------------------------stack-unit Config: succeeded Nov 25 2014 Start-up Config: succeeded Nov 25 2014 Runtime Event Log: succeeded Nov 25 2014 Running Config: succeeded Nov 25 2014 ACL Mgr: succeeded Nov 25 2014 LACP: no block sync done STP: no block sync done SPAN: no block sync done 15:29:58 15:29:58 15
• Data ports are configured as stacking ports in predefined groups of four 10G ports called stack-groups. When using the 40G ports, you can configure a single port as a stack port; each 40G port is a stack-group. • All the ports in a stack-group are placed in stacking mode. Unused ports in that group cannot be used as data ports. • Stacking on the device is accomplished through front-end user ports on the chassis. • All stack units must have the same version of Dell Networking OS.
• If the new unit is running an Dell Networking OS version prior to 8.3.10.x , the unit is put into a card problem state, Dell Networking OS is not upgraded, and a syslog message is raised. The unit must be upgraded to Dell Networking OS version 8.3.12.0 before you can proceed. Syslog messages are generated by the management unit: • before the management unit downloads its Dell Networking OS version 8.3.12.0 or later to the new unit.
Creating a New Stack Prior to creating a stack, know which unit will be the management unit and which will be the standby unit. Enable the front ports of the units for stacking. For more information, refer to Enabling Front End Port Stacking. To create a new stack, use the following commands. 1. Power up all units in the stack. 2. Verify that each unit has the same Dell Networking OS version prior to stacking them together. EXEC Privilege mode show version 3.
Example of a Syslog Figure 126. Creating a New Stack In the following example, stack unit is the master management unit, stack unit 2is the standby unit. The cables are connected to each unit.
Dell-1#show system stack-ports Topology: Ring Interface Connection Link Speed Admin Link Trunk (Gb/s) Status Status Group -----------------------------------------------------------------1/1 1/1 10 up up 1/2 1/2 10 up up 1/3 1/3 10 up up Add Units to an Existing Stack You can add units to an existing stack in one of three ways. • By manually assigning a new unconfigured unit a position in an existing stack. • By adding a configured unit to an existing stack. • By merging two stacks.
Unit UnitType Status ReqTyp CurTyp Version Ports --------------------------------------------------------0 Management online S4810 S4810 8-3-7-13 64 1 Member not present 2 Member not present 3 Standby online S4810 S4810 8-3-7-13 64 4 Member not present 5 Member not present 6 Member not present 7 Member not present 8 Member not present 9 Member not present 10 Member not present 11 Member not present The following example shows adding a stack unit with a conflicting stack number (after).
write memory 7. Reload the switch. EXEC Privilege mode reload Dell Networking OS automatically assigns a number to the new unit and adds it as member switch in the stack. The new unit synchronizes its running and startup configurations with the stack. 8. If a standalone switch already has stack groups configured. Attach cables to connect the ports already configured as stack groups on the switch to one or more switches in the stack.
• Influencing Management Unit Selection on a Stack • Managing Redundancy on a Stack • Resetting a Unit on a Stack • Recover from Stack Link Flaps Assigning Unit Numbers to Units in an Stack Each unit in the stack has a stack number that is either assigned by you or Dell Networking OS. Units are numbered from 0 to 11, however, you can only stack six S4820T units.Stack numbers are stored in NVRAM and are preserved upon reload. • Assign a stack-number to a unit.
Refer to the following example. Examples of the show system Commands Display information about a switch stack using the show system command. The following is an example of the show system command to view the stack details. Dell#show system Stack MAC : 00:01:e8:8a:df:e6 Reload Type : normal-reload -- Unit 0 -Unit Type : Management Unit Status : online Next Boot : online Required Type : S4810 - 52-port GE/TE/FG (SE) Current Type : S4810 - 52-port GE/TE/FG (SE) Master priority : 0 Hardware Rev : 3.
The following is an example of the show system brief command to view the stack summary information.
Managing Redundancy on a Stack Use the following commands to manage the redundancy on a stack. • Reset the current management unit and make the standby unit the new master unit. EXEC Privilege mode redundancy force-failover stack-unit • A new standby is elected. When the former stack master comes back online, it becomes a member unit. Prevent the stack master from rebooting after a failover.
Examples of Viewing the Status for Stacked Switches The following example shows four switches stacked together with two 40G links in a ring topology.
The following example shows three switches stacked together in a daisy chain topology.
-- Stack Info -Unit UnitType Status ReqTyp CurTyp Version Ports ------------------------------------------------------0 Management online S4810 S4810 8-3-7-13 64 1 Member not present S4810 2 Member not present 3 Standby online S4810 S4810 8-3-7-13 64 4 Member not present 5 Member not present 6 Member not present 7 Member not present 8 Member not present 9 Member not present 10 Member not present 11 Member not present Removing Front End Port Stacking To remove the configuration on the front end ports used f
ithin 10 seconds.Shutting down this stack port now. 10:55:20: %STKUNIT1-M:CP %KERN-2-INT: Error: Please check the stack cable/module and power-cycle the stack. ---------------------STANDBY UNIT-------------------------------10:55:18: %STKUNIT1-M:CP %KERN-2-INT: Error: Stack Port 50 has flapped 5 times within 10 seonds.Shutting down this stack port now. 10:55:18: %STKUNIT1-M:CP %KERN-2-INT: Error: Please check the stack cable/module and power-cycle the stack.
Recover from a Card Mismatch State on a Stack A card mismatch occurs if the stack has a provision for the lowest available stack number which does not match the model of a newly added unit. To recover, disconnect the new unit. Then, either: • remove the provision from the stack, then reconnect the standalone unit, or • renumber the standalone unit with another available stack number on the stack.
6 7 Member Member not present not present Stacking 833
53 Storm Control Storm control allows you to control unknown-unicast, muticast, and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell Networking Operating System (OS) Behavior: Dell Networking OS supports unknown-unicast, muticast, and broadcast control (the storm-control broadcast command) for Layer 2 and Layer 3 traffic. Dell Networking OS Behavior: The minimum number of packets per second (PPS) that storm control can limit on the device is two.
• Configure the packets per second of broadcast traffic allowed on an interface (ingress only). INTERFACE mode storm-control broadcast packets_per_second in • Configure the packets per second of multicast traffic allowed on C-Series or S-Series interface (ingress only) network only. INTERFACE mode storm-control multicast packets_per_second in • Shut down the port if it receives the PFC/LLFC packets more than the configured rate.
54 Spanning Tree Protocol (STP) The spanning tree protocol (STP) is supported on Dell Networking OS. Protocol Overview STP is a Layer 2 protocol — specified by IEEE 802.1d — that eliminates loops in a bridged topology by enabling only a single path through the network. By eliminating loops, the protocol improves scalability in a large network and allows you to implement redundant paths, which can be activated after the failure of active paths.
• All ports in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the spanning tree topology at the time you enable the protocol. • To add interfaces to the spanning tree topology after you enable STP, enable the port and configure it for Layer 2 using the switchport command. • The IEEE Standard 802.1D allows 8 bits for port ID and 8 bits for priority. The 8 bits for port ID provide port IDs for 256 ports.
INTERFACE mode no shutdown Example of the show config Command To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. Dell(conf-if-te-1/1)#show config ! interface TenGigabitEthernet 1/1 no ip address switchport no shutdown Dell(conf-if-te-1/1)# Enabling Spanning Tree Protocol Globally Enable the spanning tree protocol globally; it is not enabled by default.
protocol spanning-tree 0 2. Enable STP. PROTOCOL SPANNING TREE mode no disable Examples of Verifying Spanning Tree Information To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode.
Te 1/1 Te 1/2 Te 1/3 Te 1/4 Dell# 8.496 8.497 8.513 8.514 8 8 8 8 4 4 4 4 DIS DIS FWD FWD 0 0 0 0 32768 32768 32768 32768 0001.e80d.2462 0001.e80d.2462 0001.e80d.2462 0001.e80d.2462 8.496 8.497 8.513 8.514 Adding an Interface to the Spanning Tree Group To add a Layer 2 interface to the spanning tree topology, use the following command. • Enable spanning tree on a Layer 2 interface. INTERFACE mode spanning-tree 0 Modifying Global Parameters You can modify the spanning tree parameters.
NOTE: With large configurations (especially those with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • the default is 2 seconds. Change the max-age parameter (the refresh interval for configuration information that is generated by recomputing the spanning tree topology). PROTOCOL SPANNING TREE mode max-age seconds The range is from 6 to 40. The default is 20 seconds.
state when receiving the BPDU, the physical interface remains up and spanning-tree drops packets in the hardware after a BPDU violation. BPDUs are dropped in the software after receiving the BPDU violation. CAUTION: Enable PortFast only on links connecting to an end station. PortFast can cause loops if it is enabled on an interface connected to a network. To enable PortFast on an interface, use the following command. • Enable PortFast on an interface.
– Perform a shutdown command on the interface. – Disable the shutdown-on-violation command on the interface (the no spanning-tree stp-id portfast [bpduguard | [shutdown-on-violation]] command). – Disable spanning tree on the interface (the no spanning-tree command in INTERFACE mode). – Disabling global spanning tree (the no spanning-tree in CONFIGURATION mode). Figure 129. Enabling BPDU Guard Dell Networking OS Behavior: BPDU guard and BPDU filtering both block BPDUs, but are two separate features.
