Dell Configuration Guide for the S4820T System 9.5(0.
Notes, Cautions, and Warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. Copyright © 2014 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws.
Contents 1 About this Guide......................................................................................................35 Audience..............................................................................................................................................35 Conventions........................................................................................................................................ 35 Related Documents...........................................................
Enabling Software Features on Devices Using a Command Option................................................ 55 View Command History......................................................................................................................56 Upgrading Dell Networking OS.......................................................................................................... 56 Using HTTP for File Transfers............................................................................................
Recovering from a Forgotten Password on the S4820T System......................................................78 Recovering from a Forgotten Enable Password on the S4820T.................................................79 Recovering from a Failed Start on the S4820T System.....................................................................80 Restoring the Factory Default Settings.............................................................................................. 80 S4820TMXL Switch..............
Configuring Timeouts....................................................................................................................... 105 Configuring Dynamic VLAN Assignment with Port Authentication................................................106 Guest and Authentication-Fail VLANs.............................................................................................. 107 Configuring a Guest VLAN..................................................................................................
Important Points to Remember........................................................................................................139 Configuration Task List for Route Maps..................................................................................... 139 Configuring Match Routes.......................................................................................................... 141 Configuring Set Conditions.......................................................................................
Origin............................................................................................................................................191 AS Path......................................................................................................................................... 192 Next Hop......................................................................................................................................192 Multiprotocol BGP..................................................
Configuring BGP Confederations............................................................................................... 231 Enabling Route Flap Dampening................................................................................................ 231 Changing BGP Timers.................................................................................................................234 Enabling BGP Neighbor Soft-Reconfiguration..........................................................................
Configuring the PFC Buffer in a Switch Stack............................................................................276 Configure Enhanced Transmission Selection.................................................................................. 277 ETS Prerequisites and Restrictions..............................................................................................277 Creating a QoS DCB Output Policy............................................................................................
Configure the System to be a DHCP Server.................................................................................... 321 Configuring the Server for Automatic Address Allocation.........................................................321 Specifying a Default Gateway.....................................................................................................323 Configure a Method of Hostname Resolution...........................................................................
Important Points to Remember..................................................................................................347 Enabling the FCoE Transit Feature............................................................................................. 347 Enable FIP Snooping on VLANs..................................................................................................348 Configure the FC-MAP Value...............................................................................................
Related Configuration Tasks....................................................................................................... 375 Enabling GVRP Globally....................................................................................................................376 Enabling GVRP on a Layer 2 Interface............................................................................................. 376 Configure GVRP Registration..........................................................................
IGMP Snooping................................................................................................................................. 399 IGMP Snooping Implementation Information........................................................................... 399 Configuring IGMP Snooping...................................................................................................... 399 Removing a Group-Port Association................................................................................
Null Interfaces................................................................................................................................... 422 Port Channel Interfaces....................................................................................................................422 Port Channel Definition and Standards......................................................................................423 Port Channel Benefits......................................................................
Enhanced Validation of Interface Ranges....................................................................................... 449 Compressing Configuration Files.................................................................................................... 449 23 Internet Protocol Security (IPSec)................................................................. 453 Configuring IPSec .......................................................................................................................
UDP Helper with Configured Broadcast Addresses........................................................................ 472 UDP Helper with No Configured Broadcast Addresses.................................................................. 472 Troubleshooting UDP Helper........................................................................................................... 472 25 IPv6 Routing........................................................................................................
Enable and Disable iSCSI Optimization..................................................................................... 498 Default iSCSI Optimization Values...................................................................................................499 iSCSI Optimization Prerequisites..................................................................................................... 500 Configuring iSCSI Optimization.................................................................................
Shared LAG State Tracking............................................................................................................... 535 Configuring Shared LAG State Tracking.....................................................................................536 Important Points about Shared LAG State Tracking.................................................................. 537 LACP Basic Configuration Example..............................................................................................
Enabling LLDP....................................................................................................................................571 Disabling and Undoing LLDP.......................................................................................................571 Advertising TLVs.................................................................................................................................571 Viewing the LLDP Configuration...................................................
MSDP with Anycast RP..................................................................................................................... 604 Configuring Anycast RP................................................................................................................... 606 Reducing Source-Active Message Flooding..............................................................................606 Specifying the RP Address Used in SA Messages..............................................................
Link-State Advertisements (LSAs)............................................................................................... 641 Router Priority and Cost............................................................................................................. 643 OSPF with Dell Networking OS........................................................................................................643 Graceful Restart..........................................................................................
Refuse Multicast Traffic...............................................................................................................691 Send Multicast Traffic..................................................................................................................691 Configuring PIM-SM......................................................................................................................... 692 Related Configuration Tasks..............................................................
Creating an Isolated VLAN.......................................................................................................... 722 Private VLAN Configuration Example...............................................................................................723 Inspecting the Private VLAN Configuration..................................................................................... 724 41 Per-VLAN Spanning Tree Plus (PVST+).........................................................
Guidelines for Configuring ECN for Classifying and Color-Marking Packets................................ 763 Sample configuration to mark non-ecn packets as “yellow” with Multiple traffic class.......... 763 Classifying Incoming Packets Using ECN and Color-Marking..................................................764 Sample configuration to mark non-ecn packets as “yellow” with single traffic class............. 766 Applying Layer 2 Match Criteria on a Layer 3 Interface........................................
47 Security................................................................................................................. 798 AAA Accounting................................................................................................................................ 798 Configuration Task List for AAA Accounting..............................................................................798 AAA Authentication..............................................................................................
Creating Access and Trunk Ports............................................................................................... 842 Enable VLAN-Stacking for a VLAN............................................................................................. 843 Configuring the Protocol Type Value for the Outer VLAN Tag................................................ 843 Configuring Dell Networking OS Options for Trunk Ports....................................................... 843 Debugging VLAN Stacking....
Related Configuration Tasks...................................................................................................... 868 Important Points to Remember....................................................................................................... 868 Set up SNMP..................................................................................................................................... 868 Creating a Community.........................................................................
Important Points to Remember—S4820T Stacking........................................................................898 S-Series Stacking Installation Tasks................................................................................................. 899 Create an S-Series Stack............................................................................................................ 899 Add Units to an Existing S-Series Stack..............................................................................
Configuring Root Guard.............................................................................................................930 Enabling SNMP Traps for Root Elections and Topology Changes..................................................931 Configuring Spanning Trees as Hitless.............................................................................................931 STP Loop Guard....................................................................................................................
57 Upgrade Procedures..........................................................................................961 Get Help with Upgrades....................................................................................................................961 58 Virtual LANs (VLANs)......................................................................................... 962 Default VLAN.............................................................................................................................
Additional VLT Sample Configurations..........................................................................................1004 Configuring Virtual Link Trunking (VLT Peer 1)Configuring Virtual Link Trunking (VLT Peer 2)Verifying a Port-Channel Connection to a VLT Domain (From an Attached Access Switch).......................................................................................................................................1005 Troubleshooting VLT..............................................
VRRP Benefits.................................................................................................................................. 1041 VRRP Implementation.....................................................................................................................1041 VRRP Configuration........................................................................................................................1042 Configuration Task List........................................................
Border Gateway Protocol (BGP).............................................................................................. 1086 Open Shortest Path First (OSPF)...............................................................................................1087 Intermediate System to Intermediate System (IS-IS).............................................................. 1088 Routing Information Protocol (RIP).........................................................................................
About this Guide 1 This guide describes the protocols and features the Dell Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. This guide supports the S4820T platform. The S4820T platform is available with Dell Networking OS version 8.3.19.0 and beyond. S4820T stacking is supported with Dell Networking OS version 8.3.19.0 and beyond. Though this guide contains information on protocols, it is not intended to be a complete reference.
2 Configuration Fundamentals The Dell Networking Operating System (OS) command line interface (CLI) is a text-based interface you can use to configure interfaces and protocols. The CLI is largely the same for the Z9000, S6000, S4810, and S4820T except for some commands and command outputs. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
• EXEC mode is the default mode and has a privilege level of 1, which is the most restricted level. Only a limited selection of commands is available, notably the show commands, which allow you to view system information. • EXEC Privilege mode has commands to view configurations, clear counters, manage configuration files, run diagnostics, and enable or disable debug operations. The privilege level is 15, which is unrestricted.
CLI Command Mode Prompt Access Command AS-PATH ACL Dell(config-as-path)# ip as-path access-list Gigabit Ethernet Interface Dell(conf-if-gi-0/0)# interface (INTERFACE modes) 10 Gigabit Ethernet Interface Dell(conf-if-te-0/1–2)# interface (INTERFACE modes) Interface Group Dell(conf-if-group)# interface(INTERFACE modes) Interface Range Dell(conf-if-range)# interface (INTERFACE modes) Loopback Interface Dell(conf-if-lo-0)# interface (INTERFACE modes) Management Ethernet Interface Dell(conf
CLI Command Mode Prompt Access Command RAPID SPANNING TREE Dell(config-rstp)# protocol spanning-tree rstp REDIRECT Dell(conf-redirect-list)# ip redirect-list ROUTE-MAP Dell(config-route-map)# route-map ROUTER BGP Dell(conf-router_bgp)# router bgp BGP ADDRESS-FAMILY Dell(conf-router_bgp_af)# address-family {ipv4 multicast | ipv6 unicast} (for IPv4) (ROUTER BGP Mode) Dell(confrouterZ_bgpv6_af)# (for IPv6) ROUTER ISIS Dell(conf-router_isis)# router isis ISIS ADDRESS-FAMILY Dell(conf-router
CLI Command Mode Prompt Access Command LLDP MANAGEMENT INTERFACE Dell(conf-lldp-mgmtIf)# management-interface (LLDP Mode) LINE Dell(config-line-console) or Dell(config-line-vty) line console orline vty MONITOR SESSION Dell(conf-mon-sesssessionID)# monitor session OPENFLOW INSTANCE Dell(conf-of-instance-ofid)# openflow of-instance PORT-CHANNEL FAILOVERGROUP Dell(conf-po-failovergrp)# port-channel failovergroup PRIORITY GROUP Dell(conf-pg)# priority-group PROTOCOL GVRP Dell(config-gvrp)#
-- Stack Info -Unit UnitType Status ReqTyp CurTyp Version Ports ----------------------------------------------------------------------------------0 Management online S4810 S4810 9.4(0.
no ip address no shutdown Layer 2 protocols are disabled by default. To enable Layer 2 protocols, use the no disable command. For example, in PROTOCOL SPANNING TREE mode, enter no disable to enable Spanning Tree. Obtaining Help Obtain a list of keywords and a brief functional description of those keywords at any CLI mode using the ? or help command: • To list the keywords available in the current mode, enter ? at the prompt or after a keyword.
Short-Cut Key Combination Action CNTL-A Moves the cursor to the beginning of the command line. CNTL-B Moves the cursor back one character. CNTL-D Deletes character at cursor. CNTL-E Moves the cursor to the end of the line. CNTL-F Moves the cursor forward one character. CNTL-I Completes a keyword. CNTL-K Deletes all characters from the cursor to the end of the command line. CNTL-L Re-enters the previous command.
• show run | grep Ethernet returns a search result with instances containing a capitalized “Ethernet,” such as interface GigabitEthernet 0/0. • show run | grep ethernet does not return that search result because it only searches for instances containing a non-capitalized “ethernet.” • show run | grep Ethernet ignore-case returns instances containing both “Ethernet” and “ethernet.” The grep command displays only the lines containing specified text.
NOTE: You can filter a single command output multiple times. The save option must be the last option entered. For example: Dell# command | grep regular-expression | except regular-expression | grep other-regular-expression | find regular-expression | save. Multiple Users in Configuration Mode Dell Networking OS notifies all users when there are multiple users logged in to CONFIGURATION mode.
3 Getting Started This chapter describes how you start configuring your system. When you power up the chassis, the system performs a power-on self test (POST) during which the line card status light emitting diodes (LEDs) blink green. The system then loads the Dell Networking Operating System (OS). Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption.
Accessing the Console Port To access the console port, follow these steps: For the console port pinout, refer to Accessing the RJ-45 Console Port with a DB-9 Adapter. 1. Install an RJ-45 copper cable into the console port.Use a rollover (crossover) cable to connect the S4810 console port to a terminal server. 2. Connect the other end of the cable to the DTE terminal server. 3.
Entering CLI commands Using an SSH Connection You can run CLI commands by entering any one of the following syntax to connect to a switch using the preconfigured user credentials using SSH: ssh username@hostname or echo | ssh admin@hostname The SSH server transmits the terminal commands to the CLI shell and the results are displayed on the screen non-interactively.
Default Configuration A version of Dell Networking OS is pre-loaded onto the chassis; however, the system is not configured when you power up for the first time (except for the default hostname, which is Dell). You must configure the system using the CLI. Configuring a Host Name The host name appears in the prompt. The default host name is Dell. • Host names must start with a letter and end with a letter or digit. • Characters within the string can be letters, digits, and hyphens.
Configure the Management Port IP Address To access the system remotely, assign IP addresses to the management ports. 1. Enter INTERFACE mode for the Management port. CONFIGURATION mode interface ManagementEthernet slot/port 2. • slot: the range is from 0 to 11. • port: the range is 0. Assign an IP address to the interface. INTERFACE mode ip address ip-address/mask 3. • ip-address: an address in dotted-decimal format (A.B.C.D). • mask: a subnet mask in /prefix-length format (/ xx).
* 7 is for inputting a password that is already encrypted using a Type 7 hash. Obtaining the encrypted password from the configuration of another Dell Networking system. Configuring the Enable Password Access EXEC Privilege mode using the enable command. EXEC Privilege mode is unrestricted by default. Configure a password as a basic security measure. There are two types of enable passwords: • enable password stores the password in the running/startup configuration using a DES encryption method.
Table 3.
EXEC Privilege mode copy running-config ftp:// username:password@{hostip | hostname}/filepath/ filename Save the running-configuration to a TFTP server. • EXEC Privilege mode copy running-config tftp://{hostip | hostname}/ filepath/filename Save the running-configuration to an SCP server. • EXEC Privilege mode copy running-config scp://{hostip | hostname}/ filepath/filename NOTE: When copying to a server, a host name can only be used if a DNS server is configured.
9 -rw- 27674906 10 -rw- 27674906 11 drw8192 12 -rw7276 13 -rw7341 14 -rw- 27674906 15 -rw- 27674906 --More-- Jul Jul Jan Jul Jul Jul Jul 06 06 01 20 20 06 06 2007 2007 1980 2007 2007 2007 2007 00:20:24 19:54:52 00:18:28 01:52:40 15:34:46 19:52:22 02:23:22 FTOS-EF-4.7.4.302.bin boot-image-FILE diag startup-config.
The output of the show file-systems command in the following example shows the total capacity, amount of free memory, file structure, media type, read/write privileges for each storage device in use. Dell#show file-systems Size(b) Free(b) Feature Type Flags 520962048 213778432 dosFs2.0 USERFLASH 127772672 21936128 dosFs2.
To display the state of Dell Networking OS features: Dell#show feature Example of show feature output For a particular target where VRF is enabled, the show output is similar to the following: Feature State -----------------------------VRF enabled View Command History The command-history trace feature captures all commands entered by all users of the system with a time stamp and writes these messages to a dedicated trace log buffer. The system generates a trace message for each executed command.
Using Hashes to Validate Software Images You can use the MD5 message-digest algorithm or SHA256 Secure Hash Algorithm to validate the software image on the flash drive, after the image has been transferred to the system, but before the image has been installed. The validation calculates a hash value of the downloaded image file on system’s flash drive, and, optionally, compares it to a Dell Networking published hash for that file.