Interface Name Role PortID Prio Cost Sts Cost Link-type Edge ---------- ------ -------- ---- ------- --- ---------------Te 1/6 Root 128.263 128 20000 FWD 20000 P2P No Te 1/7 ErrDis 128.
In STP topology 3 (shown in the lower middle), if you have enabled the root guard feature on the STP port on Switch C that connects to device D, and device D sends a superior BPDU that would trigger the election of device D as the new root bridge, the BPDU is ignored and the port on Switch C transitions from a forwarding to a root-inconsistent state (shown by the green X icon). As a result, Switch A becomes the root bridge. Figure 130.
spanning-tree {0 | mstp | rstp | pvst} rootguard – 0: enables root guard on an STP-enabled port assigned to instance 0. – mstp: enables root guard on an MSTP-enabled port. – rstp: enables root guard on an RSTP-enabled port. – pvst: enables root guard on a PVST-enabled port. To disable STP root guard on a port or port-channel interface, use the no spanning-tree 0 rootguard command in an interface configuration mode.
As shown in the following illustration (STP topology 2, upper right), a loop can also be created if the forwarding port on Switch B becomes busy and does not forward BPDUs within the configured forward-delay time. As a result, the blocking port on Switch C transitions to a forwarding state, and both Switch A and Switch C transmit traffic to Switch B (STP topology 2, lower right).
– Spanning Tree Protocol (STP) – Rapid Spanning Tree Protocol (RSTP) – Multiple Spanning Tree Protocol (MSTP) – Per-VLAN Spanning Tree Plus (PVST+) • You cannot enable root guard and loop guard at the same time on an STP port. For example, if you configure loop guard on a port on which root guard is already configured, the following error message is displayed: % Error: RootGuard is configured. Cannot configure LoopGuard.
55 SupportAssist SupportAssist sends troubleshooting data securely to Dell. SupportAssist in this Dell Networking OS release does not support automated email notification at the time of hardware fault alert, automatic case creation, automatic part dispatch, or reports. SupportAssist requires Dell Networking OS 9.9(0.0) and SmartScripts 9.7 or later to be installed on the Dell Networking device. Figure 132.
support-assist activate Dell(conf)#support-assist activate This command guides you through steps to configure SupportAssist. Configuring SupportAssist Manually To manually configure SupportAssist service, use the following commands. 1. Accept the end-user license agreement (EULA). CONFIGURATION mode eula-consent {support-assist} {accept | reject} NOTE: Once accepted, you do not have to accept the EULA again. Dell(conf)# eula-consent support-assist accept I accept the terms of the license agreement.
support-assist Dell(conf)#support-assist Dell(conf-supportassist)# 3. (Optional) Configure the contact information for the company. SUPPORTASSIST mode contact-company name {company-name}[company-next-name] ... [company-next-name] Dell(conf)#support-assist Dell(conf-supportassist)#contact-company name test Dell(conf-supportassist-cmpy-test)# 4. (Optional) Configure the contact name for an individual.
[no] activity {full-transfer} Dell(conf-supportassist)#activity full-transfer Dell(conf-supportassist-act-full-transfer)# 2. Copy an action-manifest file for an activity to the system. SUPPORTASSIST ACTIVITY mode action-manifest get tftp | ftp | flash   Dell(conf-supportassist-act-full-transfer)#action-manifest get tftp://10.0.0.1/test file Dell(conf-supportassist-act-full-transfer)# The custom action-manifest file is a JSON file.
[no] enable Dell(conf-supportassist-act-full-transfer)#enable Dell(conf-supportassist-act-full-transfer)# Configuring SupportAssist Company SupportAssist Company mode allows you to configure name, address and territory information of the company. SupportAssist Company configurations are optional for the SupportAssist service. To configure SupportAssist company, use the following commands. 1. Configure the contact information for the company.
[no] email-address primary email-address [alternate email-address] Dell(conf-supportassist-pers-john_doe)#email-address primary jdoe@mycompany.com Dell(conf-supportassist-pers-john_doe)# 3. Configure phone numbers of the contact person. SUPPORTASSIST PERSON mode [no] phone primary phone [alternate phone] Dell(conf-supportassist-pers-john_doe)#phone primary +919999999999 Dell(conf-supportassist-pers-john_doe)# 4. Configure the preferred method for contacting the person.
SUPPORTASSIST SERVER mode [no] url uniform-resource-locator Dell(conf-supportassist-serv-default)#url https://192.168.1.1/index.htm Dell(conf-supportassist-serv-default)# Viewing SupportAssist Configuration To view the SupportAssist configurations, use the following commands. 1. Display information on SupportAssist feature status including any activities, status of communication, last time communication sent, and so on.
Additional information about the SupportAssist EULA is as follows: By installing SupportAssist, you allow Dell to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell products and services. Dell may use the information for providing recommendations to improve your IT infrastructure.
56 System Time and Date System time and date settings and the network time protocol (NTP) are supported on Dell Networking OS. You can set system times and dates and maintained through the NTP. They are also set through the Dell Networking Operating System (OS) command line interfaces (CLIs) and hardware settings. The Dell Networking OS supports reaching an NTP server through different VRFs. You can configure a maximum of eight logging servers across different VRFs or the same VRF.
Dell Networking OS synchronizes with a time-serving host to get the correct time. You can set Dell Networking OS to poll specific NTP time-serving hosts for the current time. From those time-serving hosts, the system chooses one NTP host with which to synchronize and serve as a client to the NTP host. As soon as a host-client relationship is established, the networking device propagates the time information throughout its local network.
• Specify the NTP server to which the Dell Networking system synchronizes. CONFIGURATION mode ntp server ip-address Examples of Viewing System Clock To display the system clock state with respect to NTP, use the show ntp status command from EXEC Privilege mode. R6_E300(conf)#do show ntp status Clock is synchronized, stratum 2, reference is 192.168.1.1 frequency is -369.623 ppm, stability is 53.319 ppm, precision is 4294967279 reference time is CD63BCC2.0CBBD000 (16:54:26.
• Configure a source IP address for NTP packets. CONFIGURATION mode ntp source interface Enter the following keywords and slot/port or number information: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383.
ntp server [vrf]  {hostname | ipv4-address |ipv6-address} [ key keyid] [prefer] [version number] Configure the IP address of a server and the following optional parameters: • – vrf-name : Enter the name of the VRF through which the NTP server is reachable. – hostname : Enter the keyword hostname to see the IP address or host name of the remote device. – ipv4-address : Enter an IPv4 address in dotted decimal format (A.B.C.D).
NOTE: • Leap Indicator (sys.leap, peer.leap, pkt.leap) — This is a two-bit code warning of an impending leap second to be inserted in the NTP time scale. The bits are set before 23:59 on the day of insertion and reset after 00:00 on the following day. This causes the number of seconds (rollover interval) in the day of insertion to be increased or decreased by one.
Setting the Time and Date for the Switch Software Clock You can change the order of the month and day parameters to enter the time and date as time day month year. You cannot delete the software clock. The software clock runs only when the software is up. The clock restarts, based on the hardware clock, when the switch reboots. To set the software clock, use the following command. • Set the system software clock to the current time and date.
Setting Daylight Saving Time Once Set a date (and time zone) on which to convert the switch to daylight saving time on a one-time basis. To set the clock for daylight savings time once, use the following command. • Set the clock to the appropriate timezone and daylight saving time. CONFIGURATION mode clock summer-time time-zone date start-month start-day start-year start-time end-month end-day end-year end-time [offset] – time-zone: enter the three-letter name for the time zone.
– start-month: Enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year. – start-day: Enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year. – start-year: Enter a four-digit number as the year. The range is from 1993 to 2035. – start-time: Enter the time in hours:minutes.
57 Tunneling Tunnel interfaces create a logical tunnel for IPv4 or IPv6 traffic. Tunneling supports RFC 2003, RFC 2473, and 4213. DSCP, hop-limits, flow label values, open shortest path first (OSPF) v2, and OSPFv3 are supported. Internet control message protocol (ICMP) error relay, PATH MTU transmission, and fragmented packets are not supported. Configuring a Tunnel You can configure a tunnel in IPv6 mode, IPv6IP mode, and IPIP mode.
Dell(conf-if-tu-3)#tunnel destination 8::9 Dell(conf-if-tu-3)#tunnel mode ipv6 Dell(conf-if-tu-3)#ip address 3.1.1.1/24 Dell(conf-if-tu-3)#ipv6 address 3::1/64 Dell(conf-if-tu-3)#no shutdown Dell(conf-if-tu-3)#show config ! interface Tunnel 3 ip address 3.1.1.1/24 ipv6 address 3::1/64 tunnel destination 8::9 tunnel source 5::5 tunnel mode ipv6 no shutdown Configuring Tunnel Keepalive Settings You can configure a tunnel keepalive target, keepalive interval, and attempts.
Dell(conf-if-tu-1)#ipv6 unnumbered tengigabitethernet 1/1 Dell(conf-if-tu-1)#tunnel source 40.1.1.1 Dell(conf-if-tu-1)#tunnel mode ipip decapsulate-any Dell(conf-if-tu-1)#no shutdown Dell(conf-if-tu-1)#show config ! interface Tunnel 1 ip unnumbered TenGigabitEthernet 1/1 ipv6 unnumbered TenGigabitEthernet 1/1 tunnel source 40.1.1.
no shutdown Tunneling 869
58 Uplink Failure Detection (UFD) Uplink failure detection (UFD) provides detection of the loss of upstream connectivity and, if used with network interface controller (NIC) teaming, automatic recovery from a failed link. Feature Description A switch provides upstream connectivity for devices, such as servers. If a switch loses its upstream connectivity, downstream devices also lose their connectivity.
Figure 134. Uplink Failure Detection How Uplink Failure Detection Works UFD creates an association between upstream and downstream interfaces. The association of uplink and downlink interfaces is called an uplink-state group. An interface in an uplink-state group can be a physical interface or a port-channel (LAG) aggregation of physical interfaces. An enabled uplink-state group tracks the state of all assigned upstream interfaces.
Figure 135. Uplink Failure Detection Example If only one of the upstream interfaces in an uplink-state group goes down, a specified number of downstream ports associated with the upstream interface are put into a Link-Down state. You can configure this number and is calculated by the ratio of the upstream port bandwidth to the downstream port bandwidth in the same uplink-state group.
• If one of the upstream interfaces in an uplink-state group goes down, either a user-configurable set of downstream ports or all the downstream ports in the group are put in an Operationally Down state with an UFD Disabled error. The order in which downstream ports are disabled is from the lowest numbered port to the highest.
NOTE: Downstream interfaces in an uplink-state group are put into a Link-Down state with an UFD-Disabled error message only when all upstream interfaces in the group go down. To revert to the default setting, use the no downstream disable links command. 4. (Optional) Enable auto-recovery so that UFD-disabled downstream ports in the uplink-state group come up when a disabled upstream port in the group comes back up.
Example of Syslog Messages Before and After Entering the clear ufd-disable uplink-state-group Command (S50) The following example message shows the Syslog messages that display when you clear the UFD-Disabled state from all disabled downstream interfaces in an uplink-state group by using the clear ufd-disable uplink-state-group group-id command. All downstream interfaces return to an operationally up state.
– For a port channel interface, enter the keywords port-channel then a number. • If a downstream interface in an uplink-state group is disabled (Oper Down state) by uplink-state tracking because an upstream port is down, the message error-disabled[UFD] displays in the output. Display the current configuration of all uplink-state groups or a specified group.
ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:25:46 Queueing strategy: fifo Input Statistics: 0 packets, 0 bytes 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 0 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics: 0 packets, 0 bytes, 0 underruns 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkt
00:10:00: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Te 1/1 Dell(conf-uplink-state-group-3)# description Testing UFD feature Dell(conf-uplink-state-group-3)# show config ! uplink-state-group 3 description Testing UFD feature downstream disable links 2 downstream TenGigabitEthernet 1/1-2,5,9,11-12 upstream TenGigabitEthernet 1/3-4 Dell(conf-uplink-state-group-3)# Dell(conf-uplink-state-group-3)#exit Dell(conf)#exit Dell# 00:13:06: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from conso
59 Upgrade Procedures To find the upgrade procedures, go to the Dell Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell Networking OS version. To upgrade your system type, follow the procedures in the Dell Networking OS Release Notes. Get Help with Upgrades Direct any questions or concerns about the Dell Networking OS upgrade procedures to the Dell Technical Support Center. You can reach Technical Support: • On the web: http://www.dell.
60 Virtual LANs (VLANs) Virtual LANs (VLANs) are a logical broadcast domain or logical grouping of interfaces in a local area network (LAN) in which all data received is kept locally and broadcast to all members of the group. When in Layer 2 mode, VLANs move traffic at wire speed and can span multiple devices. The system supports up to 4093 portbased VLANs and one default VLAN, as specified in IEEE 802.1Q.
NOTE: You cannot assign an IP address to the Default VLAN. To assign an IP address to a VLAN that is currently the Default VLAN, create another VLAN and assign it to be the Default VLAN. For more information about assigning IP addresses, refer to Assigning an IP Address to a VLAN. • Untagged interfaces must be part of a VLAN. To remove an untagged interface from the Default VLAN, create another VLAN and place the interface into that VLAN.
• The VLAN protocol identifier identifies the frame as tagged according to the IEEE 802.1Q specifications (2 bytes). • Tag control information (TCI) includes the VLAN ID (2 bytes total). The VLAN ID can have 4,096 values, but two are reserved. NOTE: The insertion of the tag header into the Ethernet frame increases the size of the frame to more than the 1,518 bytes as specified in the IEEE 802.3 standard. Some devices that are not compliant with IEEE 802.3 may not support the larger frame size.
Assigning Interfaces to a VLAN You can only assign interfaces in Layer 2 mode to a VLAN using the tagged and untagged commands. To place an interface in Layer 2 mode, use the switchport command. You can further designate these Layer 2 interfaces as tagged or untagged. For more information, refer to the Interfaces chapter and Configuring Layer 2 (Data Link) Mode.
NUM Status Q * 1 Inactive 2 Active T T 3 Active T T 4 Active T Ports Po1(So 0/0-1) Te 1/1 Po1(So 0/0-1) Te 1/2 Po1(So 0/0-1) When you remove a tagged interface from a VLAN (using the no tagged interface command), it remains tagged only if it is a tagged interface in another VLAN. If the tagged interface is removed from the only VLAN to which it belongs, the interface is placed in the Default VLAN as an untagged interface.
3 Active 4 Active T T T U Te 1/3 Po1(So 0/0-1) Te 1/1 Te 1/2 The only way to remove an interface from the Default VLAN is to place the interface in Default mode by using the no switchport command in INTERFACE mode. Assigning an IP Address to a VLAN VLANs are a Layer 2 feature. For two physical interfaces on different VLANs to communicate, you must assign an IP address to the VLANs to route traffic between the two interfaces.
INTERFACE mode switchport 4. Add the interface to a tagged or untagged VLAN. VLAN INTERFACE mode [tagged | untagged] Enabling Null VLAN as the Default VLAN In a Carrier Ethernet for Metro Service environment, service providers who perform frequent reconfigurations for customers with changing requirements occasionally enable multiple interfaces, each connected to a different customer, before the interfaces are fully configured.
61 Virtual Link Trunking (VLT) Virtual link trunking (VLT) allows physical links between two chassis to appear as a single virtual link to the network core or other switches such as Edge, Access, or top-of-rack (ToR). Overview VLT reduces the role of spanning tree protocols (STPs) by allowing link aggregation group (LAG) terminations on two separate distribution or core switches and supporting a loop-free topology.
Figure 137. Example of VLT Deployment VLT on Core Switches Uplinks from servers to the access layer and from access layer to the aggregation layer are bundled in LAG groups with end-to-end Layer 2 multipathing. This set up requires “horizontal” stacking at the access layer and VLT at the aggregation layer such that all the uplinks from servers to access and access to aggregation are in Active-Active Load Sharing mode.
Figure 138. Enhanced VLT VLT Terminology The following are key VLT terms. • Virtual link trunk (VLT) — The combined port channel between an attached device and the VLT peer switches. • VLT backup link — The backup link monitors the vitality of VLT peer switches. The backup link sends configurable, periodic keep alive messages between the VLT peer switches. • VLT interconnect (VLTi) — The link used to synchronize states between the VLT peer switches. Both ends must be on 10G or 40G interfaces.
• VLT port channel interfaces must be switch ports. • If you include RSTP on the system, configure it before VLT. Refer to Configure Rapid Spanning Tree. • If you include PVST on the system, configure it before VLT. Refer to PVST Configuration. • Dell Networking strongly recommends that the VLTi (VLT interconnect) be a static LAG and that you disable LACP on the VLTi. • Ensure that the spanning tree root bridge is at the Aggregation layer.
• To support Q-in-Q over VLT, ICL is implicitly made as vlan-stack trunk port and the TPID of the ICL is set as 8100. • Layer 2 Protocol Tunneling is not supported in VLT. Configuration Notes When you configure VLT, the following conditions apply. • VLT domain – A VLT domain supports two chassis members, which appear as a single logical device to network access devices connected to VLT ports through a port channel.
* the VLT unit-id is not identical. NOTE: If you configure the VLT system MAC address or VLT unit-id on only one of the VLT peer switches, the link between the VLT peer switches is not established. Each VLT peer switch must be correctly configured to establish the link between the peers. – If the link between the VLT peer switches is established, changing the VLT system MAC address or the VLT unit-id causes the link between the VLT peer switches to become disabled.
NOTE: PVST+ passthrough is supported in a VLT domain. PVST+ BPDUs does not result in an interface shutdown. PVST+ BPDUs for a nondefault VLAN is flooded out as any other L2 multicast packet. On a default VLAN, RTSP is part of the PVST+ topology in that specific VLAN (default VLAN). – In a VLT domain, ingress and egress QoS policies are supported on physical VLT ports, which can be members of VLT port channels in the domain.
Primary and Secondary VLT Peers To prevent issues when connectivity between peers is lost, you can designate Primary and Secondary roles for VLT peers . You can elect or configure the Primary Peer. By default, the peer with the lowest MAC address is selected as the Primary Peer. You can configure another peer as the Primary Peer using the VLT domain domain-id role priority priority-value command. If the VLTi link fails, the status of the remote VLT Primary Peer is checked using the backup link.
VLT and IGMP Snooping When configuring IGMP Snooping with VLT, ensure the configurations on both sides of the VLT trunk are identical to get the same behavior on both sides of the trunk. When you configure IGMP snooping on a VLT node, the dynamically learned groups and multicast router ports are automatically learned on the VLT peer node. VLT IPv6 The following features have been enhanced to support IPv6: • VLT Sync — Entries learned on the VLT interface are synced on both VLT peers.