SHA256 Dell# verify sha256 flash://FTOS-SE-9.5.0.0.bin SHA256 hash for FTOS-SE-9.5.0.0.bin: e6328c06faf814e6899ceead219afbf9360e986d692988023b749e6b2093e933 Examples: Entering the Hash Value for Verification MD5 Dell# verify md5 flash://FTOS-SE-9.5.0.0.bin 275ceb73a4f3118e1d6bcf7d75753459 MD5 hash VERIFIED for FTOS-SE-9.5.0.0.bin SHA256 Dell# verify sha256 flash://FTOS-SE-9.5.0.0.bin e6328c06faf814e6899ceead219afbf9360e986d692988023b749e6b2093e933 SHA256 hash VERIFIED for FTOS-SE-9.5.0.0.
Management 4 Management is supported on the S4820T platform. This chapter describes the different protocols or services used to manage the Dell Networking system. Configuring Privilege Levels Privilege levels restrict access to commands based on user or terminal line. There are 16 privilege levels, of which three are pre-defined. The default privilege level is 1. Level Description Level 0 Access to the system begins at EXEC mode, and EXEC mode commands are limited to enable, disable, and exit.
Allowing Access to CONFIGURATION Mode Commands To allow access to CONFIGURATION mode, use the privilege exec level level configure command from CONFIGURATION mode. A user that enters CONFIGURATION mode remains at his privilege level and has access to only two commands, end and exit. You must individually specify each CONFIGURATION mode command you want to allow access to using the privilege configure level level command.
• Allow access to a CONFIGURATION, INTERFACE, LINE, ROUTE-MAP, and/or ROUTER mode command. CONFIGURATION mode privilege {configure |interface | line | route-map | router} level level {command ||...
aux Auxiliary line console Primary terminal line vty Virtual terminal Dell(conf)#line vty 0 Dell(config-line-vty)#? exit Exit from line configuration mode Dell(config-line-vty)# Dell(conf)#interface group ? fortyGigE FortyGigabit Ethernet interface gigabitethernet GigabitEthernet interface IEEE 802.
• Disable logging to terminal lines. CONFIGURATION mode • no logging monitor Disable console logging. CONFIGURATION mode no logging console Audit and Security Logs This section describes how to configure, display, and clear audit and security logs.
When you enabled RBAC and extended logging: • Only the system administrator user role can execute this command. • The system administrator and system security administrator user roles can view security events and system events. • The system administrator user roles can view audit, security, and system events. • Only the system administrator and security administrator user roles can view security logs. • The network administrator and network operator user roles can view system events.
The following describes the two log messages formats: • 0 – Displays syslog messages format as described in RFC 3164, The BSD syslog Protocol • 1 – Displays syslog message format as described in RFC 5424, The SYSLOG Protocol Example of Configuring the Logging Message Format Dell(conf)#logging version ? <0-1> Select syslog version (default = 0) Dell(conf)#logging version 1 Display the Logging Buffer and the Logging Configuration To display the current contents of the logging buffer and the logging setti
Setting Up a Secure Connection to a Syslog Server You can use reverse tunneling with the port forwarding to securely connect to a syslog server. Pre-requisites To configure a secure connection from the switch to the syslog server: 1. On the switch, enable the SSH server Dell(conf)#ip ssh server enable 2.
3. Configure logging to a local host. locahost is “127.0.0.1” or “::1”. If you do not, the system displays an error when you attempt to enable role-based only AAA authorization. Dell(conf)# logging localhost tcp port Dell(conf)#logging 127.0.0.1 tcp 5140 Log Messages in the Internal Buffer All error messages, except those beginning with %BOOTUP (Message), are log in the internal buffer.
logging {ip-address | ipv6-address | hostname} {{udp {port}} | {tcp {port}}} In the release 9.4.(0.0), exporting of Syslogs to external servers that are connected through different VRFs is supported. Configuring a UNIX System as a Syslog Server To configure a UNIX System as a syslog server, use the following command. • Configure a UNIX system as a syslog server by adding the following lines to /etc/syslog.conf on the UNIX system and assigning write permissions to the file. – Add line on a 4.
• NOTE: When you decrease the buffer size, Dell Networking OS deletes all messages stored in the buffer. Increasing the buffer size does not affect messages in the buffer. Specify the number of messages that Dell Networking OS saves to its logging history table. CONFIGURATION mode logging history size size To view the logging buffer and configuration, use the show logging command in EXEC privilege mode, as shown in the example for Display the Logging Buffer and the Logging Configuration.
To view any changes made, use the show running-config logging command in EXEC privilege mode, as shown in the example for Configure a UNIX Logging Facility Level. Configuring a UNIX Logging Facility Level You can save system log messages with a UNIX system logging facility. To configure a UNIX logging facility level, use the following command. • Specify one of the following parameters.
logging logging logging logging Dell# trap debugging facility user source-interface Loopback 0 10.10.10.4 Synchronizing Log Messages You can configure Dell Networking OS to filter and consolidate the system messages for a specific line by synchronizing the message output. Only the messages with a severity at or below the set level appear. This feature works on the terminal and console connections available on the system. 1. Enter LINE mode.
– uptime: To view time since last boot. If you do not specify a parameter, Dell Networking OS configures uptime. To view the configuration, use the show running-config logging command in EXEC privilege mode. To disable time stamping on syslog messages, use the no service timestamps [log | debug] command. File Transfer Services With Dell Networking OS, you can configure the system to transfer files over the network using the file transfer protocol (FTP).
ftp-server username nairobi password 0 zanzibar Dell# Configuring FTP Server Parameters After you enable the FTP server on the system, you can configure different parameters. To specify the system logging settings, use the following commands. • Specify the directory for users using FTP to reach the system. CONFIGURATION mode ftp-server topdir dir • The default is the internal flash directory. Specify a user name for all FTP users and configure either a plain text or encrypted password.
• ip ftp password password Enter a username to use on the FTP client. CONFIGURATION mode ip ftp username name To view the FTP configuration, use the show running-config ftp command in EXEC privilege mode, as shown in the example for Enable FTP Server. Terminal Lines You can access the system remotely and restrict access to the system by creating user profiles. Terminal lines on the system provide different means of accessing the system.
Configuring Login Authentication for Terminal Lines You can use any combination of up to six authentication methods to authenticate a user on a terminal line. A combination of authentication methods is called a method list. If the user fails the first authentication method, Dell Networking OS prompts the next method until all methods are exhausted, at which point the connection is terminated. The available authentication methods are: enable Prompt for the enable password.
login authentication myvtymethodlist Dell(config-line-vty)# Setting Time Out of EXEC Privilege Mode EXEC time-out is a basic security feature that returns Dell Networking OS to EXEC mode after a period of inactivity on the terminal lines. To set time out, use the following commands. • Set the number of minutes and seconds. The default is 10 minutes on the console and 30 minutes on VTY. Disable EXEC time out by setting the time-out period to 0.
Enter an IPv6 address in the format 0000:0000:0000:0000:0000:0000:0000:0000. Elision of zeros is supported. Example of the telnet Command for Device Access Dell# telnet 10.11.80.203 Trying 10.11.80.203... Connected to 10.11.80.203. Exit character is '^]'. Login: Login: admin Password: Dell>exit Dell#telnet 2200:2200:2200:2200:2200::2201 Trying 2200:2200:2200:2200:2200::2201... Connected to 2200:2200:2200:2200:2200::2201. Exit character is '^]'. FreeBSD/i386 (freebsd2.force10networks.
If another user attempts to enter CONFIGURATION mode while a lock is in place, the following appears on their terminal (message 1): % Error: User "" on line console0 is in exclusive configuration mode. If any user is already in CONFIGURATION mode when while a lock is in place, the following appears on their terminal (message 2): % Error: Can't lock configuration mode exclusively since the following users are currently configuring the system: User "admin" on line vty1 ( 10.1.1.1 ).
8. Remove all authentication statements you might have for the console. LINE mode no authentication login no password 9. Save the running-config. EXEC Privilege mode copy running-config startup-config 10. Set the system parameters to use the startup configuration file when the system reloads. uBoot mode setenv stconfigignore false 11. Save the running-config.
Recovering from a Failed Start on the S4820T System A system that does not start correctly might be attempting to boot from a corrupted Dell Networking OS image or from a mis-specified location. In this case, you can restart the system and interrupt the boot process to point the system to another boot location. Use the setenv command, as described in the following steps.
• When you restore a single unit in a stack, only that unit is placed in standalone mode. No other units in the stack are affected. • When you restore the units in standalone mode, the units remain in standalone mode after the restoration. • After the restore is complete, the units power cycle immediately. The following example illustrates the restore factory-defaults command to restore the factory default settings.
5 802.1ag 802.1ag is available only on the S4820T platforms. Ethernet operations, administration, and maintenance (OAM) are a set of tools used to install, monitor, troubleshoot, and manage Ethernet infrastructure deployments. Ethernet OAM consists of three main areas: • Service layer OAM — IEEE 802.1ag connectivity fault management (CFM) • Link layer OAM — IEEE 802.
In addition to providing end-to-end OAM in native Layer 2 Ethernet Service Provider/Metro networks, you can also use CFM to manage and troubleshoot any Layer 2 network including enterprise, datacenter, and cluster networks. Maintenance Domains Connectivity fault management (CFM) divides a network into hierarchical maintenance domains, as shown in the following illustration. A CFM maintenance domain is a management space on a network that a single management entity owns and operates.
Figure 3. Maintenance Points Maintenance End Points A maintenance end point (MEP) is a logical entity that marks the end point of a domain. There are two types of MEPs defined in 802.1ag for an 802.1 bridge: • Up-MEP — monitors the forwarding path internal to a bridge on the customer or provider edge. On Dell Networking systems, the internal forwarding path is effectively the switch fabric and forwarding engine. • Down-MEP — monitors the forwarding path external another bridge.
Implementation Information Because the S-Series has a single MAC address for all physical/LAG interfaces, only one MEP is allowed per MA (per VLAN or per MD level). Configuring the CFM To configure the CFM, follow these steps: 1. Configure the ecfmacl CAM region using the cam-acl command. 2. Enable Ethernet CFM. 3. Create a Maintenance Domain. 4. Create a Maintenance Association. 5. Create Maintenance Points. 6. Use CFM tools: a. Continuity Check Messages. b. Loopback Message and Response.
Creating a Maintenance Domain Connectivity fault management (CFM) divides a network into hierarchical maintenance domains, as shown in Maintenance Domains. 1. Create maintenance domain. ETHERNET CFM mode domain name md-level number The range is from 0 to 7. 2. Display maintenance domain information.
These roles define the relationships between all devices so that each device can monitor the layers under its responsibility. Creating a Maintenance End Point A maintenance endpoint (MEP) is a logical entity that marks the endpoint of a domain. There are two types of MEPs defined in 802.1ag for an 802.1 bridge: • Up-MEP — monitors the forwarding path internal to a bridge on the customer or provider edge.
Example of Viewing Configured MIPs Dell#show ethernet cfm maintenance-points local mip -------------------------------------------------------------------MPID Domain Name Level Type Port CCM-Status MA Name VLAN Dir MAC --------------------------------------------------------------------0 service1 4 MIP Gi 0/5 Disabled My_MA 3333 DOWN 00:01:e8:0b:c6:36 0 service1 4 MIP Gi 0/5 Disabled Your_MA 3333 UP 00:01:e8:0b:c6:36 Displaying the MP Databases CFM maintains two MP databases: • MEP Database (MEP-DB): Ever
The default is 100 minutes. The range is from 100 to 65535 minutes. Continuity Check Messages Continuity check messages (CCM) are periodic hellos. Continuity check messages: • discover MEPs and MIPs within a maintenance domain • detect loss of connectivity between MEPs • detect misconfiguration, such as VLAN ID mismatch between MEPs • to detect unauthorized MEPs in a maintenance domain CCMs are multicast Ethernet frames sent at regular intervals from each MEP.
Enabling CCM To enable CCM, use the following commands. 1. Enable CCM. ECFM DOMAIN mode no ccm disable The default is Disabled. 2. Configure the transmit interval (mandatory). The interval specified applies to all MEPs in the domain. ECFM DOMAIN mode ccm transmit-interval seconds The default is 10 seconds. Enabling Cross-Checking To enable cross-checking, use the following commands. 1. Enable cross-checking. ETHERNET CFM mode mep cross-check enable The default is Disabled. 2.
Sending Linktrace Messages and Responses Linktrace message and response (LTM, LTR), also called Layer 2 Traceroute, is an administratively sent multicast frames transmitted by MEPs to track, hop-by-hop, the path to another MEP or MIP within the maintenance domain. All MEPs and MIPs in the same domain respond to an LTM with a unicast LTR. Intermediate MIPs forward the LTM toward the target MEP. Figure 5.
• Set the amount of time a trace result is cached. ETHERNET CFM mode traceroute cache hold-time minutes The default is 100 minutes. • The range is from 10 to 65535 minutes. Set the size of the Link Trace Cache. ETHERNET CFM mode traceroute cache size entries The default is 100. • The range is from 1 to 4095 entries. Display the Link Trace Cache. EXEC Privilege mode • show ethernet cfm traceroute-cache Delete all Link Trace Cache entries.
Priority Defects Trap Message MAC Status defect %ECFM-5-ECFM_MAC_STATUS_ALARM: MAC Status Defect detected by MEP 1 in Domain provider at Level 4 VLAN 3000 Remote CCM defect %ECFM-5-ECFM_REMOTE_ALARM: Remote CCM Defect detected by MEP 3 in Domain customer1 at Level 7 VLAN 1000 RDI defect %ECFM-5-ECFM_RDI_ALARM: RDI Defect detected by MEP 3 in Domain customer1 at Level 7 VLAN 1000 Three values are given within the trap messages: MD Index, MA Index, and MPID.
Displaying Ethernet CFM Statistics To display Ethernet CFM statistics, use the following commands. • Display MEP CCM statistics. EXEC Privilege mode • show ethernet cfm statistics [domain {name | level} vlan-id vlan-id mpid mpid Display CFM statistics by port.
802.1X 6 802.1X is supported on the S4820T platform. 802.1X is a method of port security. A device connected to a port that is enabled with 802.1X is disallowed from sending or receiving packets on the network until its identity can be verified (through a username and password, for example). This feature is named for its IEEE specification. 802.
Figure 7. EAP Frames Encapsulated in Ethernet and RADUIS The authentication process involves three devices: • The device attempting to access the network is the supplicant. The supplicant is not allowed to communicate on the network until the authenticator authorizes the port. It can only communicate with the authenticator in response to 802.1X requests. • The device with which the supplicant communicates is the authenticator. The authenticator is the gate keeper of the network.
3. The authenticator decapsulates the EAP response from the EAPOL frame, encapsulates it in a RADIUS Access-Request frame and forwards the frame to the authentication server. 4. The authentication server replies with an Access-Challenge frame. The Access-Challenge frame requests that the supplicant prove that it is who it claims to be, using a specified method (an EAPMethod). The challenge is translated and forwarded to the supplicant by the authenticator. 5.
EAP over RADIUS 802.1X uses RADIUS to shuttle EAP packets between the authenticator and the authentication server, as defined in RFC 3579. EAP messages are encapsulated in RADIUS packets as a type of attribute in Type, Length, Value (TLV) format. The Type value for EAP messages is 79. Figure 9. EAP Over RADIUS RADIUS Attributes for 802.1 Support Dell Networking systems include the following RADIUS attributes in all 802.
Important Points to Remember • Dell Networking OS supports 802.1X with EAP-MD5, EAP-OTP, EAP-TLS, EAP-TTLS, PEAPv0, PEAPv1, and MS-CHAPv2 with PEAP. • All platforms support only RADIUS as the authentication server. • If the primary RADIUS server becomes unresponsive, the authenticator begins using a secondary RADIUS server, if configured. • 802.1X is not supported on port-channels or port-channel members. 802.
Enabling 802.1X Enable 802.1X globally. Figure 10. 802.1X Enabled 1. Enable 802.1X globally. CONFIGURATION mode dot1x authentication 2. Enter INTERFACE mode on an interface or a range of interfaces. INTERFACE mode interface [range] 3. Enable 802.1X on the supplicant interface only. INTERFACE mode dot1x authentication 100 802.