Figure 139. PIM-Sparse Mode Support on VLT On each VLAN where the VLT peer nodes act as the first hop or last hop routers, one of the VLT peer nodes is elected as the PIM designated router. If you configured IGMP snooping along with PIM on the VLT VLANs, you must configure VLTi as the static multicast router port on both VLT peer switches. This ensures that for first hop routers, the packets from the source are redirected to the designated router (DR) if they are incorrectly hashed.
To verify the PIM neighbors on the VLT VLAN and on the multicast port, use the show ip pim neighbor, show ip igmp snooping mrouter, and show running config commands. You can configure virtual link trunking (VLT) peer nodes as rendezvous points (RPs) in a Protocol Independent Multicast (PIM) domain. If the VLT node elected as the designated router fails and you enable VLT Multicast Routing, multicast routes are synced to the other peer for traffic forwarding to ensure minimal traffic loss.
peer-routing 3. Configure the peer-routing timeout. VLT DOMAIN mode peer-routing—timeout value value: Specify a value (in seconds) from 1 to 65535. chThe default value is infinity (without configuring the timeout). VLT Multicast Routing VLT Multicast Routing provides resiliency to multicast routed traffic during the multicast routing protocol convergence period after a VLT link or VLT peer fails using the least intrusive method (PIM) and does not alter current protocol behavior.
5. Configure a PIM-enabled external neighboring router as a rendezvous point (RP). For more information, refer to Configuring a Static Rendezvous Point. 6. Configure the VLT VLAN routing metrics to prefer VLT VLAN interfaces over non-VLT VLAN interfaces. For more information, refer to Classify Traffic. 7. Configure symmetrical Layer 2 and Layer 3 configurations on both VLT peers for any spanned VLAN.
In the case of a primary VLT switch failure, the secondary switch starts sending BPDUs with its own bridge ID and inherits all the port states from the last synchronization with the primary switch. An access device never detects the change in primary/secondary roles and does not see it as a topology change. The following examples show the RSTP configuration that you must perform on each peer switch to prevent forwarding loops.
channel-member interface interface: specify one of the following interface types: 4. • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown 5.
CONFIGURATION mode lacp ungroup member-independent {vlt | port-channel port-channel-id} LACP on VLT ports (on a VLT switch or access device), which are members of the virtual link trunk, is not brought up until the VLT domain is recognized on the access device. 6. Repeat Steps 1 to 4 on the VLT peer switch to configure the IP address of this switch as the endpoint of the VLT backup link and to configure the same port channel for the VLT interconnect.
Reconfiguring the Default VLT Settings (Optional) To reconfigure the default VLT settings, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 2. After you configure a VLT domain on each peer switch and connect (cable) the two VLT peers on each side of the VLT interconnect, the system elects a primary and secondary VLT peer device.
no ip address 3. Place the interface in Layer 2 mode. INTERFACE PORT-CHANNEL mode switchport 4. Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: 5. • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
Configuring Enhanced VLT (eVLT) (Optional) To configure enhanced VLT (eVLT) between two VLT domains on your network, use the following procedure. For a sample configuration, refer to eVLT Configuration Example. To set up the VLT domain, use the following commands. 1. Configure the port channel to be used for the VLT interconnect on a VLT switch and enter interface configuration mode.
unit-id {0 | 1} The unit IDs are used for internal system operations. To explicitly configure the default values on each peer switch, use the unit-id command. Configure a different unit ID (0 or 1) on each peer switch. Use this command to minimize the time required for the VLT system to determine the unit ID assigned to each peer switch when one peer switch reboots. 8. Configure enhanced VLT.
VLT Sample Configuration To review a sample VLT configuration setup, study these steps. 1. Configure the VLT domain with the same ID in VLT peer 1 and VLT peer 2. VLT DOMAIN mode vlt domain domain id 2. Configure the VLTi between VLT peer 1 and VLT peer 2. 3. You can configure LACP/static LAG between the peer units (not shown).
NOTE: If you use a third-party ToR unit, Dell Networking recommends using static LAGs with VLT peers to avoid potential problems if you reboot the VLT peers. Configure the VLT domain with the same ID in VLT peer 1 and VLT peer 2. s4810-2(conf)#vlt domain 5 s4810-2(conf-vlt-domain)# Dell-4(conf)#vlt domain 5 Dell-4(conf-vlt-domain)# Configure the VLTi between VLT peer 1 and VLT peer 2. 1. You can configure the LACP/static LAG between the peer units (not shown). 2.
no ip address switchport vlt-peer-lag port-channel 2 no shutdown Dell-2#show interfaces port-channel 2 brief Codes: L - LACP Port-channel L LAG 2 Mode L2L3 Status up Uptime 03:33:14 Ports Te 1/4 (Up) In the ToR unit, configure LACP on the physical ports.
Verify that the VLT LAG is up in VLT peer unit. Dell-2#show interfaces port-channel 2 brief Codes: L - LACP Port-channel LAG L 2 Mode L2L3 Status up Uptime 03:43:24 Ports Te 1/4 (Up) Dell-4#show interfaces port-channel 2 brief Codes: L - LACP Port-channel LAG L 2 Mode L2L3 Status up Uptime 03:33:31 Ports Te 1/18 (Up) PVST+ Configuration PVST+ is supported in a VLT domain. Before you configure VLT on peer switches, configure PVST+ in the network.
Interface Name ---------Po 1 Po 2 Te 1/10 Te 1/13 Dell# Role -----Desg Desg Desg Desg PortID -------128.2 128.3 128.230 128.233 Prio ---128 128 128 128 Cost ------188 2000 2000 2000 Sts ----------FWD FWD FWD FWD Cost Link-type Edge ------- --------- ---0 (vltI)P2P No (vlt) P2P No 0 0 P2P Yes 0 P2P No eVLT Configuration Example The following example demonstrates the steps to configure enhanced VLT (eVLT) in a network. In this example, you are configuring two domains.
Add links to the eVLT port-channel on Peer 1. Domain_1_Peer1(conf)#interface range tengigabitethernet 1/16 - 17 Domain_1_Peer1(conf-if-range-te-1/16-17)# port-channel-protocol LACP Domain_1_Peer1(conf-if-range-te-1/16-17)# port-channel 100 mode active Domain_1_Peer1(conf-if-range-te-1/16-17)# no shutdown Next, configure the VLT domain and VLTi on Peer 2.
Domain_2_Peer4(conf-vlt-domain)# back-up destination 10.18.130.12 Domain_2_Peer4(conf-vlt-domain)# system-mac mac-address 00:0b:00:0b:00:0b Domain_2_Peer4(conf-vlt-domain)# unit-id 1 Configure eVLT on Peer 4. Domain_2_Peer4(conf)#interface port-channel 100 Domain_2_Peer4(conf-if-po-100)# switchport Domain_2_Peer4(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_2_Peer4(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 4.
Verifying a VLT Configuration To monitor the operation or verify the configuration of a VLT domain, use any of the following show commands on the primary and secondary VLT switches. • Display information on backup link operation. EXEC mode • show vlt backup-link Display general status information about VLT domains currently configured on the switch.
HeartBeat Timeout: UDP Port: HeartBeat Messages Sent: HeartBeat Messages Received: 3 34998 1026 1025 Dell_VLTpeer2# show vlt backup-link VLT Backup Link ----------------Destination: Peer HeartBeat status: HeartBeat Timer Interval: HeartBeat Timeout: UDP Port: HeartBeat Messages Sent: HeartBeat Messages Received: 10.11.200.20 Up 1 3 34998 1030 1014 The following example shows the show vlt brief command.
VLT Role ---------VLT Role: System MAC address: System Role Priority: Local System MAC address: Local System Role Priority: Secondary 00:01:e8:8a:df:bc 32768 00:01:e8:8a:df:e6 32768 The following example shows the show running-config vlt command. Dell_VLTpeer1# show running-config vlt ! vlt domain 30 peer-link port-channel 60 back-up destination 10.11.200.18 Dell_VLTpeer2# show running-config vlt ! vlt domain 30 peer-link port-channel 60 back-up destination 10.11.200.
Executing IEEE compatible Spanning Tree Protocol Root ID Priority 0, Address 0001.e88a.dff8 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 0, Address 0001.e88a.dff8 We are the root Configured hello time 2, max age 20, forward delay 15 Interface Designated Name PortID Prio Cost Sts Cost Bridge ID PortID ---------- -------- ---- ------- -------- - ------- ------------Po 1 128.2 128 200000 DIS 0 0 0001.e88a.dff8 128.2 Po 3 128.4 128 200000 DIS 0 0 0001.e88a.dff8 128.4 Po 4 128.
NUM Status Description Q Ports 10 Active U Po110(Fo 1/56) T Po100(Fo 1/48,52) Configuring Virtual Link Trunking (VLT Peer 2) Enable VLT and create a VLT domain with a backup-link VLT interconnect (VLTi). Dell_VLTpeer2(conf)#vlt domain 999 Dell_VLTpeer2(conf-vlt-domain)#peer-link port-channel 100 Dell_VLTpeer2(conf-vlt-domain)#back-up destination 10.11.206.23 Dell_VLTpeer2(conf-vlt-domain)#exit Configure the backup link.