Examples of Verifying that 802.1X is Enabled Globally and on an Interface Verify that 802.1X is enabled globally and at the interface level using the show running-config | find dot1x command from EXEC Privilege mode. In the following example, the bold lines show that 802.1X is enabled. Dell#show running-config | find dot1x dot1x authentication ! [output omitted] ! interface TenGigabitEthernet 2/1 no ip address dot1x authentication no shutdown ! Dell# To view 802.
To configure re-transmissions, use the following commands. • Configure the amount of time that the authenticator waits before re-transmitting an EAP Request Identity frame. INTERFACE mode dot1x tx-period number The range is from 1 to 65535 (1 year) • The default is 30. Configure a maximum number of times the authenticator re-transmits a Request Identity frame. INTERFACE mode dot1x max-eap-req number The range is from 1 to 10. The default is 2.
The bold lines show the new re-transmit interval, new quiet period, and new maximum re-transmissions. FTOS(conf-if-range-Te-0/0)#dot1x tx-period 90 FTOS(conf-if-range-Te-0/0)#dot1x max-eap-req 10 FTOS(conf-if-range-Te-0/0)#dot1x quiet-period 120 FTOS#show dot1x interface TenGigabitEthernet 2/1 802.
----------------------------Dot1x Status: Enable Port Control: FORCE_AUTHORIZED Port Auth Status: UNAUTHORIZED Re-Authentication: Disable Untagged VLAN id: None Tx Period: 90 seconds Quiet Period: 120 seconds ReAuth Max: 2 Supplicant Timeout: 30 seconds Server Timeout: 30 seconds Re-Auth Interval: 3600 seconds Max-EAP-Req: 10 Auth Type: SINGLE_HOST Auth PAE State: Initialize Backend State: Initialize Auth PAE State: Initialize Backend State: Initialize Re-Authenticating a Port You can configure the authent
Port Control: FORCE_AUTHORIZED Port Auth Status: UNAUTHORIZED Re-Authentication: Enable Untagged VLAN id: None Tx Period: 90 seconds Quiet Period: 120 seconds ReAuth Max: 10 Supplicant Timeout: 30 seconds Server Timeout: 30 seconds Re-Auth Interval: 7200 seconds Max-EAP-Req: 10 Auth Type: SINGLE_HOST Auth PAE State: Initialize Backend State: Initialize Auth PAE State: Initialize Backend State: Initialize Configuring Timeouts If the supplicant or the authentication server is unresponsive, the authenticator
Guest VLAN: Disable Guest VLAN id: NONE Auth-Fail VLAN: Disable Auth-Fail VLAN id: NONE Auth-Fail Max-Attempts: NONE Tx Period: 90 seconds Quiet Period: 120 seconds ReAuth Max: 10 Supplicant Timeout: 15 seconds Server Timeout: 15 seconds Re-Auth Interval: 7200 seconds Max-EAP-Req: 10 Auth Type: Auth PAE State: Backend State: SINGLE_HOST Initialize Initialize Enter the tasks the user should do after finishing this task (optional).
Figure 11. Dynamic VLAN Assignment 1. Configure 8021.x globally (refer to Enabling 802.1X) along with relevant RADIUS server configurations (refer to the illustration inDynamic VLAN Assignment with Port Authentication). 2. Make the interface a switchport so that it can be assigned to a VLAN. 3. Create the VLAN to which the interface will be assigned. 4. Connect the supplicant to the port configured for 802.1X. 5.
If the supplicant fails authentication, the authenticator typically does not enable the port. In some cases this behavior is not appropriate. External users of an enterprise network, for example, might not be able to be authenticated, but still need access to the network. Also, some dumb-terminals, such as network printers, do not have 802.1X capability and therefore cannot authenticate themselves.
! interface TenGigabitEthernet 2/1 switchport dot1x authentication dot1x guest-vlan 200 no shutdown Dell(conf-if-Te-2/1)# Dell(conf-if-Te-2/1)#dot1x auth-fail-vlan 100 max-attempts 5 Dell(conf-if-Te-2/1)#show config ! interface TenGigabitEthernet 2/1 switchport dot1x authentication dot1x guest-vlan 200 dot1x auth-fail-vlan 100 max-attempts 5 no shutdown Dell(conf-if-Te-2/1)# Example of Viewing Configured Authentication View your configuration using the show config command from INTERFACE mode, as shown in th
7 Access Control List (ACL) VLAN Groups and Content Addressable Memory (CAM) This chapter describes the access control list (ACL) VLAN group and content addressable memory (CAM) enhancements. Optimizing CAM Utilization During the Attachment of ACLs to VLANs This functionality is supported on the S4820T platform.
for the ACL VLAN groups present on the system, an appropriate error message is displayed.
• • Port ACL optimization is applicable only for ACLs that are applied without the VLAN range. • You cannot view the statistical details of ACL rules per VLAN and per interface if you enable the ACL VLAN group capability. You can view the counters per ACL only using the show ip accounting access list command. • Within a port, you can apply Layer 2 ACLs on a VLAN or a set of VLANs. In this case, CAM optimization is not applied.
5. Display all the ACL VLAN groups or display a specific ACL VLAN group, identified by name.
4. View the number of flow processor (FP) blocks that is allocated for the different VLAN services.
The following sample output displays the CAM space utilization when Layer 2 and Layer 3 ACLs are configured: Dell#show cam-usage acl Linecard|Portpipe| CAM Partition | Total CAM | Used CAM |Available CAM ========|========|=================|=============|=============|============ 11 | 0 | IN-L2 ACL | 1008 | 0 | 1008 | | IN-L3 ACL | 12288 | 2 | 12286 | | OUT-L2 ACL | 1024 | 2 | 1022 | | OUT-L3 ACL | 1024 | 0 | 1024 The following sample output displays the CAM space utilization for Layer 2 ACLs: Dell#show cam
You can configure only two of these features at a time. • To allocate the number of FP blocks for VLAN open flow operations, use the cam-acl-vlan vlanopenflow <0-2> command. • To allocate the number of FP blocks for VLAN iSCSI counters, use the cam-acl-vlan vlaniscsi <0-2> command. • To allocate the number of FP blocks for ACL VLAN optimization feature, use the cam-acl-vlan vlanaclopt <0-2> command. To reset the number of FP blocks to the default, use the no version of these commands.
Access Control Lists (ACLs) 8 This chapter describes access control lists (ACLs), prefix lists, and route-maps. • Access control lists (ACLs), Ingress IP and MAC ACLs , and Egress IP and MAC ACLs are supported on the S4820T platform. At their simplest, access control lists (ACLs), prefix lists, and route-maps permit or deny traffic based on MAC and/or IP addresses. This chapter describes implementing IP ACLs, IP prefix lists and route-maps. For MAC ACLS, refer to Layer 2.
• Port/VLAN based IMPLICIT DENY Rules • VRF based PERMIT/DENY Rules • VRF based IMPLICIT DENY Rules NOTE: In order for the VRF ACLs to take effect, ACLs configured in the Layer 3 CAM region must have an implicit-permit option. You can use the ip access-group command to configure VRF-aware ACLs on interfaces. Using the ip access-group command, in addition to a range of VLANs, you can also specify a range of VRFs as input for configuring ACLs on interfaces. The VRF range is from 1 to 63.
• CAM Optimization User Configurable CAM Allocation User configurable CAM allocations are supported on the S4820T platform. Allocate space for IPV6 ACLs by using the cam-acl command in CONFIGURATION mode. The CAM space is allotted in filter processor (FP) blocks. The total space allocated must equal 13 FP blocks. (There are 16 FP blocks, but System Flow requires three blocks that cannot be reallocated.) Enter the ipv6acl allocation as a factor of 2 (2, 4, 6, 8, 10).
Implementing ACLs on Dell Networking OS You can assign one IP ACL per interface with Dell Networking OS. If you do not assign an IP ACL to an interface, it is not used by the software in any other capacity. The number of entries allowed per ACL is hardware-dependent. For detailed specification on entries allowed per ACL, refer to your line card documentation.
closer to 0) before rules with higher-order numbers so that packets are matched as you intended. By default, all ACL rules have an order of 255. Example of the order Keyword to Determine ACL Sequence Dell(conf)#ip access-list standard acl1 Dell(config-std-nacl)#permit 20.0.0.0/8 Dell(config-std-nacl)#exit Dell(conf)#ip access-list standard acl2 Dell(config-std-nacl)#permit 20.1.1.
10.1.1.1./32 fragments Dell(conf-ext-nacl) Example of Denying Second and Subsequent Fragments To deny the second/subsequent fragments, use the same rules in a different order. These ACLs deny all second and subsequent fragments with destination IP 10.1.1.1 but permit the first fragment and nonfragmented packets with destination IP 10.1.1.1. Dell(conf)#ip access-list extended ABC Dell(conf-ext-nacl)#deny ip any 10.1.1.1/32 fragments Dell(conf-ext-nacl)#permit ip any 10.1.1.
Dell(conf-ext-nacl)#permit udp any any fragment Dell(conf-ext-nacl)#deny ip any any log Dell(conf-ext-nacl) When configuring ACLs with the fragments keyword, be aware of the following. When an ACL filters packets, it looks at the fragment offset (FO) to determine whether it is a fragment. • • FO = 0 means it is either the first fragment or the packet is a non-fragment. FO > 0 means it is dealing with the fragments of the original packet.
! ip access-list standard dilling seq 15 permit tcp 10.3.0.0/16 any seq 25 deny ip host 10.5.0.0 any log Dell(config-std-nacl)# To delete a filter, use the no seq sequence-number command in IP ACCESS LIST mode. If you are creating a standard ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. The software assigns filters in multiples of 5.
seq seq seq seq seq seq 30 35 40 45 50 55 deny tcp any any range 12345 12346 permit udp host 10.21.126.225 10.4.5.0 /28 permit udp host 10.21.126.226 10.4.5.0 /28 permit udp 10.8.0.0 /16 10.50.188.118 /31 range 1812 1813 permit tcp 10.8.0.0 /16 10.50.188.118 /31 eq 49 permit udp 10.15.1.0 /24 10.50.188.118 /31 range 1812 1813 To delete a filter, enter the show config command in IP ACCESS LIST mode and locate the sequence number of the filter you want to delete.
Configure Filters, TCP Packets To create a filter for UDP packets with a specified sequence number, use the following commands. 1. Create an extended IP ACL and assign it a unique name. CONFIGURATION mode ip access-list extended access-list-name 2. Configure an extended IP ACL filter for UDP packets.
CONFIG-EXT-NACL mode {deny | permit} udp {source mask | any | host ip-address}} [count [byte]] [order] [fragments] When you use the log keyword, the CP logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details. The following example shows an extended IP ACL in which the sequence numbers were assigned by the software.
L2 ACL Behavior L3 ACL Behavior Decision on Targeted Traffic Permit Deny L3 ACL denies. Permit Permit L3 ACL permits. NOTE: If you configure an interface as a vlan-stack access port, only the L2 ACL filters the packets. The L3 ACL applied to such a port does not affect traffic. That is, existing rules for other features (such as trace-list, policy-based routing [PBR], and QoS) are applied to the permitted traffic. For information about MAC ACLs, refer to Layer 2.
4. Apply rules to the new ACL. INTERFACE mode ip access-list [standard | extended] name To view which IP ACL is applied to an interface, use the show config command in INTERFACE mode, or use the show running-config command in EXEC mode. Example of Viewing ACLs Applied to an Interface Dell(conf-if)#show conf ! interface GigabitEthernet 0/0 ip address 10.2.1.100 255.255.255.
Dell#configure terminal Dell(conf)#ip access-list extended abcd Dell(config-ext-nacl)#permit tcp any any Dell(config-ext-nacl)#deny icmp any any Dell(config-ext-nacl)#permit 1.1.1.2 Dell(config-ext-nacl)#end Dell#show ip accounting access-list ! Extended Ingress IP access list abcd on gigethernet 0/0 seq 5 permit tcp any any seq 10 deny icmp any any seq 15 permit 1.1.1.2 Configure Egress ACLs Egress ACLs are supported on the S4820T platform.
Dell#configure terminal Dell(conf)#interface te 0/0 Dell(conf-if-te-0/0)#ip vrf forwarding blue Dell(conf-if-te-0/0)#show config ! interface TenGigabitEthernet 0/0 ip vrf forwarding blue no ip address shutdown Dell(conf-if-te-0/0)# Dell(conf-if-te-0/0)# Dell(conf-if-te-0/0)#end Dell# Applying Egress Layer 3 ACLs (Control-Plane) By default, packets originated from the system are not filtered by egress ACLs.
A route prefix is an IP address pattern that matches on bits within the IP address. The format of a route prefix is A.B.C.D/X where A.B.C.D is a dotted-decimal address and /X is the number of bits that should be matched of the dotted decimal address. For example, in 112.24.0.0/16, the first 16 bits of the address 112.24.0.0 match all addresses between 112.24.0.0 to 112.24.255.255. The following examples show permit or deny filters for specific routes using the le and ge parameters, where x.x.x.
Creating a Prefix List To create a prefix list, use the following commands. 1. Create a prefix list and assign it a unique name. You are in PREFIX LIST mode. CONFIGURATION mode ip prefix-list prefix-name 2. Create a prefix list with a sequence number and a deny or permit action. CONFIG-NPREFIXL mode seq sequence-number {deny | permit} ip-prefix [ge min-prefix-length] [le max-prefix-length] The optional parameters are: • ge min-prefix-length: the minimum prefix length to match (from 0 to 32).
Creating a Prefix List Without a Sequence Number To create a filter without a specified sequence number, use the following commands. 1. Create a prefix list and assign it a unique name. CONFIGURATION mode ip prefix-list prefix-name 2. Create a prefix list filter with a deny or permit action. CONFIG-NPREFIXL mode {deny | permit} ip-prefix [ge min-prefix-length] [le max-prefix-length] The optional parameters are: • ge min-prefix-length: is the minimum prefix length to be matched (0 to 32).
ip prefix-list filter_in: count: 3, range entries: 3, sequences: 5 - 10 seq 5 deny 1.102.0.0/16 le 32 (hit count: 0) seq 6 deny 2.1.0.0/16 ge 23 (hit count: 0) seq 10 permit 0.0.0.0/0 le 32 (hit count: 0) ip prefix-list filter_ospf: count: 4, range entries: 1, sequences: 5 - 10 seq 5 deny 100.100.1.0/24 (hit count: 0) seq 6 deny 200.200.1.0/24 (hit count: 0) seq 7 deny 200.200.2.0/24 (hit count: 0) seq 10 permit 0.0.0.
Applying a Filter to a Prefix List (OSPF) To apply a filter to routes in open shortest path first (OSPF), use the following commands. • Enter OSPF mode. CONFIGURATION mode • router ospf Apply a configured prefix list to incoming routes. You can specify an interface. If you enter the name of a non-existent prefix list, all routes are forwarded. CONFIG-ROUTER-OSPF mode • distribute-list prefix-list-name in [interface] Apply a configured prefix list to incoming routes.
Table 7. ACL Resequencing Rules Resquencing Rules Before Resequencing: seq 5 permit any host 1.1.1.1 seq 6 permit any host 1.1.1.2 seq 7 permit any host 1.1.1.3 seq 10 permit any host 1.1.1.4 Rules After Resequencing: seq 5 permit any host 1.1.1.1 seq 10 permit any host 1.1.1.2 seq 15 permit any host 1.1.1.3 seq 20 permit any host 1.1.1.4 Resequencing an ACL or Prefix List Resequencing is available for IPv4 and IPv6 ACLs, prefix lists, and MAC ACLs.
! ip access-list extended test remark 2 XYZ remark 4 this remark corresponds to permit any host 1.1.1.1 seq 4 permit ip any host 1.1.1.1 remark 6 this remark has no corresponding rule remark 8 this remark corresponds to permit ip any host 1.1.1.2 seq 8 permit ip any host 1.1.1.2 seq 10 permit ip any host 1.1.1.3 seq 12 permit ip any host 1.1.1.4 Remarks that do not have a corresponding rule are incremented as a rule. These two mechanisms allow remarks to retain their original position in the list.
Important Points to Remember • For route-maps with more than one match clause: – Two or more match clauses within the same route-map sequence have the same match commands (though the values are different), matching a packet against these clauses is a logical OR operation. – Two or more match clauses within the same route-map sequence have different match commands, matching a packet against these clauses is a logical AND operation.
route-map dilling permit 10 Dell(config-route-map)# You can create multiple instances of this route map by using the sequence number option to place the route maps in the correct order. Dell Networking OS processes the route maps with the lowest sequence number first. When a configured route map is applied to a command, such as redistribute, traffic passes through all instances of that route map until a match is found. The following is an example with two instances of a route map.
When there are multiple match commands with the same parameter under one instance of route-map, Dell Networking OS does a match between all of those match commands. If there are multiple match commands with different parameters, Dell Networking OS does a match ONLY if there is a match among ALL the match commands. In the following example, there is a match if a route has any of the tag values specified in the match commands.
• Match routes whose next hop is a specific interface. CONFIG-ROUTE-MAP mode match interface interface The parameters are: – For a Fast Ethernet interface, enter the keyword FastEthernet then the slot/ port information. – For a 1-Gigabit Ethernet interface, enter the keyword gigabitEthernet then the slot/port information. – For a loopback interface, enter the keyword loopback then a number between zero (0) and 16383. – For a port channel interface, enter the keywords port-channel then a number.
• Match routes specified as internal or external to OSPF, ISIS level-1, ISIS level-2, or locally generated. CONFIG-ROUTE-MAP mode • match route-type {external [type-1 | type-2] | internal | level-1 | level-2 | local } Match routes with a specific tag. CONFIG-ROUTE-MAP mode match tag tag-value To create route map instances, use these commands. There is no limit to the number of match commands per route map, but the convention is to keep the number of match filters in a route map low.
CONFIG-ROUTE-MAP mode • set origin {egp | igp | incomplete} Specify a tag for the redistributed routes. CONFIG-ROUTE-MAP mode • set tag tag-value Specify a value as the route’s weight. CONFIG-ROUTE-MAP mode set weight value To create route map instances, use these commands. There is no limit to the number of set commands per route map, but the convention is to keep the number of set filters in a route map low. Set commands do not require a corresponding match command.
Configure a Route Map for Route Tagging One method for identifying routes from different routing protocols is to assign a tag to routes from that protocol. As the route enters a different routing domain, it is tagged. The tag is passed along with the route as it passes through different routing protocols. You can use this tag when the route leaves a routing domain to redistribute those routes again.
When ACL logging is configured, and a frame reaches an ACL-enabled interface and matches the ACL, a log is generated to indicate that the ACL entry matched the packet. When you enable ACL log messages, at times, depending on the volume of traffic, it is possible that a large number of logs might be generated that can impact the system performance and efficiency. To avoid an overload of ACL logs from being recorded, you can configure the rate-limiting functionality.
• The ACL configuration information that the ACL logging application receives from the ACL manager causes the allocation and clearance of the match rule number. A unique match rule number is created for the combination of each ACL entry, sequence number, and interface parameters. • A separate set of match indices is preserved by the ACL logging application for the permit and deny actions.
NOTE: This example describes the configuration of ACL logging for standard IP access lists. You can enable the logging capability for standard and extended IPv4 ACLs, IPv6 ACLs, and standard and extended MAC ACLs. 1. Specify the maximum number of ACL logs or the threshold that can be generated by using the threshold-in-msgs count option with the seq, permit, or deny commands. Upon exceeding the specified maximum limit, the generation of ACL logs is terminated.
are traversing through the ingress interfaces are examined, and appropriate ACLs can be applied in the ingress direction. By default, flow-based monitoring is not enabled. You must specify the monitor option with the permit, deny, or seq command for ACLs that are assigned to the source or the monitored port (MD) to enable the evaluation and replication of traffic that is traversing to the destination port.
monitor session 11 both flow-based enable source GigabitEthernet 13/0 destination GigabitEthernet 13/1 direction The show ip | mac | ipv6 accounting commands have been enhanced to display whether monitoring is enabled for traffic that matches with the rules of the specific ACL. Example Output of the show Command Dell# show ip accounting access-list ! Extended Ingress IP access list kar on GigabitEthernet 10/0 Total cam count 1 seq 5 permit ip 192.168.20.0/24 173.168.20.
Dell(conf)#interface gig 1/1 Dell(conf-if-gi-1/1)#ip access-group testflow in Dell(conf-if-gi-1/1)#show config ! interface GigabitEthernet 1/1 ip address 10.11.1.254/24 ip access-group testflow in shutdown Dell(conf-if-gi-1/1)#exit Dell(conf)#do show ip accounting access-list testflow ! Extended Ingress IP access list testflow on GigabitEthernet 1/1 Total cam count 4 seq 5 permit icmp any any monitor count bytes (0 packets 0 bytes) seq 10 permit ip 102.1.1.
9 Bidirectional Forwarding Detection (BFD) Bidirectional forwarding detection (BFD) is supported only on the S4820T platform. BFD is a protocol that is used to rapidly detect communication failures between two adjacent systems. It is a simple and lightweight replacement for existing routing protocol link state detection mechanisms. It also provides a failure detection solution for links on which no routing protocol is used. BFD is a simple hello mechanism.
NOTE: A session state change from Up to Down is the only state change that triggers a link state change in the routing protocol client. BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets. The following illustration shows the complete encapsulation of a BFD control packet inside an IPv4 packet. Figure 12. BFD in IPv4 Packet Format Field Description Diagnostic Code The reason that the last session failed. State The current local session state.
Field Description system clears the poll bit and sets the final bit in its response. The poll and final bits are used during the handshake and in Demand mode (refer to BFD Sessions). NOTE: Dell Networking OS does not currently support multi-point sessions, Demand mode, authentication, or control plane independence; these bits are always clear. Detection Multiplier The number of packets that must be missed in order to declare a session down. Length The entire length of the BFD packet.
BFD Sessions BFD must be enabled on both sides of a link in order to establish a session. The two participating systems can assume either of two roles: Active The active system initiates the BFD session. Both systems can be active for the same session. Passive The passive system does not initiate a session. It only responds to a request for session initialization from the active system.
handshake. Now the discriminator values have been exchanged and the transmit intervals have been negotiated. 4. The passive system receives the control packet and changes its state to Up. Both systems agree that a session has been established. However, because both members must send a control packet — that requires a response — anytime there is a state change or change in a session parameter, the passive system sends a final response indicating the state change.
receives a Down status notification from the remote system, the session state on the local system changes to Init. Figure 14. Session State Changes Important Points to Remember • On the S4820T platform, Dell Networking OS supports 128 sessions per stack unit at 200 minimum transmit and receive intervals with a multiplier of 3, and 64 sessions at 100 minimum transmit and receive intervals with a multiplier of 4. • Enable BFD on both ends of a link.
• Configure BFD for OSPFv3 • Configure BFD for IS-IS • Configure BFD for BGP • Configure BFD for VRRP • Configuring Protocol Liveness • Troubleshooting BFD Configure BFD for Physical Ports Configuring BFD for physical ports is supported on the C-Series and E-Series platforms only. BFD on physical ports is useful when you do not enable the routing protocol.
Establishing a Session on Physical Ports To establish a session, enable BFD at the interface level on both ends of the link, as shown in the following illustration. The configuration parameters do not need to match. Figure 15. Establishing a BFD Session on Physical Ports 1. Enter interface mode. CONFIGURATION mode interface 2. Assign an IP address to the interface if one is not already assigned. INTERFACE mode ip address ip-address 3.
Remote Addr: 2.2.2.
Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 7 Disabling and Re-Enabling BFD BFD is enabled on all interfaces by default, though sessions are not created unless explicitly configured. If you disable BFD, all of the sessions on that interface are placed in an Administratively Down state ( the first message example), and the remote systems are notified of the session state change (the second message example).
Establishing Sessions for Static Routes Sessions are established for all neighbors that are the next hop of a static route. Figure 16. Establishing Sessions for Static Routes To establish a BFD session, use the following command. • Establish BFD sessions for all neighbors that are the next hop of a static route. CONFIGURATION mode ip route bfd Example of the show bfd neighbors Command to Verify Static Routes To verify that sessions have been created for static routes, use the show bfd neighbors command.
• Change parameters for all static route sessions. CONFIGURATION mode ip route bfd interval milliseconds min_rx milliseconds multiplier value role [active | passive] To view session parameters, use the show bfd neighbors detail command, as shown in the examples in Displaying BFD for BGP Information. Disabling BFD for Static Routes If you disable BFD, all static route BFD sessions are torn down.
Establishing Sessions with OSPF Neighbors BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state. Figure 17. Establishing Sessions with OSPF Neighbors To establish BFD with all OSPF neighbors or with OSPF neighbors on a single interface, use the following commands. • Establish sessions with all OSPF neighbors.
INTERFACE mode ip ospf bfd all-neighbors Example of Verifying Sessions with OSPF Neighbors To view the established sessions, use the show bfd neighbors command. The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr RemoteAddr Interface State Rx-int Tx-int Mult Clients * 2.2.2.2 2.2.2.1 Gi 2/1 Up 100 100 3 O * 2.2.3.1 2.2.3.
• Disable BFD sessions with all OSPF neighbors. ROUTER-OSPF mode • no bfd all-neighbors Disable BFD sessions with all OSPF neighbors on an interface. INTERFACE mode ip ospf bfd all-neighbors disable Configure BFD for OSPFv3 BFD for OSPFv3 is only supported on the S4820T platform. BFD for OSPFv3 provides support for IPV6. Configuring BFD for OSPFv3 is a two-step process: 1. Enable BFD globally. 2. Establish sessions with OSPFv3 neighbors.
To view session parameters, use the show bfd neighbors detail command, as shown in the example in Displaying BFD for BGP Information. • Change parameters for all OSPFv3 sessions. ROUTER-OSPFv3 mode • bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Change parameters for OSPFv3 sessions on a single interface.
Establishing Sessions with IS-IS Neighbors BFD sessions can be established for all IS-IS neighbors at once or sessions can be established for all neighbors out of a specific interface. Figure 18. Establishing Sessions with IS-IS Neighbors To establish BFD with all IS-IS neighbors or with IS-IS neighbors on a single interface, use the following commands. • Establish sessions with all IS-IS neighbors. ROUTER-ISIS mode • bfd all-neighbors Establish sessions with IS-IS neighbors on a single interface.
The bold line shows that IS-IS BFD sessions are enabled. R2(conf-router_isis)#bfd all-neighbors R2(conf-router_isis)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.2 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Gi 2/1 Up 100 100 3 I Changing IS-IS Session Parameters BFD sessions are configured with default intervals and a default role.
INTERFACE mose isis bfd all-neighbors disable Configure BFD for BGP Bidirectional forwarding detection (BFD) for BGP is supported on the S4820T platform. In a BGP core network, BFD provides rapid detection of communication failures in BGP fast-forwarding paths between internal BGP (iBGP) and external BGP (eBGP) peers for faster network reconvergence. BFD for BGP is supported on 1GE, 10GE, 40GE, port-channel, and VLAN interfaces. BFD for BGP does not support IPv6 and the BGP multihop feature.
Figure 19. Establishing Sessions with BGP Neighbors The sample configuration shows alternative ways to establish a BFD session with a BGP neighbor: • By establishing BFD sessions with all neighbors discovered by BGP (the bfd all-neighbors command). • By establishing a BFD session with a specified BGP neighbor (the neighbor {ip-address | peergroup-name} bfd command) BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays.
typical response is to terminate the peering session for the routing protocol and reconverge by bypassing the failed neighboring router. A log message is generated whenever BFD detects a failure condition. 1. Enable BFD globally. CONFIGURATION mode bfd enable 2. Specify the AS number and enter ROUTER BGP configuration mode. CONFIGURATION mode router bgp as-number 3. Add a BGP neighbor or peer group in a remote AS. CONFIG-ROUTERBGP mode neighbor {ip-address | peer-group name} remote-as as-number 4.
ROUTER BGP mode • neighbor {ip-address | peer-group-name} bfd disable Remove the disabled state of a BFD for BGP session with a specified neighbor. ROUTER BGP mode no neighbor {ip-address | peer-group-name} bfd disable Use BFD in a BGP Peer Group You can establish a BFD session for the members of a peer group (the neighbor peer-group-name bfd command in ROUTER BGP configuration mode).
Examples of the BFD show Commands The following example shows verifying a BGP configuration. R2# show running-config bgp ! router bgp 2 neighbor 1.1.1.2 remote-as 1 neighbor 1.1.1.2 no shutdown neighbor 2.2.2.2 remote-as 1 neighbor 2.2.2.2 no shutdown neighbor 3.3.3.2 remote-as 1 neighbor 3.3.3.2 no shutdown bfd all-neighbors The following example shows viewing all BFD neighbors.
Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 5 Session Discriminator: 10 Neighbor Discriminator: 11 Local Addr: 2.2.2.3 Local MAC Addr: 00:01:e8:66:da:34 Remote Addr: 2.2.2.
Down Admin Down : 0 : 2 The following example shows viewing BFD summary information. The bold line shows the message displayed when you enable BFD for BGP connections. R2# show ip bgp summary BGP router identifier 10.0.0.1, local AS number 2 BGP table version is 0, main routing table version 0 BFD is enabled, Interval 100 Min_rx 100 Multiplier 3 Role Active 3 neighbor(s) using 24168 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 1.1.1.2 2.2.2.2 3.3.3.
Connections established 1; dropped 0 Last reset never Local host: 2.2.2.3, Local port: 63805 Foreign host: 2.2.2.2, Foreign port: 179 E1200i_ExaScale# R2# show ip bgp neighbors 2.2.2.3 BGP neighbor is 2.2.2.3, remote AS 1, external link Member of peer-group pg1 for session parameters BGP version 4, remote router ID 12.0.0.4 BGP state ESTABLISHED, in this state for 00:05:33 ... Neighbor is using BGP neighbor mode BFD configuration Peer active in peer-group outbound optimization ...
Establishing Sessions with All VRRP Neighbors BFD sessions can be established for all VRRP neighbors at once, or a session can be established with a particular neighbor. Figure 20. Establishing Sessions with All VRRP Neighbors To establish sessions with all VRRP neighbors, use the following command. • Establish sessions with all VRRP neighbors.
The bold line shows that VRRP BFD sessions are enabled. Dell(conf-if-gi-4/25)#vrrp bfd all-neighbors Dell(conf-if-gi-4/25)#do show bfd neighbor * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) V - VRRP LocalAddr RemoteAddr Interface State Rx-int Tx-int Mult Clients * 2.2.5.1 2.2.5.2 Gi 4/25 Down 1000 1000 3 V To view session state information, use the show vrrp command. The bold line shows the VRRP BFD session.
Disabling BFD for VRRP If you disable any or all VRRP sessions, the sessions are torn down. A final Admin Down control packet is sent to all neighbors and sessions on the remote system change to the Down state. To disable all VRRP sessions on an interface, sessions for a particular VRRP group, or for a particular VRRP session on an interface, use the following commands. • Disable all VRRP sessions on an interface. INTERFACE mode • no vrrp bfd all-neighbors Disable all VRRP sessions in a VRRP group.
Down for neighbor 2.2.2.2 on interface Gi 4/24 (diag: 0) 00:54:38 : Sent packet for session with neighbor 2.2.2.2 on Gi 4/24 TX packet dump: Version:1, Diag code:0, State:Down, Poll bit:0, Final bit:0, Demand bit:0 myDiscrim:4, yourDiscrim:0, minTx:1000000, minRx:1000000, multiplier:3, minEchoRx:0 00:54:38 : Received packet for session with neighbor 2.2.2.