Troubleshooting VLT To help troubleshoot different VLT issues that may occur, use the following information. NOTE: For information on VLT Failure mode timing and its impact, contact your Dell Networking representative. Table 95. Troubleshooting VLT Description Behavior at Peer Up Behavior During Run Time Bandwidth monitoring A syslog error message and an SNMP trap is generated when the VLTi bandwidth usage goes above the 80% threshold and when it drops below 80%.
Description Behavior at Peer Up Behavior During Run Time Action to Take information, refer to the Release Notes for this release. VLT LAG ID is not configured on one VLT peer A syslog error message is generated. The peer with the VLT configured remains active. A syslog error message is generated. The peer with the VLT configured remains active. Verify the VLT LAG ID is configured correctly on both VLT peers. VLT LAG ID mismatch The VLT port channel is brought down.
Keep the following points in mind when you configure VLT nodes in a PVLAN: • Configure the VLTi link to be in trunk mode. Do not configure the VLTi link to be in access or promiscuous mode. • You can configure a VLT LAG or port channel to be in trunk, access, or promiscuous port modes when you include the VLT LAG in a PVLAN. The VLT LAG settings must be the same on both the peers. If you configure a VLT LAG as a trunk port, you can associate that LAG to be a member of a normal VLAN or a PVLAN.
PVLAN Operations When One VLT Peer is Down When a VLT port moves to the Admin or Operationally Down state on only one of the VLT nodes, the VLT Lag is still considered to be up. All the PVLAN MAC entries that correspond to the operationally down VLT LAG are maintained as synchronized entries in the device. These MAC entries are removed when the peer VLT LAG also becomes inactive or a change in PVLAN configuration occurs.
VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Mac Synchronization Peer1 Peer2 Peer1 Peer2 Promiscuous Promiscuous Primary Primary Yes Yes Promiscuous Access Primary Secondary No No Promiscuous Promiscuous Primary Primary Yes Yes - Secondary (Community) - Secondary (Isolated) No No Secondary (Community) Secondary (Isolated) No No • • Yes Yes Access Promiscuous Access Promiscuous Primary X Primary X Primary Primary Yes Yes - Secondary (Community) - Se
Creating a VLT LAG or a VLT VLAN 1. Configure the port channel for the VLT interconnect on a VLT switch and enter interface configuration mode CONFIGURATION mode interface port-channel id-number. Enter the same port-channel number configured with the peer-link port-channel command as described in Enabling VLT and Creating a VLT Domain. NOTE: To be included in the VLTi, the port channel must be in Default mode (no switchport or VLAN assigned). 2. Remove an IP address from the interface.
interface interface 2. Enable the port. INTERFACE mode no shutdown 3. Set the port in Layer 2 mode. INTERFACE mode switchport 4. Select the PVLAN mode. INTERFACE mode switchport mode private-vlan {host | promiscuous | trunk} • • • 5. host (isolated or community VLAN port) promiscuous (intra-VLAN communication port) trunk (inter-switch PVLAN hub port) Access INTERFACE VLAN mode for the VLAN to which you want to assign the PVLAN interfaces. CONFIGURATION mode interface vlan vlan-id 6.
3 forwarding level. VLT peer routing enables you to replace VRRP with routed VLT to route the traffic from Layer 2 access nodes. With proxy ARP, hosts can resolve the MAC address of the VLT node even when VLT node is down. If the ICL link is down when a VLT node receives an ARP request for the IP address of the VLT peer, owing to LAG-level hashing algorithm in the top-of-rack (TOR) switch, the incorrect VLT node responds to the ARP request with the peer MAC address.
VLT Nodes as Rendezvous Points for Multicast Resiliency You can configure virtual link trunking (VLT) peer nodes as rendezvous points (RPs) in a Protocol Independent Multicast (PIM) domain. PIM uses a VLT node as the RP to distribute multicast traffic to a multicast group. Messages to join the multicast group (Join messages) and data are sent towards the RP, so that receivers can discover who the senders are and begin receiving traffic destined for the multicast group.
member port-channel port—channel ID 4. Verify the VLAN-stack configurations. EXEC Privilege show running-config Sample configuration of VLAN-stack over VLT (Peer 1) Configure VLT domain Dell(conf)#vlt domain 1 Dell(conf-vlt-domain)#peer-link port-channel 1 Dell(conf-vlt-domain)#back-up destination 10.16.151.
Configure VLAN as VLAN-Stack VLAN and add the VLT LAG as Members to the VLAN Dell(conf)#interface vlan 50 Dell(conf-if-vl-50)#vlan-stack compatible Dell(conf-if-vl-50-stack)#member port-channel 10 Dell(conf-if-vl-50-stack)#member port-channel 20 Dell#show running-config interface vlan 50 ! interface Vlan 50 vlan-stack compatible member Port-channel 10,20 shutdown Dell# Verify that the Port Channels used in the VLT Domain are Assigned to the VLAN-Stack VLAN Dell#show vlan id 50 Codes: * - Default VLAN, G - G
no shutdown Dell# Dell(conf)#interface port-channel 20 Dell(conf-if-po-20)#switchport Dell(conf-if-po-20)#vlt-peer-lag port-channel 20 Dell(conf-if-po-20)#vlan-stack trunk Dell(conf-if-po-20)#no shutdown Dell#show running-config interface port-channel 20 ! interface Port-channel 20 no ip address switchport vlan-stack trunk vlt-peer-lag port-channel 20 no shutdown Dell# Configure the VLAN as VLAN-Stack VLAN and add the VLT LAG as members to the VLAN Dell(conf)#interface vlan 50 Dell(conf-if-vl-50)#vlan-stack
62 VLT Proxy Gateway The Virtual link trucking (VLT) proxy gateway feature allows a VLT domain to locally terminate and route L3 packets that are destined to a Layer 3 (L3) end point in another VLT domain. Enable the VLT proxy gateway using the link layer discover protocol (LLDP) method or the static configuration. For more information, refer to Dell Networking OS Command Line Reference Guide.
Figure 141. Sample Configuration for a VLT Proxy Gateway Guidelines for Enabling the VLT Proxy Gateway Keep the following points in mind when you enable a VLT proxy gateway: • Proxy gateway is supported only for VLT; for example, across a VLT domain. • You must enable the VLT peer-routing command for the VLT proxy gateway to function.
• Dell Networking recommends the vlt-peer-mac transmit command only for square VLTs without diagonal links. • The virtual router redundancy (VRRP) protocol and IPv6 routing is not supported. • Private VLANs (PVLANs) are not supported. • When a Virtual Machine (VM) moves from one VLT domain to the another VLT domain, the VM host sends the gratuitous ARP (GARP) , which in-turn triggers a mac movement from the previous VLT domain to the newer VLT domain.
• You must have at least one link connection to each unit of the VLT domain. Following are the prerequisites for Proxy Gateway LLDP configuration: • You must globally enable LLDP. • You cannot have interface–level LLDP disable commands on the interfaces configured for proxy gateway and you must enable both transmission and reception. • You must connect both units of the remote VLT domain by the port channel member.
• The above figure shows a sample VLT Proxy gateway scenario. There are no diagonal links in the square VLT connection between the C and D in VLT domain 1 and C1 and D1 in the VLT domain 2. This causes sub-optimal routing with the VLT Proxy Gateway LLDP method. For VLT Proxy Gateway to work in this scenario you must configure the VLT-peer-mac transmit command under VLT Domain Proxy Gateway LLDP mode, in both C and D (VLT domain 1) and C1 and D1 (VLT domain 2).
63 Virtual Routing and Forwarding (VRF) Virtual Routing and Forwarding (VRF) allows a physical router to partition itself into multiple Virtual Routers (VRs). The control and data plane are isolated in each VR so that traffic does NOT flow across VRs.Virtual Routing and Forwarding (VRF) allows multiple instances of a routing table to co-exist within the same router at the same time. VRF Overview VRF improves functionality by allowing network paths to be segmented without using multiple devices.
Figure 143. VRF Network Example VRF Configuration Notes Although there is no restriction on the number of VLANs that can be assigned to a VRF instance, the total number of routes supported in VRF is limited by the size of the IPv4 CAM. VRF is implemented in a network device by using Forwarding Information Bases (FIBs). A network device may have the ability to configure different virtual routers, where entries in the FIB that belong to one VRF cannot be accessed by another VRF on the same device.
Table 97. Software Features Supported on VRF Feature/Capability Support Status for Default VRF Support Status for Non-default VRF Configuration rollback for commands introduced or modified Yes No LLDP protocol on the port Yes No 802.
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF sFlow Yes No VRRP on physical and logical interfaces Yes Yes VRRPV3 Yes Yes Secondary IP Addresses Yes No Following IPv6 capabilities No Basic Yes No OSPFv3 Yes Yes IS-IS Yes Yes BGP Yes Yes ACL Yes No Multicast Yes No NDP Yes Yes RAD Yes Yes Ingress/Egress Storm-Control (perinterface/global) Yes No DHCP DHCP requests are not forwarded across VRF instances.
Creating a Non-Default VRF Instance VRF is enabled by default on the switch and supports up to 64 VRF instances: 1 to 63 and the default VRF (0). Table 99. Creating a Non-Default VRF Instance Task Command Syntax Command Mode Create a non-default VRF instance by specifying a name and VRF ID number, and enter VRF configuration mode.