10 Border Gateway Protocol IPv4 (BGPv4) Border gateway protocol IPv4 (BGPv4) version 4 (BGPv4) is supported on the S4820T platform. This chapter provides a general description of BGPv4 as it is supported in the Dell Networking Operating System (OS). BGP protocol standards are listed in the Standards Compliance chapter. BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS).
Figure 21. Internal BGP BGP version 4 (BGPv4) supports classless interdomain routing and aggregate routes and AS paths. BGP is a path vector protocol — a computer network in which BGP maintains the path that updated information takes as it diffuses through the network. Updates traveling through the network and returning to the same node are easily detected and discarded.
Figure 22. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. Sessions and Peers When two routers communicate using the BGP protocol, a BGP session is started. The two end-points of that session are Peers. A Peer is also called a Neighbor.
Establish a Session Information exchange between peers is driven by events and timers. The focus in BGP is on the traffic routing policies. In order to make decisions in its operations with other BGP peers, a BGP process uses a simple finite state machine that consists of six states: Idle, Connect, Active, OpenSent, OpenConfirm, and Established. For each peer-to-peer session, a BGP implementation tracks which of these six states the session is in.
Route reflection divides iBGP peers into two groups: client peers and nonclient peers. A route reflector and its client peers form a route reflection cluster. Because BGP speakers announce only the best route for a given prefix, route reflector rules are applied after the router makes its best path decision. • If a route was received from a nonclient peer, reflect the route to all client peers. • If the route was received from a client peer, reflect the route to all nonclient and all client peers.
• Next Hop NOTE: There are no hard coded limits on the number of attributes that are supported in the BGP. Taking into account other constraints such as the Packet Size, maximum number of attributes are supported in BGP. Communities BGP communities are sets of routes with one or more common attributes. Communities are a way to assign common attributes to multiple routes at the same time. NOTE: Duplicate communities are not rejected.
Figure 24. BGP Best Path Selection Best Path Selection Details 1. Prefer the path with the largest WEIGHT attribute. 2. Prefer the path with the largest LOCAL_PREF attribute. 3. Prefer the path that was locally Originated via a network command, redistribute command or aggregate-address command. a. 4. Routes originated with the Originated via a network or redistribute commands are preferred over routes originated with the aggregate-address command.
c. Paths with no MED are treated as “worst” and assigned a MED of 4294967295. 7. Prefer external (EBGP) to internal (IBGP) paths or confederation EBGP paths. 8. Prefer the path with the lowest IGP metric to the BGP if next-hop is selected when synchronization is disabled and only an internal path remains. 9. Dell Networking OS deems the paths as equal and does not perform steps 9 through 11, if the following criteria is met: a.
and AS300. This is advertised to all routers within AS100, causing all BGP speakers to prefer the path through Router B. Figure 25. BGP Local Preference Multi-Exit Discriminators (MEDs) If two ASs connect in more than one place, a multi-exit discriminator (MED) can be used to assign a preference to a preferred path. MED is one of the criteria used to determine the best path, so keep in mind that other criteria may impact selection, as shown in the illustration in Best Path Selection Criteria.
Figure 26. Multi-Exit Discriminators NOTE: Configuring the set metric-type internal command in a route-map advertises the IGP cost as MED to outbound EBGP peers when redistributing routes. The configured set metric value overwrites the default IGP cost. If the outbound route-map uses MED, it overwrites IGP MED. Origin The origin indicates the origin of the prefix, or how the prefix came into BGP. There are three origin codes: IGP, EGP, INCOMPLETE.
*> 7.0.0.0/30 *> 9.2.0.0/16 10.114.8.33 10.114.8.33 0 10 0 0 18508 18508 ? 701 i AS Path The AS path is the list of all ASs that all the prefixes listed in the update have passed through. The local AS number is added by the BGP speaker when advertising to a eBGP neighbor. NOTE: Any update that contains the AS path number 0 is valid. The AS path is shown in the following example. The origin attribute is shown following the AS path information (shown in bold).
Multiprotocol BGP Multiprotocol extensions for BGP (MBGP) is defined in IETF RFC 2858. MBGP allows different types of address families to be distributed in parallel. MBGP for IPv4 multicast is supported on the S4820T platform. MBGP allows information about the topology of the IP multicast-capable routers to be exchanged separately from the topology of normal IPv4 and IPv6 unicast routers. It allows a multicast routing topology different from the unicast routing topology.
• internal configured, BGP advertises the metric configured in the redistribute command as MED. If BGP peer outbound route-map has metric configured, all other metrics are overwritten by this configuration. NOTE: When redistributing static, connected, or OSPF routes, there is no metric option. Simply assign the appropriate route-map to the redistributed route. The following table lists some examples of these rules. Table 8.
Configure 4-byte AS numbers with the four-octet-support command. AS4 Number Representation Dell Networking OS supports multiple representations of 4-byte AS numbers: asplain, asdot+, and asdot. NOTE: The ASDOT and ASDOT+ representations are supported only with the 4-Byte AS numbers feature. If 4-Byte AS numbers are not implemented, only ASPLAIN representation is supported. ASPLAIN is the method Dell Networking OS has used for all previous Dell Networking OS versions.
! router bgp 100 bgp asnotation asdot+ bgp four-octet-as-support neighbor 172.30.1.250 local-as 65057
appear as if it still belongs to Router B’s old network (AS 200) as far as communicating with Router C is concerned. Figure 27. Before and After AS Number Migration with Local-AS Enabled When you complete your migration, and you have reconfigured your network with the new information, disable this feature. If you use the “no prepend” option, the Local-AS does not prepend to the updates received from the eBGP peer.
3. Prepend "65001 65002" to as-path. Local-AS is prepended before the route-map to give an impression that update passed through a router in AS 200 before it reached Router B. BGP4 Management Information Base (MIB) The FORCE10-BGP4-V2-MIB enhances Dell Networking OS BGP management information base (MIB) support with many new simple network management protocol (SNMP) objects and notifications (traps) defined in draft-ietf-idr-bgp4-mibv2-05.
• The f10BgpM2[Cfg]PeerReflectorClient field is populated based on the assumption that routereflector clients are not in a full mesh if you enable BGP client-2-client reflection and that the BGP speaker acting as reflector advertises routes learned from one client to another client. If disabled, it is assumed that clients are in a full mesh and there is no need to advertise prefixes to the other clients. • High CPU utilization may be observed during an SNMP walk of a large BGP Loc-RIB.
By default, Dell Networking OS compares the MED attribute on different paths from within the same AS (the bgp always-compare-med command is not enabled). NOTE: In Dell Networking OS, all newly configured neighbors and peer groups are disabled. To enable a neighbor or peer group, enter the neighbor {ip-address | peer-group-name} no shutdown command. The following table displays the default values for BGP on Dell Networking OS. Table 9.
NOTE: Sample Configurations for enabling BGP routers are found at the end of this chapter. 1. Assign an AS number and enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number • as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte) or 0.1 to 65535.65535 (Dotted format). Only one AS is supported per system. NOTE: If you enter a 4-Byte AS number, 4-Byte AS support is enabled automatically. a. Enable 4-Byte support for the BGP process. NOTE: This command is OPTIONAL.
3. Enable the BGP neighbor. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} no shutdown Examples of the show ip bgp Commands NOTE: When you change the configuration of a BGP neighbor, always reset it by entering the clear ip bgp * command in EXEC Privilege mode. To view the BGP configuration, enter show config in CONFIGURATION ROUTER BGP mode. To view the BGP status, use the show ip bgp summary command in EXEC Privilege mode.
For the router’s identifier, Dell Networking OS uses the highest IP address of the Loopback interfaces configured. Because Loopback interfaces are virtual, they cannot go down, thus preventing changes in the router ID. If you do not configure Loopback interfaces, the highest IP address of any interface is used as the router ID. To view the status of BGP neighbors, use the show ip bgp neighbors command in EXEC Privilege mode as shown in the first example.
Connections established 0; dropped 0 Last reset never No active TCP connection Dell# The following example shows verifying the BGP configuration using the show running-config bgp command.. Dell#show running-config bgp ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list ISP1in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.
bgp asnotation asplain • NOTE: ASPLAIN is the default method Dell Networking OS uses and does not appear in the configuration display. Enable ASDOT AS Number representation. CONFIG-ROUTER-BGP mode • bgp asnotation asdot Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ Examples of the bgp asnotation Commands The following example shows the bgp asnotation asplain command output.
Configuring Peer Groups To configure multiple BGP neighbors at one time, create and populate a BGP peer group. An advantage of peer groups is that members of a peer group inherit the configuration properties of the group and share same update policy. A maximum of 256 peer groups are allowed on the system. Create a peer group by assigning it a name, then adding members to the peer group. After you create a peer group, you can configure route policies for it.
6. Add a neighbor as a remote AS. CONFIG-ROUTERBGP mode neighbor {ip-address | peer-group name} remote-as as-number Formats: IP Address A.B.C.D • Peer-Group Name: 16 characters. • as-number: the range is from 0 to 65535 (2-Byte) or 1 to 4294967295 | 0.1 to 65535.65535 (4Byte) or 0.1 to 65535.65535 (Dotted format) To add an external BGP (EBGP) neighbor, configure the as-number parameter with a number different from the BGP as-number configured in the router bgp as-number command.
neighbor 10.14.8.60 remote-as 18505 neighbor 10.14.8.60 no shutdown Dell(conf-router_bgp)# To enable a peer group, use the neighbor peer-group-name no shutdown command in CONFIGURATION ROUTER BGP mode (shown in bold). Dell(conf-router_bgp)#neighbor zanzibar no shutdown Dell(conf-router_bgp)#show config ! router bgp 45 bgp fast-external-fallover bgp log-neighbor-changes neighbor zanzibar peer-group neighbor zanzibar no shutdown neighbor 10.1.1.1 remote-as 65535 neighbor 10.1.1.1 shutdown neighbor 10.14.8.
10.68.183.1 10.68.184.1 10.68.185.1 Dell> Configuring BGP Fast Fall-Over By default, a BGP session is governed by the hold time. BGP routers typically carry large routing tables, so frequent session resets are not desirable. The BGP fast fall-over feature reduces the convergence time while maintaining stability. The connection to a BGP peer is immediately reset if a link to a directly connected external peer fails.
fall-over enabled Update source set to Loopback 0 Peer active in peer-group outbound optimization For address family: IPv4 Unicast BGP table version 52, neighbor version 52 4 accepted prefixes consume 16 bytes Prefix advertised 0, denied 0, withdrawn 0 Connections established 6; dropped 5 Last reset 00:19:37, due to Reset by peer Notification History 'Connection Reset' Sent : 5 Recv: 0 Local host: 200.200.200.200, Local port: 65519 Foreign host: 100.100.100.
You can constrain the number of passive sessions accepted by the neighbor. The limit keyword allows you to set the total number of sessions the neighbor will accept, between 2 and 265. The default is 256 sessions. 1. Configure a peer group that does not initiate TCP connections with other peers. CONFIG-ROUTER-BGP mode neighbor peer-group-name peer-group passive limit Enter the limit keyword to restrict the number of sessions accepted. 2. Assign a subnet to the peer group.
Example of the Verifying that Local AS Numbering is Disabled The first line in bold shows the actual AS number. The second two lines in bold show the local AS number (6500) maintained during migration. To disable this feature, use the no neighbor local-as command in CONFIGURATION ROUTER BGP mode. R2(conf-router_bgp)#show conf ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.
R2(conf-router_bgp)#show conf ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.
• Defer best path selection for a certain amount of time. This helps optimize path selection and results in fewer updates being sent out. To enable graceful restart, use the configure router bgp graceful-restart command. • Enable graceful restart for the BGP node. CONFIG-ROUTER-BGP mode • bgp graceful-restart Set maximum restart time for all peers. CONFIG-ROUTER-BGP mode bgp graceful-restart [restart-time time-in-seconds] • The default is 120 seconds.
• neighbor {ip-address | peer-group-name} graceful-restart [role receiver-only] Set the maximum time to retain the restarting neighbor’s or peer-group’s stale paths. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} graceful-restart [stale-path-time time-in-seconds] The default is 360 seconds. Filtering on an AS-Path Attribute You can use the BGP attribute, AS_PATH, to manipulate routing policies. The AS_PATH attribute contains a sequence of AS numbers representing the route’s path.
Example of the show ip bgp paths Command To view all BGP path attributes in the BGP database, use the show ip bgp paths command in EXEC Privilege mode.
Regular Expression Definition [ ] (brackets) Matches any enclosed character and specifies a range of single characters. - (hyphen) Used within brackets to specify a range of AS or community numbers. _ (underscore) Matches a ^, a $, a comma, a space, or a {, or a }. Placed on either side of a string to specify a literal and disallow substring matching. You can precede or follow numerals enclosed by underscores by any of the characters listed.
Redistributing Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the BGP process. With the redistribute command, you can include ISIS, OSPF, static, or directly connected routes in the BGP process. To add routes from other routing instances or protocols, use any of the following commands in ROUTER BGP mode. • Include, directly connected or user-configured (static) routes in BGP.
To allow multiple paths sent to peers, use the following commands. 1. Allow the advertisement of multiple paths for the same address prefix without the new paths replacing any previous ones. CONFIG-ROUTER-BGP mode bgp add-path [both|received|send] path-count count The range is from 2 to 64. 2. Allow the specified neighbor/peer group to send/ receive multiple path advertisements.
To configure an IP community list, use these commands. 1. Create a community list and enter COMMUNITY-LIST mode. CONFIGURATION mode ip community-list community-list-name 2. Configure a community list by denying or permitting specific community numbers or types of community.
Configuring an IP Extended Community List To configure an IP extended community list, use these commands. 1. Create a extended community list and enter the EXTCOMMUNITY-LIST mode. CONFIGURATION mode ip extcommunity-list extcommunity-list-name 2. Two types of extended communities are supported.
Filtering Routes with Community Lists To use an IP community list or IP extended community list to filter routes, you must apply a match community filter to a route map and then apply that route map to a BGP neighbor or peer group. 1. Enter the ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2. Configure a match filter for all routes meeting the criteria in the IP community or IP extended community list.
To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. If you want to remove or add a specific COMMUNITY number from a BGP path, you must create a route map with one or both of the following statements in the route map. Then apply that route map to a BGP neighbor or peer group. 1. Enter ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2.
Dell>show ip bgp community BGP table version is 3762622, local router ID is 10.114.8.48 Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP, e - EGP, ? - incomplete Network * i 3.0.0.0/8 *>i 4.2.49.12/30 * i 4.21.132.0/23 *>i 4.24.118.16/30 *>i 4.24.145.0/30 *>i 4.24.187.12/30 *>i 4.24.202.0/30 *>i 4.25.88.0/30 *>i 6.1.0.0/16 *>i 6.2.0.0/22 *>i 6.3.0.0/18 *>i 6.4.0.0/16 *>i 6.5.0.0/19 *>i 6.8.0.0/20 *>i 6.9.0.0/20 *>i 6.10.0.0/15 *>i 6.14.0.0/15 *>i 6.133.0.
CONFIG-ROUTER-BGP mode bgp default local-preference value – value: the range is from 0 to 4294967295. The default is 100. To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode or the show running-config bgp command in EXEC Privilege mode. A more flexible method for manipulating the LOCAL_PREF attribute value is to use a route map. 1. Enter the ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2.
set next-hop ip-address Changing the WEIGHT Attribute To change how the WEIGHT attribute is used, enter the first command. You can also use route maps to change this and other BGP attributes. For example, you can include the second command in a route map to specify the next hop address. • Assign a weight to the neighbor connection. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} weight weight – weight: the range is from 0 to 65535. • The default is 0. Sets weight for the route.
For inbound and outbound updates the order of preference is: • prefix lists (using the neighbor distribute-list command) • AS-PATH ACLs (using the neighbor filter-list command) • route maps (using the neighbor route-map command) Prior to filtering BGP routes, create the prefix list, AS-PATH ACL, or route map. For configuration information about prefix lists, AS-PATH ACLs, and route maps, refer to Access Control Lists (ACLs).
• If the prefix list contains no filters, all routes are permitted. • If none of the routes match any of the filters in the prefix list, the route is denied. This action is called an implicit deny. (If you want to forward all routes that do not match the prefix list criteria, you must configure a prefix list filter to permit all routes. For example, you could have the following filter as the last filter in your prefix list permit 0.0.0.0/0 le 32).
Filtering BGP Routes Using AS-PATH Information To filter routes based on AS-PATH information, use these commands. 1. Create a AS-PATH ACL and assign it a name. CONFIGURATION mode ip as-path access-list as-path-name 2. Create a AS-PATH ACL filter with a deny or permit action. AS-PATH ACL mode {deny | permit} as-regular-expression 3. Return to CONFIGURATION mode. AS-PATH ACL exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5.
• Assign an ID to a router reflector cluster. CONFIG-ROUTER-BGP mode bgp cluster-id cluster-id • You can have multiple clusters in an AS. Configure the local router as a route reflector and the neighbor or peer group identified is the route reflector client. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-reflector-client When you enable a route reflector, Dell Networking OS automatically enables route reflection to all clients.
Configuring BGP Confederations Another way to organize routers within an AS and reduce the mesh for IBGP peers is to configure BGP confederations. As with route reflectors, BGP confederations are recommended only for IBGP peering involving many IBGP peering sessions per router. Basically, when you configure BGP confederations, you break the AS into smaller sub-AS, and to those outside your network, the confederations appear as one AS.
• history entry — an entry that stores information on a downed route • dampened path — a path that is no longer advertised • penalized path — a path that is assigned a penalty To configure route flap dampening parameters, set dampening parameters using a route map, clear information on route dampening and return suppressed routes to active state, view statistics on route flapping, or change the path selection from the default mode (deterministic) to non-deterministic, use the following commands.
show ip bgp flap-statistics [ip-address [mask]] [filter-list as-path-name] [regexp regular-expression] – ip-address [mask]: enter the IP address and mask. – filter-list as-path-name: enter the name of an AS-PATH ACL. – regexp regular-expression: enter a regular express to match on. • By default, the path selection in Dell Networking OS is deterministic, that is, paths are compared irrespective of the order of their arrival.
Dampening enabled. 0 history paths, 0 dampened paths, 0 penalized paths Neighbor AS MsgRcvd MsgSent TblVer 10.114.8.34 18508 82883 79977 780266 10.114.8.33 18508 117265 25069 780266 Dell> InQ OutQ Up/Down State/PfxRcd 0 2 00:38:51 118904 0 20 00:38:50 102759 To view which routes are dampened (non-active), use the show ip bgp dampened-routes command in EXEC Privilege mode. Changing BGP Timers To configure BGP timers, use either or both of the following commands.
To reset a BGP connection using BGP soft reconfiguration, use the clear ip bgp command in EXEC Privilege mode at the system prompt. When you enable soft-reconfiguration for a neighbor and you execute the clear ip bgp soft in command, the update database stored in the router is replayed and updates are reevaluated. With this command, the replay and update process is triggered only if a route-refresh request is not negotiated with the peer.
Route Map Continue The BGP route map continue feature, continue [sequence-number], (in ROUTE-MAP mode) allows movement from one route-map entry to a specific route-map entry (the sequence number). If you do not specify a sequence number, the continue feature moves to the next sequence number (also known as an “implied continue”). If a match clause exists, the continue feature executes only after a successful match occurs. If there are no successful matches, continue is ignored.
• When exchanging updates with the peer, BGP sends and receives IPv4 multicast routes if the peer is marked as supporting that AFI/SAFI. • Exchange of IPv4 multicast route information occurs through the use of two new attributes called MP_REACH_NLRI and MP_UNREACH_NLRI, for feasible and withdrawn routes, respectively. • If the peer has not been activated in any AFI/SAFI, the peer remains in Idle state.
EXEC Privilege mode • debug ip bgp [ip-address | peer-group peer-group-name] notifications [in | out] View information about BGP updates and filter by prefix name. EXEC Privilege mode • debug ip bgp [ip-address | peer-group peer-group-name] updates [in | out] [prefix-list name] Enable soft-reconfiguration debug.
Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) For address family: IPv4 Unicast BGP table version 1395, neighbor version 1394 Prefixes accepted 1 (consume 4 bytes), 0 withdrawn by peer Prefixes advertised 0, rejected 0, 0 withdrawn from peer Connections established 3; dropped 2 Last reset 00:00:12, due to Missing well known attribute Notification History 'UPDATE error/Missing well-known attr' Sent : 1 Recv: 0 'Connection Reset' Sent : 1 Rec
00000000 00000000 00000000 00000000 0181a1e4 0181a25c 41af92c0 00000000 00000000 00000000 00000000 00000001 0181a1e4 0181a25c 41af9400 00000000 PDU[2] : len 19, captured 00:34:51 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[3] : len 19, captured 00:34:51 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[4] : len 19, captured 00:34:22 ago ffffffff ffffffff ffffffff ffffffff 00130400 [. . .] Outgoing packet capture enabled for BGP neighbor 20.20.20.
Sample Configurations The following example configurations show how to enable BGP and set up some peer groups. These examples are not comprehensive directions. They are intended to give you some guidance with typical configurations. To support your own IP addresses, interfaces, names, and so on, you can copy and paste from these examples to your CLI. Be sure that you make the necessary changes. The following illustration shows the configurations described on the following examples.
no shutdown R1(conf-if-lo-0)#int te 1/21 R1(conf-if-te-1/21)#ip address 10.0.1.21/24 R1(conf-if-te-1/21)#no shutdown R1(conf-if-te-1/21)#show config ! interface TengigabitEthernet 1/21 ip address 10.0.1.21/24 no shutdown R1(conf-if-te-1/21)#int te 1/31 R1(conf-if-te-1/31)#ip address 10.0.3.31/24 R1(conf-if-te-1/31)#no shutdown R1(conf-if-te-1/31)#show config ! interface TengigabitEthernet 1/31 ip address 10.0.3.31/24 no shutdown R1(conf-if-te-1/31)#router bgp 99 R1(conf-router_bgp)#network 192.168.128.
R2(conf-router_bgp)#network 192.168.128.0/24 R2(conf-router_bgp)#neighbor 192.168.128.1 remote 99 R2(conf-router_bgp)#neighbor 192.168.128.1 no shut R2(conf-router_bgp)#neighbor 192.168.128.1 update-source loop 0 R2(conf-router_bgp)#neighbor 192.168.128.3 remote 100 R2(conf-router_bgp)#neighbor 192.168.128.3 no shut R2(conf-router_bgp)#neighbor 192.168.128.3 update loop 0 R2(conf-router_bgp)#show config ! router bgp 99 bgp router-id 192.168.128.2 network 192.168.128.
R1(conf-router_bgp)# neighbor 192.168.128.3 peer-group BBB R1(conf-router_bgp)# R1(conf-router_bgp)#show config ! router bgp 99 network 192.168.128.0/24 neighbor AAA peer-group neighbor AAA no shutdown neighbor BBB peer-group neighbor BBB no shutdown neighbor 192.168.128.2 remote-as 99 neighbor 192.168.128.2 peer-group AAA neighbor 192.168.128.2 update-source Loopback 0 neighbor 192.168.128.2 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 peer-group BBB neighbor 192.168.128.
Minimum time between advertisement runs is 30 seconds Minimum time before advertisements start is 0 seconds Example of Enabling Peer Groups (Router 2) R2#conf R2(conf)#router bgp 99 R2(conf-router_bgp)# neighbor CCC peer-group R2(conf-router_bgp)# neighbor CC no shutdown R2(conf-router_bgp)# neighbor BBB peer-group R2(conf-router_bgp)# neighbor BBB no shutdown R2(conf-router_bgp)# neighbor 192.168.128.1 peer AAA R2(conf-router_bgp)# neighbor 192.168.128.1 no shut R2(conf-router_bgp)# neighbor 192.168.128.
BGP-RIB over all using 207 bytes of memory 2 BGP path attribute entrie(s) using 128 bytes of memory 2 BGP AS-PATH entrie(s) using 90 bytes of memory 2 neighbor(s) using 9216 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 192.168.128.1 99 93 99 1 0 (0) 00:00:15 1 192.168.128.2 99 122 120 1 0 (0) 00:00:11 1 R3#show ip bgp neighbor BGP neighbor is 192.168.128.1, remote AS 99, external link Member of peer-group BBB for session parameters BGP version 4, remote router ID 192.168.
Content Addressable Memory (CAM) 11 Content addressable memory (CAM) is supported on the S4820T platform. CAM is a type of memory that stores information in the form of a lookup table. On Dell Networking systems, CAM stores Layer 2 and Layer 3 forwarding information, access-lists (ACLs), flows, and routing policies. CAM Allocation The user configurable CAM allocations feature is available on the S4820T platform.
CAM Allocation Setting Openflow 0 fedgovacl 0 The following additional CAM allocation settings are supported on the S6000, S4810 or S4820T platforms only. Table 11. Additional Default CAM Allocation Settings Additional CAM Allocation Setting FCoE ACL (fcoeacl) 0 ISCSI Opt ACL (iscsioptacl) 0 The ipv6acl and vman-dual-qos allocations must be entered as a factor of 2 (2, 4, 6, 8, 10). All other profile allocations can use either even or odd numbered ranges.
Dell(conf)# 1. Select a cam-acl action. CONFIGURATION mode cam-acl [default | l2acl] NOTE: Selecting default resets the CAM entries to the default settings. Select l2acl to allocate the desired space for all other regions. 2. Enter the number of FP blocks for each region.
View CAM Profiles To view the current CAM profile for the chassis and each component, use the show cam-profile command. This command also shows the profile that is loaded after the next chassis or component reload.
L2Qos L2PT IpMacAcl VmanQos VmanDualQos EcfmAcl FcoeAcl iscsiOptAcl ipv4pbr vrfv4Acl Openflow fedgovacl : : : : : : : : : : : : 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 2 0 0 -- Stack unit 0 -Current Settings(in block sizes) Next Boot(in block sizes) 1 block = 128 entries L2Acl : 6 4 Ipv4Acl : 4 2 Ipv6Acl : 0 0 Ipv4Qos : 2 2 L2Qos : 1 1 L2PT : 0 0 IpMacAcl : 0 0 VmanQos : 0 0 VmanDualQos : 0 0 EcfmAcl : 0 0 FcoeAcl : 0 0 iscsiOptAcl : 0 0 ipv4pbr : 0 2 vrfv4Acl : 0 2 Openflow : 0 0 fedgovacl : 0 0 Dell
fedgovacl : 0 -- Stack unit 0 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDualQos : 0 EcfmAcl : 0 FcoeAcl : 0 iscsiOptAcl : 0 ipv4pbr : 0 vrfv4Acl : 0 Openflow : 0 fedgovacl : 0 -- Stack unit 7 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDualQos : 0 EcfmAcl : 0 FcoeAcl : 0 iscsiOptAcl : 0 ipv4pbr
| | | | | | | | Codes: * - cam usage Dell# IN-L2 ACL OUT-L3 ACL OUT-V6 ACL OUT-L2 ACL is above 90%. | | | | 768 158 158 206 | | | | 0 5 0 7 | | | | 768 153 158 199 CAM Optimization CAM optimization is supported on the S4820T platform. When you enable this command, if a Policy Map containing classification rules (ACL and/or dscp/ ipprecedence rules) is applied to more than one physical interface on the same port-pipe, only a single copy of the policy is written (only 1 FP entry is used).
If you exceed the QoS CAM space, follow these steps. 1. Verify that you have configured a CAM profile that allocates 24 K entries to the IPv4 system flow region. 2. Allocate more entries in the IPv4Flow region to QoS. Dell Networking OS supports the ability to view the actual CAM usage before applying a service-policy. The test cam-usage service-policy command provides this test framework. For more information, refer to Pre-Calculating Available QoS CAM Space.
Control Plane Policing (CoPP) 12 Control plane policing (CoPP) is supported on the S4820T platform. Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level.
Figure 30. CoPP Implemented Versus CoPP Not Implemented Configure Control Plane Policing The S4820T can process a maximum of 4200 packets per second (PPS). Protocols that share a single queue may experience flaps if one of the protocols receives a high rate of control traffic even though per protocol CoPP is applied. This happens because queue-based rate limiting is applied first.
CoPP policies are assigned on a per-protocol or a per-queue basis, and are assigned in CONTROLPLANE mode to each port-pipe. CoPP policies are configured by creating extended ACL rules and specifying rate-limits through QoS policies. The ACLs and QoS policies are assigned as service-policies. Configuring CoPP for Protocols This section lists the commands necessary to create and enable the service-policies for CoPP.
8. Assign the protocol based the service policy on the control plane. Enabling this command on a portpipe automatically enables the ACL and QoS rules creates with the cpu-qos keyword. CONTROL-PLANE mode service-policy rate-limit-protocols Examples of Configuring CoPP for Different Protocols The following example shows creating the IP/IPv6/MAC extended ACL.
The following example shows matching the QoS class map to the QoS policy.
The following example shows assigning the QoS policy to the queues. Dell(conf)#policy-map-input cpuq_rate_policy cpu-qos Dell(conf-qos-policy-in)#service-queue 5 qos-policy cpuq_1 Dell(conf-qos-policy-in)#service-queue 6 qos-policy cpuq_2 Dell(conf-qos-policy-in)#service-queue 7 qos-policy cpuq_1 The following example shows creating the control plane service policy.
ports while traversing across units and finally on the master CMIC, they are queued on the same queues 0 – 7. In this case, the queue (4 – 7) taken by the well-known protocol streams are uniform across different queuing points, and the queue (0 – 3) taken by the CPU bound data streams are uniform.
FP is installed for all Front panel ports. NDP Packets Neighbor discovery protocol has 4 types of packets NS, NA, RA, RS. These packets need to be taken to CPU for neighbor discovery. • Unicast NDP packets: – Packets hitting the L3 host/route table and discovered as local terminated packets/CPU bound traffic. For CPU bound traffic route entry have CPU action. Below are packets are CPU bound traffic. • * Packets destined to chassis.
CPU Queue Weights Rate (pps) Protocol 4 127 2000 IPC/IRC, VLT Control frames 5 16 300 ARP Request, NS, RS, iSCSI OPT Snooping 6 16 400 ICMP, ARP Reply, NTP, Local terminated L3, NA, RA,ICMPv6 (other Than NDP and MLD) 7 64 400 xSTP, FRRP, LACP, 802.
To configure control-plane policing, perform the following: 1. Create an IPv6 ACL for control-plane traffic policing for ospfv3. CONFIGURATION mode Dell(conf)#ipv6 access-list ospfv3 cpu-qos Dell(conf-ipv6-acl-cpuqos)#permit ospf 2. Create a QoS input policy for the router and assign the policing. CONFIGURATION mode Dell(conf)#qos-policy-input ospfv3_rate cpu-qos Dell(conf-in-qos-policy-cpuqos)#rate-police 1500 16 peak 1500 16 3.
Q7 Dell# 1100 Example of Viewing Queue Mapping To view the queue mapping for each configured protocol, use the show ip protocol-queuemapping command.
13 Data Center Bridging (DCB) Data center bridging (DCB) is supported on the S4820T platform. NOTE: DCB is not supported when you use 10GBaseT ports for stacking. Ethernet Enhancements in Data Center Bridging The following section describes DCB. The S4820T system supports loading two DCB_Config files: FCoE_DCB_Config and iSCSI_DCB_Config. These files are located in the root directory flash:/CONFIG_TEMPLATE. After copying the configuration files to the startup config and reloading the system.
streaming video, are more sensitive to latency. Ethernet functions as a best-effort network that may drop packets in case of network congestion. IP networks rely on transport protocols (for example, TCP) for reliable data transmission with the associated cost of greater processing overhead and performance impact. Storage traffic Storage traffic based on Fibre Channel media uses the Small Computer System Interface (SCSI) protocol for data transfer.