Table 102. View VRF Instance Information Task Command Syntax show ip vrf [vrf-name] Display the interfaces assigned to a VRF instance. To display information on all VRF instances (including the default VRF 0), do not enter a value for vrf-name. Command Mode EXEC Assigning an OSPF Process to a VRF Instance OSPF routes are supported on all VRF instances. Refer toOpen Shortest Path First (OSPFv2) for complete OSPF configuration information. Assign an OSPF process to a VRF instance .
Task Command Syntax Command Mode View VRRP command output show vrrp vrf vrf1 -----------------for the VRF vrf1 TenGigabitEthernet 1/13, IPv4 VRID: 10, Version: 2, Net: 10.1.1.1 VRF: 2 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 43, Gratuitous ARP sent: 0 Virtual MAC address: 00:00:5e:00:01:0a Virtual IP address: 10.1.1.
Table 106. Configuring a Static Route Task Command Syntax Command Mode Configure a static route that points to a management interface. management route ip-address mask managementethernet ormanagement route ipv6address prefix-length managementethernet CONFIGURATION NOTE: You can also have the management route to point to a front-end port in case of the management VRF. For example: management route 2::/64 te 0/0.
Figure 145. Setup VRF Interfaces The following example relates to the configuration shown in Figure1 and Figure 2. Router 1 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet no ip address switchport no shutdown ! interface TenGigabitEthernet ip vrf forwarding blue ip address 10.0.0.1/24 no shutdown ! interface TenGigabitEthernet ip vrf forwarding orange ip address 20.0.0.
ip vrf forwarding green ip address 30.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.1/24 tagged TenGigabitEthernet 3/1 no shutdown ! router ospf 1 vrf blue router-id 1.0.0.1 network 1.0.0.0/24 area 0 network 10.0.0.
ip vrf forwarding blue ip address 1.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.2/24 tagged TenGigabitEthernet 3/1 no shutdown ! router ospf 1 vrf blue router-id 1.0.0.2 network 11.0.0.0/24 area 0 network 1.0.0.0/24 area 0 passive-interface TenGigabitEthernet 2/1 ! router ospf 2 vrf orange router-id 2.0.0.2 network 21.0.0.
E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set C C O Destination ----------1.0.0.0/24 10.0.0.0/24 11.0.0.0/24 Gateway ------Direct, Vl 128 Direct, Te 1/1 via 1.0.0.
Dell#show ip ospf 1 neighbor Neighbor ID Pri 1.0.0.1 1 FULL/BDR ! Dell#sh ip ospf 2 neighbor Neighbor ID Pri 2.0.0.1 1 FULL/BDR ! Dell#show ip route vrf blue State Dead Time 00:00:36 Address 1.0.0.1 Interface Vl 128 Area State Dead Time 00:00:33 Address 2.0.0.
Route Leaking VRFs Static routes can be used to redistribute routes between non-default to default/non-default VRF and vice-versa. You can configure route leaking between two VRFs using the following command: ip route vrf x.x.x.x s.s.s.s nh.nh.nh.nh vrf default. This command indicates that packets that are destined to x.x.x.x/s.s.s.s are reachable through nh.nh.nh.nh in the default VRF table. Meaning, the routes to x.x.x.x/s.s.s.
purpose, routes corresponding VRF-Shared routes are leaked to only VRF-Red and VRF-Blue. And for reply, routes corresponding to VRF-Red and VRF-Blue are leaked to VRF-Shared. For leaking the routes from VRF-Shared to VRF-Red and VRF-Blue, you can configure route-export tag on VRF-shared (source VRF, who is exporting the routes); the same route-export tag value should be configured on VRF-Red and VRF-blue as route-import tag (target VRF, that is importing the routes).
ip vrf forwarding VRF-green ip address ip—address mask A non-default VRF named VRF-green is created and the interface is assigned to it. 10. Configure the import target in the source VRF VRF-Shared for reverse communication with VRF-red and VRF-blue.
O 22.2.2.2/32 00:00:11 via 122.2.2.2 C O C Direct, Te 1/12 0/0 22:39:61 via vrf-shared:144.4.4.4 0/0 00:32:36 Direct, vrf-shared:Te 1/4 0/0 00:32:36 122.2.2.0/24 44.4.4.4/32 144.4.4.0/24 110/0 Dell# show ip route vrf VRF-Green O 33.3.3.3/32 00:00:11 via 133.3.3.3 C Direct, Te 1/13 0/0 133.3.3.0/24 110/0 22:39:61 Dell# show ip route vrf VRF-Shared O 11.1.1.1/32 via VRF-Red:111.1.1.1 110/0 C 111.1.1.0/24 Direct, VRF-Red:Te 1/11 0/0 O 22.2.2.2/32 via VRF-Blue:122.2.2.2 110/0 C 122.2.2.
While importing these routes into VRF-blue, you can further specify match conditions at the import end to define the filtering criteria based on which the routes are imported into VRF-blue. You can define a route-map import_ospf_protocol and then specify the match criteria as OSPF using the match source-protocol ospf command. You can then use the ip route-import route-map command to import routes matching the filtering criteria defined in the import_ospf_protocol route-map.
The show run output for the above configuration is as follows: ip vrf vrf-Red ip route-export 1:1 export_ospfbgp_protocol ip route-import 2:2 ! this action exports only the OSPF and BGP routes to other VRFs ! ip vrf vrf-Blue ip route-export 2:2 ip route-import 1:1 import_ospf_protocol !this action accepts only OSPF routes from VRF-red even though both OSPF as well as BGP routes are shared The show VRF commands displays the following output: Dell# show ip route vrf VRF-Blue C 122.2.2.
64 Virtual Router Redundancy Protocol (VRRP) Virtual router redundancy protocol (VRRP) is designed to eliminate a single point of failure in a statically routed network. VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN).
Figure 146. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. End-station connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. VRRP Implementation Within a single VRRP group, up to 12 virtual IP addresses are supported.
Table 108. Recommended VRRP Advertise Intervals Recommended Advertise Interval Groups/Interface Total VRRP Groups Groups/Interface Less than 250 1 second 12 Between 250 and 450 2–3 seconds 24 Between 450 and 600 3–4 seconds 36 Between 600 and 800 4 seconds 48 Between 800 and 1000 5 seconds 84 Between 1000 and 1200 7 seconds 100 Between 1200 and 1500 8 seconds 120 VRRP Configuration By default, VRRP is not configured.
Examples of Configuring and Verifying VRRP The following examples how to configure VRRP. Dell(conf)#interface tengigabitethernet 1/1 Dell(conf-if-te-1/1)#vrrp-group 111 Dell(conf-if-te-1/1-vrid-111)# The following examples how to verify the VRRP configuration. Dell(conf-if-te-1/1)#show conf ! interface TenGigabitEthernet 1/1 ip address 10.10.10.
2. Set the master switch to VRRP protocol version 3. Dell_master_switch(conf-if-te-1/1-vrid-100)#version 3 3. Set the backup switches to version 3. Dell_backup_switch1(conf-if-te-1/1-vrid-100)#version 3 Dell_backup_switch2(conf-if-te-1/2-vrid-100)#version 3 Assign Virtual IP addresses Virtual routers contain virtual IP addresses configured for that VRRP group (VRID). A VRRP group does not transmit VRRP packets until you assign the Virtual IP address to the VRRP group.
The following example shows how to verify a virtual IP address configuration. NOTE: In the following example, the primary IP address and the virtual IP addresses are on the same subnet. Dell(conf-if-te-1/1)#show conf ! interface TenGigabitEthernet 1/1 ip address 10.10.10.1/24 ! vrrp-group 111 priority 255 virtual-address 10.10.10.1 virtual-address 10.10.10.2 virtual-address 10.10.10.
Examples of the priority Command Dell(conf-if-te-1/2)#vrrp-group 111 Dell(conf-if-te-1/2-vrid-111)#priority 125 To verify the VRRP group priority, use the show vrrp command. Dellshow vrrp -----------------TenGigabitEthernet 1/1, VRID: 111, Net: 10.10.10.1 State: Master, Priority: 255, Master: 10.10.10.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 2343, Gratuitous ARP sent: 5 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.10.1 10.10.10.
virtual-address 10.10.10.2 virtual-address 10.10.10.3 virtual-address 10.10.10.10 Disabling Preempt The preempt command is enabled by default. The command forces the system to change the MASTER router if another router with a higher priority comes online. Prevent the BACKUP router with the higher priority from becoming the MASTER router by disabling preempt.
• Change the advertisement interval setting. INTERFACE-VRID mode advertise-interval seconds The range is from 1 to 255 seconds. • The default is 1 second. For VRRPv3, change the advertisement centisecs interval setting. INTERFACE-VRID mode advertise-interval centisecs centisecs The range is from 25 to 4075 centisecs in units of 25 centisecs. The default is 100 centisecs.
For a virtual group, you can also track the status of a configured object (the track object-id command) by entering its object number. NOTE: You can configure a tracked object for a VRRP group (using the track object-id command in INTERFACEVRID mode) before you actually create the tracked object (using a track object-id command in CONFIGURATION mode). However, no changes in the VRRP group’s priority occur until the tracked object is defined and determined to be down.
The following example shows verifying the tracking status.
When you configure both CLIs, the later timer rules VRRP enabling. For example, if you set vrrp delay reload 600 and vrrp delay minimum 300, the following behavior occurs: • When the system reloads, VRRP waits 600 seconds (10 minutes) to bring up VRRP on all interfaces that are up and configured for VRRP. • When an interface comes up and becomes operational, the system waits 300 seconds (5 minutes) to bring up VRRP on that interface.