The system supports loading two DCB_Config files: • FCoE converged traffic with priority 3. • iSCSI storage traffic with priority 4. In the Dell Networking OS, PFC is implemented as follows: • PFC supports buffering to receive data that continues to arrive on an interface while the remote system reacts to the PFC operation. • PFC uses DCB MIB IEEE 802.1azd2.5 and PFC MIB IEEE 802.1bb-d2.2. • PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface.
low-latency storage or server cluster traffic in a traffic class to receive more bandwidth and restrict besteffort LAN traffic assigned to a different traffic class. Although you can configure strict-priority queue scheduling for a priority group, ETS introduces flexibility that allows the bandwidth allocated to each priority group to be dynamically managed according to the amount of LAN, storage, and server traffic in a flow. Unused bandwidth is dynamically allocated to prioritized priority groups.
– No bandwidth limit or no ETS processing • Bandwidth allocated by the ETS algorithm is made available after strict-priority groups are serviced. Bandwidth is distributed in the following ways: – If bandwidth is not assigned to the priority groups, all available bandwidth is equally distributed among the priority groups.
Data Center Bridging in a Traffic Flow The following figure shows how DCB handles a traffic flow on an interface. Figure 32. DCB PFC and ETS Traffic Handling Enabling Data Center Bridging DCB is automatically configured when you configure FCoE or iSCSI optimization. Data center bridging supports converged enhanced Ethernet (CEE) in a data center network. DCB is disabled by default. It must be enabled to support CEE.
To enable DCB with PFC buffers on a switch, enter the following commands, save the configuration, and reboot the system to allow the changes to take effect. 1. Enable DCB. CONFIGURATION mode dcb enable 2. Set PFC buffering on the DCB stack unit. CONFIGURATION mode dcb stack-unit all pfc-buffering pfc-ports 64 pfc-queues 2 NOTE: To save the pfc buffering configuration changes, save the configuration and reboot the system.
dot1p Value in the Incoming Frame Egress Queue Assignment 5 5 6 6 7 7 Configuring Priority-Based Flow Control PFC provides a flow control mechanism based on the 802.1p priorities in converged Ethernet traffic received on an interface and is enabled by default when you enable DCB. As an enhancement to the existing Ethernet pause mechanism, PFC stops traffic transmission for specified priorities (Class of Service (CoS) values) without impacting other priority classes.
3. Configure the CoS traffic to be stopped for the specified delay. DCB INPUT POLICY mode pfc priority priority-range Enter the 802.1p values of the frames to be paused. The range is from 0 to 7. The default is none. Maximum number of loss less queues supported on the switch: 2. Separate priority values with a comma. Specify a priority range with a dash, for example: pfc priority 1,3,5-7. 4.
To remove a DCB input policy, including the PFC configuration it contains, use the no dcb-input policy-name command in INTERFACE Configuration mode. To disable PFC operation on an interface, use the no pfc mode on command in DCB Input Policy Configuration mode. PFC is enabled and disabled as the global DCB operation is enabled (dcb enable) or disabled (no dcb enable). You can enable any number of 802.1p priorities for PFC. Queues to which PFC priority traffic is mapped are lossless by default.
Lossless traffic egresses out the no-drop queues. Ingress dot1p traffic from PFC-enabled interfaces is automatically mapped to the no-drop egress queues. 1. Enter INTERFACE Configuration mode. CONFIGURATION mode interface type slot/port 2. Configure the port queues that will still function as no-drop queues for lossless traffic. INTERFACE mode pfc no-drop queues queue-range For the dot1p-queue assignments, refer to the dot1p Priority-Queue Assignment table.
Valid stack-unit IDs are 0 to 5. The only valid port-set ID (port-pipe number) is 0. Dell Networking OS Behavior: If you configure PFC on a 40GbE port, count the 40GbE port as four PFCenabled ports in the pfc-port number you enter in the command syntax. To achieve lossless PFC operation, the PFC port count and queue number used for the reserved buffer size that is created must be greater than or equal to the buffer size required for PFC-enabled ports and lossless queues on the switch.
• You can only use a QoS DCB output policy in association with a priority group in a DCB output policy and cannot be applied to an interface as a normal QoS output policy (refer to Applying an ETS Output Policy for a Priority Group to an Interface and Creating an Output QoS Policy in the Quality of Service (QoS) chapter.). NOTE: The IEEE 802.1Qaz, CEE, and CIN versions of ETS are supported.
ETS-assigned bandwidth allocation and scheduling apply only to data queues, not to control queues. Dell Networking OS supports hierarchical scheduling on an interface. Dell Networking OS control traffic is redirected to control queues as higher priority traffic with strict-priority scheduling. After control queues drain out, the remaining data traffic is scheduled to queues according to the bandwidth and scheduler configuration in the DCB output policy.
Creating an ETS Priority Group An ETS priority group specifies the range of 802.1p priority traffic to which a QoS output policy with ETS settings is applied on an egress interface. You can associate a priority group to more than one ETS output policy on different interfaces. 1. Create an ETS priority group to use with an ETS output policy. CONFIGURATION mode priority-group group-name The maximum is 32 characters. 2. Configure the priority-group identifier.
The maximum number of priority groups supported in ETS output policies on an interface is equal to the number of data queues (4) on the port. The 802.1p priorities in a priority group can map to multiple queues. If you configure more than one priority queue as strict priority or more than one priority group as strict priority, the higher numbered priority queue is given preference when scheduling data traffic.
Dell Networking OS Behavior: Create a DCB output policy to associate a priority group with an ETS output policy with scheduling and bandwidth configuration. You can apply a DCB output policy on multiple egress ports. The ETS configuration associated with 802.1p priority traffic in a DCB output policy is used in DCBx negotiation with ETS peers.
Configuring Bandwidth Allocation for DCBx CIN After you apply an ETS output policy to an interface, if the DCBx version used in your data center network is CIN, you may need to configure a QoS output policy to overwrite the default CIN bandwidth allocation. This default setting divides the bandwidth allocated to each port queue equally between the dot1p priority traffic assigned to the queue.
CONFIGURATION mode dcb-policy input stack-unit {all | stack-unit-id} stack-ports all dcb-inputpolicy-name Entering this command removes all DCB input policies applied to stacked ports. A dcb-policy input stack-unit all command overwrites any previous dcb-policy input stack-unit stack-unit-id configurations. Similarly, a dcb-policy input stack-unit stackunit-id command overwrites any previous dcb-policy input stack-unit all configuration.
Prerequisite: For DCBx, enable LLDP on all DCB devices. DCBx Operation DCBx performs the following operations: • Discovers DCB configuration (such as PFC and ETS) in a peer device. • Detects DCB mis-configuration in a peer device; that is, when DCB features are not compatibly configured on a peer device and the local switch. Mis-configuration detection is feature-specific because some DCB features support asymmetric configuration.
When an auto-downstream port receives and overwrites its configuration with internally propagated information, one of the following actions is taken: • If the peer configuration received is compatible with the internally propagated port configuration, the link with the DCBx peer is enabled.
NOTE: On a DCBx port, application priority TLV advertisements are handled as follows: • The application priority TLV is transmitted only if the priorities in the advertisement match the configured PFC priorities on the port. • On auto-upstream and auto-downstream ports: – If a configuration source is elected, the ports send an application priority TLV based on the application priority TLV received on the configuration-source port.
A newly elected configuration source propagates configuration changes received from a peer to the other auto-configuration ports. Ports receiving auto-configuration information from the configuration source ignore their current settings and use the configuration source information. Propagation of DCB Information When an auto-upstream or auto-downstream port receives a DCB configuration from a peer, the port acts as a DCBx client and checks if a DCBx configuration source exists on the switch.
DCBx Example The following figure shows how to use DCBx. The external 40GbE ports on the base module (ports 33 and 37) of two switches are used for uplinks configured as DCBx auto-upstream ports. The S4820T is connected to third-party, top-of-rack (ToR) switches through 40GbE uplinks. The ToR switches are part of a Fibre Channel storage network. The internal ports (ports 1-32) connected to the 10GbE backplane are configured as auto-downstream ports.
1. Configure ToR- and FCF-facing interfaces as auto-upstream ports. 2. Configure server-facing interfaces as auto-downstream ports. 3. Configure a port to operate in a configuration-source role. 4. Configure ports to operate in a manual role. 1. Enter INTERFACE Configuration mode. CONFIGURATION mode interface type slot/port 2. Enter LLDP Configuration mode to enable DCBx operation. INTERFACE mode [no] protocol lldp 3.
5. On manual ports only: Configure the PFC and ETS TLVs advertised to DCBx peers. PROTOCOL LLDP mode [no] advertise DCBx-tlv {ets-conf | ets-reco | pfc} [ets-conf | ets-reco | pfc] [ets-conf | ets-reco | pfc] • ets-conf: enables the advertisement of ETS Configuration TLVs. • ets-reco: enables the advertisement of ETS Recommend TLVs. • pfc enables: the advertisement of PFC TLVs. The default is All PFC and ETS TLVs are advertised.
3. Configure the DCBx version used on all interfaces not already configured to exchange DCB information. PROTOCL LLDP mode [no] DCBx version {auto | cee | cin | ieee-v2.5} • auto: configures all ports to operate using the DCBx version received from a peer. • cee: configures a port to use CEE (Intel 1.01). cin configures a port to use Cisco-Intel-Nuova (DCBx 1.0). • ieee-v2.5: configures a port to use IEEE 802.1Qaz (Draft 2.5). The default is Auto.
6. Configure the FCoE priority advertised for the FCoE protocol in Application Priority TLVs. PROTOCOL LLDP mode [no] fcoe priority-bits priority-bitmap The priority-bitmap range is from 1 to FF. The default is 0x8. 7. Configure the iSCSI priority advertised for the iSCSI protocol in Application Priority TLVs. PROTOCOL LLDP mode [no] iscsi priority-bits priority-bitmap The priority-bitmap range is from 1 to FF. The default is 0x10.
– fail: enables traces for DCBx failures. – mgmt: enables traces for DCBx management frames. – resource: enables traces for DCBx system resource frames. – sem: enables traces for the DCBx state machine. – tlv: enables traces for DCBx TLVs. Verifying the DCB Configuration To display DCB configurations, use the following show commands. Table 13. Displaying DCB Configurations Command Output show dot1p-queue mapping Displays the current 802.1p priority-queue mapping.
Command Output show stack-unit {0-11 | all} stack ports all ets details Displays the ETS configuration applied to ingress traffic on stack-links, including priorities and link delay. Examples of the show Commands The following example shows the show dot1p-queue mapping command. Dell(conf)# show dot1p-queue-mapping Dot1p Priority: 0 1 2 3 4 5 6 7 Queue : 0 0 0 1 2 3 3 3 The following example shows the show dcb command.
FCOE TLV Tx Status is disabled ISCSI TLV Tx Status is disabled Local FCOE PriorityMap is 0x8 Local ISCSI PriorityMap is 0x10 Remote FCOE PriorityMap is 0x8 Remote ISCSI PriorityMap is 0x8 Dell# show interfaces tengigabitethernet 0/49 pfc detail Interface TenGigabitEthernet 0/49 Admin mode is on Admin is enabled Remote is enabled Remote Willing Status is enabled Local is enabled Oper status is recommended PFC DCBx Oper status is Up State Machine Type is Feature TLV Tx Status is enabled PFC Link Delay 45556 p
Fields Description Port state for current operational PFC configuration: • • • Init: Local PFC configuration parameters were exchanged with peer. Recommend: Remote PFC configuration parameters were received from peer. Internally propagated: PFC configuration parameters were received from configuration source. PFC DCBx Oper status Operational status for exchange of PFC configuration on local port: match (up) or mismatch (down).
Fields Description PFC TLV Statistics: Pause Rx pkts Number of PFC pause frames received The following example shows the show interface pfc statistics command. Dell#show interfaces te 0/0 pfc statistics Interface TenGigabitEthernet 0/0 Priority Received PFC Frames Transmitted PFC Frames -------- ------------------- ---------------------0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 The following example shows the show interface ets summary command.
Oper status is init ETS DCBx Oper status is Down State Machine Type is Asymmetric Conf TLV Tx Status is enabled Reco TLV Tx Status is enabled 0 Input Conf TLV Pkts, 1955 Output Conf TLV Pkts, 0 Error Conf TLV Pkts 0 Input Reco TLV Pkts, 1955 Output Reco TLV Pkts, 0 Error Reco TLV Pkts Dell(conf)# show interfaces tengigabitethernet 0/0 ets detail Interface TenGigabitEthernet 0/0 Max Supported TC Groups is 4 Number of Traffic Classes is 8 Admin mode is on Admin Parameters : -----------------Admin is enabled T
Traffic Class Pkts The following example shows the show interface ets detail command.
Traffic Class TLV Pkts The following table describes the show interface ets detail command fields. Table 15. show interface ets detail Command Description Field Description Interface Interface type with stack-unit and port number. Max Supported TC Group Maximum number of priority groups supported. Number of Traffic Classes Number of 802.1p priorities currently configured. Admin mode ETS mode: on or off.
Field Description Conf TLV Tx Status Status of ETS Configuration TLV advertisements: enabled or disabled. ETS TLV Statistic: Input Conf TLV pkts Number of ETS Configuration TLVs received. ETS TLV Statistic: Output Conf TLV pkts Number of ETS Configuration TLVs transmitted. ETS TLV Statistic: Error Conf TLV pkts Number of ETS Error Configuration TLVs received. The following example shows the show stack-unit all stack-ports all pfc details command.
0 1 2 3 4 5 6 7 8 0,1,2,3,4,5,6,7 100% - ETS - The following example shows the show interface DCBx detail command (IEEE).
Local DCBx Status ----------------DCBx Operational Version is 0 DCBx Max Version Supported is 0 Sequence Number: 1 Acknowledgment Number: 1 Protocol State: In-Sync Peer DCBx Status: ---------------DCBx Operational Version is 0 DCBx Max Version Supported is 0 Sequence Number: 1 Acknowledgment Number: 1 Total DCBx Frames transmitted 994 Total DCBx Frames received 646 Total DCBx Frame errors 0 Total DCBx Frames unrecognized 0 The following table describes the show interface DCBx detail command fields.
Field Description Local DCBx Status: Sequence Number Sequence number transmitted in Control TLVs. Local DCBx Status: Acknowledgment Number Acknowledgement number transmitted in Control TLVs. Local DCBx Status: Protocol State Current operational state of DCBx protocol: ACK or IN-SYNC. Peer DCBx Status: DCBx Operational Version DCBx version advertised in Control TLVs received from peer device.
Figure 34. PFC and ETS Applied to LAN, IPC, and SAN Priority Traffic QoS Traffic Classification: The service-class dynamic dot1p command has been used in Global Configuration mode to map ingress dot1p frames to the queues shown in the following table. For more information, refer to QoS dot1p Traffic Classification and Queue Assignment.
dot1p Value in the Incoming Frame Priority Group Assignment 3 SAN 4 IPC 5 LAN 6 LAN 7 LAN The following describes the priority group-bandwidth assignment. Priority Group Bandwidth Assignment IPC 5% SAN 50% LAN 45% PFC and ETS Configuration Command Examples The following examples show PFC and ETS configuration commands to manage your data center traffic.