Figure 147. VRRP for IPv6 Topology NOTE: This example does not contain comprehensive directions and is intended to provide guidance for only a typical VRRP configuration. You can copy and paste from the example to your CLI. Be sure you make the necessary changes to support your own IP addresses, interfaces, names, and so on.
NOTE: The virtual IPv6 address you configure should be the same as the IPv6 subnet to which the interface belongs.
Virtual IP address: 10:1:1::255 fe80::255 Dell#show vrrp tengigabitethernet 2/8 TenGigabitEthernet 2/8, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:e9ed VRF: 0 default State: Master, Priority: 110, Master: fe80::201:e8ff:fe8a:e9ed (local) Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 120 Virtual MAC address: 00:00:5e:00:02:ff Virtual IP address: 10:1:1::255 fe80::255 Dell# Dell#show vrrp vrf vrf1 v
Sample Configurations Before you set up VRRP, review the following sample configurations. VRRP for an IPv4 Configuration The following configuration shows how to enable IPv4 VRRP. This example does not contain comprehensive directions and is intended to provide guidance for only a typical VRRP configuration. You can copy and paste from the example to your CLI. To support your own IP addresses, interfaces, names, and so on, be sure that you make the necessary changes.
R2(conf-if-te-2/31-vrid-99)#priority 200 R2(conf-if-te-2/31-vrid-99)#virtual 10.1.1.3 R2(conf-if-te-2/31-vrid-99)#no shut R2(conf-if-te-2/31)#show conf ! interface TenGigabitEthernet 2/31 ip address 10.1.1.1/24 ! vrrp-group 99 priority 200 virtual-address 10.1.1.3 no shutdown R2(conf-if-te-2/31)#end R2#show vrrp -----------------TenGigabitEthernet 2/31, VRID: 99, Net: 10.1.1.1 State: Master, Priority: 200, Master: 10.1.1.
Figure 149. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address. The following example shows configuring VRRP for IPv6 Router 2 and Router 3. Configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
R2(conf-if-te-1/1-vrid-10)#virtual-address fe80::10 R2(conf-if-te-1/1-vrid-10)#virtual-address 1::10 R2(conf-if-te-1/1-vrid-10)#no shutdown R2(conf-if-te-1/1)#show config interface TenGigabitEthernet 1/1 ipv6 address 1::1/64 vrrp-group 10 priority 100 virtual-address fe80::10 virtual-address 1::10 no shutdown R2(conf-if-te-1/1)#end R2#show vrrp -----------------TenGigabitEthernet 1/1, IPv6 VRID: 10, Version: 3, Net:fe80::201:e8ff:fe6a:c59f VRF: 0 default-vrf State: Master, Priority: 100, Master: fe80::201:e
VRRP in a VRF: Non-VLAN Scenario The following example shows how to enable VRRP in a non-VLAN. The following example shows a typical use case in which you create three virtualized overlay networks by configuring three VRFs in two switches. The default gateway to reach the Internet in each VRF is a static route with the next hop being the virtual IP address configured in VRRP. In this scenario, a single VLAN is associated with each VRF.
S1(conf)#interface TenGigabitEthernet 1/1 S1(conf-if-te-1/1)#ip vrf forwarding VRF-1 S1(conf-if-te-1/1)#ip address 10.10.1.5/24 S1(conf-if-te-1/1)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 1 will be 177. S1(conf-if-te-1/1-vrid-101)#priority 100 S1(conf-if-te-1/1-vrid-101)#virtual-address 10.10.1.2 S1(conf-if-te-1/1)#no shutdown ! S1(conf)#interface TenGigabitEthernet 1/2 S1(conf-if-te-1/2)#ip vrf forwarding VRF-2 S1(conf-if-te-1/2)#ip address 10.10.1.
S2(conf-if-te-1/3)#ip vrf forwarding VRF-3 S2(conf-if-te-1/3)#ip address 20.1.1.6/24 S2(conf-if-te-1/3)#vrrp-group 15 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S2(conf-if-te-1/3-vrid-105)#priority 100 S2(conf-if-te-1/3-vrid-105)#virtual-address 20.1.1.5 S2(conf-if-te-1/3)#no shutdown VLAN Scenario In another scenario, to connect to the LAN, VRF-1, VRF-2, and VRF-3 use a single physical interface with multiple tagged VLANs (instead of separate physical interfaces).
VRF: 1 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Dell#show vrrp vrf vrf2 port-channel 1 -----------------Port-channel 1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 2 vrf2 State: Master, Priority: 100, Master: 10.1.1.
State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Vlan 400, IPv4 VRID: 10, Version: 2, Net: 20.1.1.2 VRF: 1 vrf1 State: Backup, Priority: 90, Master: 20.1.1.
65 Debugging and Diagnostics This chapter describes debugging and diagnostics for the device. Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • • • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, Level 0 diagnostics verify the identification registers of the components on the board.
3. Start diagnostics on the unit. diag stack-unit stack-unit-number When the tests are complete, the system displays the following message and automatically reboots the unit. Dell#00:09:42 : Diagnostic test results are stored on file: flash:/TestReport-SU-0.txt Diags completed... Rebooting the system now!!! Mar 12 10:40:35: %S4820:0 %DIAGAGT-6-DA_DIAG_DONE: Diags finished on stack unit 0 Diagnostic results are printed to a file in the flash using the filename format TestReport-SU-.txt.
Speed in RPM The following example shows the diag command (standalone unit). Dell#diag stack-unit 0 level0 Warning - diagnostic execution will cause multiple link flaps on the peer side - advisable to shut directly connected ports Proceed with Diags [confirm yes/no]: yes Dell#Dec 15 04:14:07: %S4820:0 %DIAGAGT-6-DA_DIAG_STARTED: Starting diags on stack unit 0 00:12:10 : System may take additional time for Driver Init. 00:12:10 : Approximate time to complete the Diags ...
diagS4810DumpPowerGoodStatus[653]: ERROR: Psu : 0 Output voltage is NOT in regulation range Test 1.000 - Psu Power Good Test .................................... FAIL Test 1.001 - Psu Power Good Test .................................... PASS Test 1 - Psu Power Good Test ....................................... FAIL diagS4820DumpPsuStatus[1753]: ERROR: Psu0: Reporting fault in Current, Voltage and Fan condition diagS4820DumpPsuStatus[1757]: ERROR: Psu0: Output voltage is NOT in regulation range Test 2.
Hardware Watchdog Timer The hardware watchdog command automatically reboots an Dell Networking OS switch/router with a single RPM that is unresponsive. This is a last resort mechanism intended to prevent a manual power cycle. Using the Show Hardware Commands The show hardware command tree consists of commands used with the system. These commands display information from a hardware sub-component and from hardware-based feature tables.
• View the input and output statistics for a stack-port interface. EXEC Privilege mode show hardware stack-unit {0-11} stack-port {0-64} • View the counters in the field processors of the stack unit. EXEC Privilege mode show hardware stack-unit {0-11} unit {0-1} counters • View the details of the FP Devices and Hi gig ports on the stack-unit. EXEC Privilege mode show hardware stack-unit {0-11} unit {0-1} details • Execute a specified bShell command from the CLI without going into the bShell.
• If directly adjacent cards are not normal temperature, suspect a genuine overheating condition. • If directly adjacent cards are normal temperature, suspect a faulty sensor. When the system detects a genuine over-temperature condition, it powers off the card.
Table 110. SNMP Traps and OIDs OID String OID Name Description chSysPortXfpRecvPower OID displays the receiving power of the connected optics. chSysPortXfpTxPower OID displays the transmitting power of the connected optics. chSysPortXfpRecvTemp OID displays the temperature of the connected optics. Receiving Power .1.3.6.1.4.1.6027.3.10.1.2.5.1.6 Transmitting power .1.3.6.1.4.1.6027.3.10.1.2.5.1.8 Temperature .1.3.6.1.4.1.6027.3.10.1.2.5.1.
• • • • • clear clear clear clear clear hardware hardware hardware hardware hardware stack-unit stack-unit stack-unit stack-unit stack-unit stack-unit-number stack-unit-number stack-unit-number stack-unit-number stack-unit-number counters unit 0-1 counters cpu data-plane statistics cpu party-bus statistics stack-port 48-51 Displaying Drop Counters To display drop counters, use the following commands. • • • Identify which stack unit, port pipe, and port is experiencing internal drops.
HOL DROPS on COS0 HOL DROPS on COS1 HOL DROPS on COS2 HOL DROPS on COS3 HOL DROPS on COS4 HOL DROPS on COS5 HOL DROPS on COS6 HOL DROPS on COS7 HOL DROPS on COS8 HOL DROPS on COS9 HOL DROPS on COS10 HOL DROPS on COS11 HOL DROPS on COS12 HOL DROPS on COS13 HOL DROPS on COS14 HOL DROPS on COS15 HOL DROPS on COS16 HOL DROPS on COS17 TxPurge CellErr Aged Drops --- Egress MAC counters--Egress FCS Drops --- Egress FORWARD PROCESSOR IPv4 L3UC Aged & Drops TTL Threshold Drops INVALID VLAN CNTR Drops L2MC Drops PKT
HOL DROPS on COS15 HOL DROPS on COS16 HOL DROPS on COS17 TxPurge CellErr Aged Drops --- Egress MAC counters--Egress FCS Drops --- Egress FORWARD PROCESSOR IPv4 L3UC Aged & Drops TTL Threshold Drops INVALID VLAN CNTR Drops L2MC Drops PKT Drops of ANY Conditions Hg MacUnderflow TX Err PKT Counter --- Error counters--Internal Mac Transmit Errors Unknown Opcodes Internal Mac Receive Errors : : : : : 0 0 0 0 0 : 0 Drops : 0 : 0 : 0 : 0 : 0 : 0 : 0 --- : 0 : 0 : 0 Dell#show hardware drops interface gigabite
--- Error counters--Internal Mac Transmit Errors Unknown Opcodes Internal Mac Receive Errors : 0 : 0 : 0 Dataplane Statistics The show hardware stack-unit cpu data-plane statistics command provides insight into the packet types coming to the CPU. The show hardware stack-unit cpu party-bus statistics command displays input and output statistics on the party bus, which carries inter-process communication traffic between CPUs.
Display Stack Port Statistics The show hardware stack-unit stack-port command displays input and output statistics for a stack-port interface.
RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX - 128 to 255 Byte Frame Counter 256 to 511 Byte Frame Counter 512 to 1023 Byte Frame Counter 1024 to 1518 Byte Frame Counter 1519 to 1522 Byte Good VLAN Frame Counter 1519 to 2047 Byte Frame Counter 2048 to 4095 Byte Frame Counter 4096 to 9216 Byte Frame Counter Good Packet Counter Packet/frame Counter Unicast Packet Counter Multicast Packet Counter Broadcast Frame C
RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX - 512 to 1023 Byte Frame Counter 1024 to 1518 Byte Frame Counter 1519 to 1522 Byte Good VLAN Frame Counter 1519 to 2047 Byte Frame Counter 2048 to 4095 Byte Frame Counter 4096 to 9216 Byte Frame Counter Good Packet Counter Packet/frame Counter Unicast Packet Counter Multicast Packet Counter Broadcast Frame Counter Byte Counter Control frame counter PAUSE frame counter Over
RX RX RX RX RX RX RX RX RX RX RX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX - Broadcast Frame Counter Byte Counter Control frame counter PAUSE frame counter Oversized frame counter Jabber frame counter VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter VLAN tagged packets 64 Byte Frame Counter 64 to 127 Byte Frame Counter 128 to 255 Byte Frame Counter 256 to 511 Byte Frame Counter 512 to 1023 Byte Frame Counter 1024 to 1518 Byte Frame Coun
RX - Unicast Frame Counter RX - Multicast Frame Counter RX - Broadcast Frame Counter RX - Byte Counter RX - Control Frame Counter RX - Pause Control Frame Counter RX - Oversized Frame Counter RX - Jabber Frame Counter RX - VLAN Tag Frame Counter RX - Double VLAN Tag Frame Counter RX - RUNT Frame Counter RX - Fragment Counter RX - VLAN Tagged Packets RX - Ingress Dropped Packet RX - MTU Check Error Frame Counter RX - PFC Frame Priority 0 RX - PFC Frame Priority 1 RX - PFC Frame Priority 2 RX - PFC Frame Prio
Example of Application Mini Core Dump Listings Dell#dir Directory of flash: 1 2 3 4 5 6 7 8 9 10 11 12 13 drwdrwx drwd---rw-rw-rw-rw-rw-rw-rw-rw-rw- 16384 1536 512 512 8693 8693 156 156 156 156 156 156 156 Jan Sep Aug Aug Sep Sep Aug Aug Aug Aug Aug Aug Aug 01 03 07 07 03 03 28 28 28 28 31 29 31 1980 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 00:00:00 16:51:02 13:05:58 13:06:00 16:50:56 16:44:22 16:16:10 17:17:24 18:25:18 19:07:36 16:18:50 14:28:34 16:14:56 +00:00 +00:00 +00:00 +00:0
tcpdump cp [capture-duration time | filter expression | max-file-count value | packetcount value | snap-length value | write-to path] Debugging and Diagnostics 997
66 Standards Compliance This chapter describes standards compliance for Dell Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell Networking OS, the system also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website. Click “Browse and search IETF documents,” enter an RFC number, and inspect the top of the resulting document for obsolescence citations to related RFCs.
RFC and I-D Compliance Dell Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell Networking OS first supports the standard. General Internet Protocols The following table lists the Dell Networking OS support per platform for general internet protocols. Table 111. General Internet Protocols RFC# Full Name Z-Series S-Series 768 User Datagram Protocol 7.6.
General IPv4 Protocols The following table lists the Dell Networking OS support per platform for general IPv4 protocols. Table 112. General IPv4 Protocols R Full Name F C # Z-Series S-Series 7 Internet Protocol 91 7.6.1 7 9 2 Internet Control Message Protocol 7.6.1 8 2 6 An Ethernet Address Resolution Protocol 7.6.1 10 Using ARP to 27 Implement Transparent Subnet Gateways 7.6.1 10 DOMAIN NAMES 3 IMPLEMENTATION 5 AND SPECIFICATION (client) 7.6.
R Full Name F C # Z-Series S-Series 21 Dynamic Host 31 Configuration Protocol 7.6.1 2 3 3 8 Virtual Router Redundancy Protocol (VRRP) 7.6.1 3 Using 31-Bit 0 Prefixes on IPv4 21 Point-to-Point Links 7.7.1 3 0 4 6 DHCP Relay Agent Information Option 7.8.1 3 0 6 9 VLAN Aggregation for Efficient IP Address Allocation 7.8.1 31 Protection Against 2 a Variant of the 8 Tiny Fragment Attack 7.6.
RF C# Full Name Z-Series S-Series rtial ) 246 Transmission 4 of IPv6 Packets over Ethernet Networks 7.8.1 267 IPv6 5 Jumbograms 7.8.1 2711 IPv6 Router Alert Option 8.3.12.0 358 IPv6 Global 7 Unicast Address Format 7.8.1 400 IPv6 Scoped 7 Address Architecture 8.3.12.0 429 Internet 1 Protocol Version 6 (IPv6) Addressing Architecture 7.8.1 444 Internet 3 Control Message Protocol (ICMPv6) for the IPv6 Specification 7.8.1 486 Neighbor 1 Discovery for IPv6 8.3.12.
Border Gateway Protocol (BGP) The following table lists the Dell Networking OS support per platform for BGP protocols. Table 114. Border Gateway Protocol (BGP) RFC# Full Name S-Series/Z-Series 1997 BGP ComAmtturnibituitees 7.8.1 2385 Protection of BGP Sessions via the TCP MD5 Signature Option 7.8.1 2439 BGP Route Flap Damping 7.8.1 2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing 2796 BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP) 7.8.
Intermediate System to Intermediate System (IS-IS) The following table lists the Dell Networking OS support per platform for IS-IS protocol. Table 116.
Multicast The following table lists the Dell Networking OS support per platform for Multicast protocol. Table 118. Multicast RFC# Full Name Z-Series S-Series 1112 Host Extensions for IP Multicasting 7.8.1 2236 Internet Group Management Protocol, Version 2 7.8.1 3376 Internet Group Management Protocol, Version 3 7.8.1 3569 An Overview of SourceSpecific Multicast (SSM) 7.8.
RFC# Full Name 1724 RIP Version 2 MIB Extension 1850 OSPF Version 2 Management Information Base 7.6.1 1901 Introduction to Communitybased SNMPv2 7.6.1 2011 SNMPv2 Management 7.6.1 Information Base for the Internet Protocol using SMIv2 2012 SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2 7.6.1 2013 SNMPv2 Management Information Base for the User Datagram Protocol using SMIv2 7.6.
RFC# Full Name S4810 S4820T Z-Series 9.5.(0.0) 9.5.(0.0) Internet-standard Network Management Framework 2578 Structure of Management Information Version 2 (SMIv2) 7.6.1 2579 Textual Conventions for SMIv2 7.6.1 2580 Conformance Statements for SMIv2 7.6.1 2618 RADIUS Authentication Client MIB, except the following four counters: 7.6.
RFC# Full Name S4810 S4820T Z-Series Network Management Protocol (SNMP) 3418 Management Information Base (MIB) for the Simple Network Management Protocol (SNMP) 7.6.1 3434 Remote Monitoring MIB Extensions for High Capacity Alarms, High-Capacity Alarm Table (64 bits) 7.6.1 3580 IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines 7.6.
RFC# Full Name S4810 draft-ietf-netmodinterfaces-cfg-03 Defines a YANG data model for 9.2(0.0) the configuration of network interfaces. Used in the Programmatic Interface RESTAPI feature. IEEE 802.1AB Management Information Base module for LLDP configuration, statistics, local system data and remote systems data components. IEEE 802.1AB The LLDP Management 7.7.1 Information Base extension module for IEEE 802.1 organizationally defined discovery information.
RFC# Full Name S4810 S4820T displayed in the "show interfaces" output) FORCE10-LINKAGGMIB Force10 Enterprise Link Aggregation MIB 7.6.1 FORCE10-CHASSIS-MIB Force10 E-Series Enterprise Chassis MIB FORCE10-COPYCONFIG-MIB Force10 File Copy MIB (supporting SNMP SET operation) 7.7.1 FORCE10-MONMIB Force10 Monitoring MIB 7.6.1 FORCE10-PRODUCTSMIB Force10 Product Object Identifier 7.6.1 MIB FORCE10-SS-CHASSIS- Force10 S-Series Enterprise MIB Chassis MIB 7.6.