Dell(conf-qos-policy-out)# exit Dell(conf)# qos-policy-output ipc ets Dell(conf-qos-policy-out)# bandwidth-percentage 5 Dell(conf-qos-policy-out)# exit Example of Configuring a DCB Output Policy to Apply ETS (Bandwidth Allocation and Scheduling) to IPC, SAN, and LAN Priority Traffic Dell(conf)# dcb-output ets Dell(conf-dcb-out)# priority-group san qos-policy san Dell(conf-dcb-out)# priority-group lan qos-policy lan Dell(conf-dcb-out)# priority-group ipc qos-policy ipc Example of Applying DCB Input and Outpu
In this example, the configured ETS bandwidth allocation and scheduler behavior is as follows: Unused bandwidth usage: Strict-priority groups: Normally, if there is no traffic or unused bandwidth for a priority group, the bandwidth allocated to the group is distributed to the other priority groups according to the bandwidth percentage allocated to each group.
Step Task Command Command Mode priority-pgid dot1p0_group_num dot1p1_group_num dot1p2_group_num dot1p3_group_num dot1p4_group_num dot1p5_group_num dot1p6_group_num dot1p7_group_num DCB MAP priority groups is made available and allocated according to the specified percentages. If a priority group does not use its allocated bandwidth, the unused bandwidth is made available to other priority groups.
Step Task Command Command Mode 1 Enter interface configuration mode on an Ethernet port. CONFIGURATION interface {tengigabitEthernet slot/ port | fortygigabitEthernet slot/port} 2 Apply the DCB map on the Ethernet port to configure it with the PFC and ETS settings in the map; for example: dcb-map name INTERFACE Dell# interface tengigabitEthernet 0/0 Dell(config-if-te-0/0)# dcb-map SAN_A_dcb_map1 Repeat Steps 1 and 2 to apply a DCB map to more than one port.
Configuring Lossless Queues DCB also supports the manual configuration of lossless queues on an interface after you disable PFC mode in a DCB map and apply the map on the interface. The configuration of no-drop queues provides flexibility for ports on which PFC is not needed, but lossless traffic should egress from the interface. Lossless traffic egresses out the no-drop queues. Ingress 802.1p traffic from PFC-enabled peers is automatically mapped to the no-drop egress queues.
Priority-Based Flow Control Using Dynamic Buffer Method Priority-based flow control using dynamic buffer spaces is supported on the S4820T platform. In a data center network, priority-based flow control (PFC) manages large bursts of one traffic type in multiprotocol links so that it does not affect other traffic types and no frames are lost due to congestion. When PFC detects congestion on a queue for a specified priority, it sends a pause frame for the 802.1p priority traffic to the transmitting device.
The default behavior causes up to a maximum of 6.6 MB to be used for PFC-related traffic. The remaining approximate space of 1 MB can be used by lossy traffic. You can allocate all the remaining 1 MB to lossless PFC queues. If you allocate in such a way, the performance of lossy traffic is reduced and degraded. Although you can allocate a maximum buffer size, it is used only if a PFC priority is configured and applied on the interface.
The show dcb command has been enhanced to display the following additional buffer-related information: S4810-YU-MR-Dell (conf)#do show dcb dcb Status : Enabled PFC Queue Count : 2 --Indicate the PFC queue configured.
6. Assign the DCB policy to the DCB buffer threshold profile on stack ports. CONFIGURATION mode S4810-YU-MR-Dell(conf)# dcb-policy buffer-threshold stack-unit all stackports all test 7. Assign the DCB policy to the DCB buffer threshold profile on interfaces. This setting takes precedence over the default buffer-threshold setting. INTERFACE mode (conf-if-te) S4810-YU-MR-Dell(conf-if-te-0/0)#dcb-policy buffer-threshold test 8.
Dynamic Host Configuration Protocol (DHCP) 14 Dynamic host configuration protocol (DHCP) is available on the S4820T platform. DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on configuration policies determined by network administrators.
Option Number and Description Subnet Mask Option 1 Specifies the client’s subnet mask. Router Option 3 Specifies the router IP addresses that may serve as the client’s default gateway. Domain Name Server Option 6 Domain Name Option 15 Specifies the domain name servers (DNSs) that are available to the client. Specifies the domain name that clients should use when resolving hostnames via DNS.
Option Number and Description Identifiers a user-defined string used by the Relay Agent to forward DHCP client packets to a specific server. L2 DHCP Snooping Option 82 User Port Stacking Option 230 Specifies IP addresses for DHCP messages received from the client that are to be monitored to build a DHCP snooping database. Set the stacking option variable to provide DHCP server stack-port detail when the DHCP offer is set. End Option 255 Signals the last option in the DHCP packet.
Figure 36. Client and Server Messaging Implementation Information The following describes DHCP implementation. • Dell Networking implements DHCP based on RFC 2131 and RFC 3046. • IP source address validation is a sub-feature of DHCP Snooping; the Dell Networking OS uses access control lists (ACLs) internally to implement this feature and as such, you cannot apply ACLs to an interface which has IP source address validation.
Configure the System to be a DHCP Server Configuring the system to be a DHCP server is supported only on the S4820T platform. A DHCP server is a network device that has been programmed to provide network configuration parameters to clients upon request. Servers typically serve many clients, making host management much more organized and efficient. The following table lists the key responsibilities of DHCP servers. Table 17.
3. Specify the range of IP addresses from which the DHCP server may assign addresses. DHCP mode network network/prefix-length • network: the subnet address. • prefix-length: specifies the number of bits used for the network portion of the address you specify. The prefix-length range is from 17 to 31. 4. Display the current pool configuration. DHCP mode show config After an IP address is leased to a client, only that client may release the address.
lease {days [hours] [minutes] | infinite} The default is 24 hours. Specifying a Default Gateway The IP address of the default router should be on the same subnet as the client. To specify a default gateway, follow this step. • Specify default gateway(s) for the clients on the subnet, in order of preference.
Creating Manual Binding Entries An address binding is a mapping between the IP address and the media access control (MAC) address of a client. The DHCP server assigns the client an available IP address automatically, and then creates an entry in the binding table. However, the administrator can manually create an entry for a client; manual bindings are useful when you want to guarantee that a particular network device receives a particular IP address.
Configure the System to be a Relay Agent This feature is available on the S4820T platform. DHCP clients and servers request and offer configuration information via broadcast DHCP messages. Routers do not forward broadcasts, so if there are no DHCP servers on the subnet, the client does not receive a response to its request and therefore cannot access the network.
Figure 37. Configuring a Relay Agent To view the ip helper-address configuration for an interface, use the show ip interface command from EXEC privilege mode. Example of the show ip interface Command R1_E600#show ip int gig 1/3 GigabitEthernet 1/3 is up, line protocol is down Internet address is 10.11.0.1/24 Broadcast address is 10.11.0.255 Address determined by user input IP MTU is 1500 bytes Helper address is 192.168.0.1 192.168.0.
ICMP redirects are not sent ICMP unreachables are not sent Configure the System to be a DHCP Client A DHCP client is a network device that requests an IP address and configuration parameters from a DHCP server. Implement the DHCP client functionality as follows: • The switch can obtain a dynamically assigned IP address from a DHCP server. A start-up configuration is not received. Use bare metal provisioning (BMP) to receive configuration parameters (Dell Networking OS version and a configuration file).
VLAN and Port Channels DHCP client configuration and behavior are the same on Virtual LAN (VLAN) and port-channel (LAG) interfaces as on a physical interface.
• Management routes added by the DHCP client have higher precedence over the same statically configured management route. Static routes are not removed from the running configuration if a dynamically acquired management route added by the DHCP client overwrites a static management route. • Management routes added by the DHCP client are not added to the running configuration.
• • associate client MAC addresses with a relay agent to prevent offering an IP address to a client spoofing the same MAC address on a different relay agent. assign IP addresses according to the relay agent. This prevents generating DHCP offers in response to requests from an unauthorized relay agent.
is exhausted, DHCP packets are dropped on snooped VLANs, while these packets are forwarded across non-snooped VLANs. Because DHCP packets are dropped, no new IP address assignments are made. However, DHCPRELEASE and DHCPDECLINE packets are allowed so that the DHCP snooping table can decrease in size. After the table usage falls below the maximum limit of 4000 entries, new IP address assignments are allowed.
Example of the show ip dhcp snooping Command View the DHCP snooping statistics with the show ip dhcp snooping command. Dell#show ip dhcp snooping IP IP IP IP DHCP DHCP DHCP DHCP Snooping Snooping Mac Verification Relay Information-option Relay Trust Downstream : : : : Enabled. Disabled. Disabled. Disabled.
receives an ARP message for which a relevant entry already exists in its ARP cache, it overwrites the existing entry with the new information. The lack of authentication in ARP makes it vulnerable to spoofing. ARP spoofing is a technique attackers use to inject false IP-to-MAC mappings into the ARP cache of a network device. It is used to launch manin-the-middle (MITM), and denial-of-service (DoS) attacks, among others.
Configuring Dynamic ARP Inspection To enable dynamic ARP inspection, use the following commands. 1. Enable DHCP snooping. 2. Validate ARP frames against the DHCP snooping binding table. INTERFACE VLAN mode arp inspection Examples of Viewing the ARP Database and Packets To view entries in the ARP database, use the show arp inspection database command.
Source Address Validation Using the DHCP binding table, Dell Networking OS can perform three types of source address validation (SAV). Table 18. Three Types of Source Address Validation Source Address Validation Description IP Source Address Validation Prevents IP spoofing by forwarding only IP packets that have been validated against the DHCP binding table.
CONFIGURATION mode ip dhcp snooping verify mac-address Enabling IP+MAC Source Address Validation The following feature is available on the S4820T platform. IP source address validation (SAV) validates the IP source address of an incoming packet against the DHCP snooping binding table. IP+MAC SAV ensures that the IP source address and MAC source address are a legitimate pair, rather than validating each attribute individually. You cannot configure IP+MAC SAV with IP SAV. 1.
Equal Cost Multi-Path (ECMP) 15 Equal cost multi-path (ECMP) is supported on theS4820T platform. ECMP for Flow-Based Affinity ECMP for flow-based affinity is available on theS4820T platform. Flow-based affinity includes the following: • Link Bundle Monitoring Configuring the Hash Algorithm TeraScale has one algorithm that is used for link aggregation groups (LAGs), ECMP, and NH-ECMP, and ExaScale can use three different algorithms for each of these features.
CONFIGURATION mode. ipv6 ecmp-deterministic Configuring the Hash Algorithm Seed Deterministic ECMP sorts ECMPs in order even though RTM provides them in a random order. However, the hash algorithm uses as a seed the lower 12 bits of the chassis MAC, which yields a different hash result for every chassis. This behavior means that for a given flow, even though the prefixes are sorted, two unrelated chassis can select different hops.
NOTE: An ecmp-group index is generated automatically for each unique ecmp-group when the user configures multipath routes to the same network. The system can generate a maximum of 512 unique ecmp-groups. The ecmp-group indexes are generated in even numbers (0, 2, 4, 6... 1022) and are for information only. For link bundle monitoring with ECMP, the ecmp-group command is used to enable the link bundle monitoring feature. The ecmp-group with id 2, enabled for link bundle monitoring is user configured.
Creating an ECMP Group Bundle Within each ECMP group, you can specify an interface. If you enable monitoring for the ECMP group, the utilization calculation is performed when the average utilization of the link-bundle (as opposed to a single link within the bundle) exceeds 60%. 1. Create a user-defined ECMP group bundle. CONFIGURATION mode ecmp-group ecmp-group-id The range is from 1 to 64. 2. Add interfaces to the ECMP group bundle.
Dell(conf-ecmp-group-5)#show config ! ecmp-group 5 interface tengigabitethernet 0/2 interface tengigabitethernet 0/3 link-bundle-monitor enable Dell(conf-ecmp-group-5)# Equal Cost Multi-Path (ECMP) 341
16 FCoE Transit The Fibre Channel over Ethernet (FCoE) Transit feature is supported on the S4820T switch on Ethernet interfaces. When you enable the switch for FCoE transit, the switch functions as a FIP snooping bridge. NOTE: FIP snooping is not supported on Fibre Channel interfaces or in a S4820T switch stack.
FIP provides functionality for discovering and logging into an FCF. After discovering and logging in, FIP allows FCoE traffic to be sent and received between FCoE end-devices (ENodes) and the FCF. FIP uses its own EtherType and frame format. The following illustration shows the communication that occurs between an ENode server and an FCoE switch (FCF). The following table lists the FIP functions. Table 19.
Figure 38. FIP Discovery and Login Between an ENode and an FCF FIP Snooping on Ethernet Bridges In a converged Ethernet network, intermediate Ethernet bridges can snoop on FIP packets during the login process on an FCF. Then, using ACLs, a transit bridge can permit only authorized FCoE traffic to be transmitted between an FCoE end-device and an FCF. An Ethernet bridge that provides these functions is called a FIP snooping bridge (FSB).
FCoEgenerated ACLs These take precedence over user-configured ACLs. A user-configured ACL entry cannot deny FCoE and FIP snooping frames. The following illustration shows a switch used as a FIP snooping bridge in a converged Ethernet network. The top-of-rack (ToR) switch operates as an FCF for FCoE traffic. Converged LAN and SAN traffic is transmitted between the ToR switch and an S4820T switch.
The following sections describe how to configure the FIP snooping feature on a switch that functions as a FIP snooping bridge so that it can perform the following functions: • Allocate CAM resources for FCoE. • Perform FIP snooping (allowing and parsing FIP frames) globally on all VLANs or on a per-VLAN basis. • To assign a MAC address to an FCoE end-device (server ENode or storage device) after a server successfully logs in, set the FCoE MAC address prefix (FC-MAP) value an FCF uses.
For VLAN membership, you must: • create the VLANs on the switch which handles FCoE traffic (use the interface vlan command). • configure each FIP snooping port to operate in Hybrid mode so that it accepts both tagged and untagged VLAN frames (use the portmode hybrid command). • configure tagged VLAN membership on each FIP snooping port that sends and receives FCoE traffic and has links with an FCF, ENode server, or another FIP snooping bridge (use the tagged port-type slot/port command).
Enable FIP Snooping on VLANs You can enable FIP snooping globally on a switch on all VLANs or on a specified VLAN. When you enable FIP snooping on VLANs: • FIP frames are allowed to pass through the switch on the enabled VLANs and are processed to generate FIP snooping ACLs. • FCoE traffic is allowed on VLANs only after a successful virtual-link initialization (fabric login FLOGI) between an ENode and an FCF. All other FCoE traffic is dropped.
Table 20. Impact of Enabling FIP Snooping Impact Description MAC address learning MAC address learning is not performed on FIP and FCoE frames, which are denied by ACLs dynamically created by FIP snooping on serverfacing ports in ENode mode. MTU auto-configuration MTU size is set to mini-jumbo (2500 bytes) when a port is in Switchport mode, the FIP snooping feature is enabled on the switch, and FIP snooping is enabled on all or individual VLANs.
3. Reload the switch to enable the configuration. EXEC Privilege mode. reload After the switch is reloaded, DCB/DCBx is enabled. 4. Enable the FCoE transit feature on a switch. CONFIGURATION mode. feature fip-snooping 5. Enable FIP snooping on all VLANs or on a specified VLAN. CONFIGURATION mode or VLAN INTERFACE mode. fip-snooping enable 6. Configure the port for bridge-to-FCF links.
Command Output show fip-snooping statistics [interface Displays statistics on the FIP packets snooped on vlan vlan-id| interface port-type port/ all interfaces, including VLANs, physical ports, and slot | interface port-channel portport channels. channel-number] clear fip-snooping statistics [interface vlan vlan-id | interface port-type port/slot | interface portchannel port-channel-number] Clears the statistics on the FIP packets snooped on all VLANs, a specified VLAN, or a specified port interface.
Field Description Port WWPN Worldwide port name of the CNA port. Port WWNN Worldwide node name of the CNA port. The following example shows the show fip-snooping config command. Dell# show fip-snooping config FIP Snooping Feature enabled Status: Enabled FIP Snooping Global enabled Status: Enabled Global FC-MAP Value: 0X0EFC00 FIP Snooping enabled VLANs VLAN Enabled FC-MAP ---- -------------100 TRUE 0X0EFC00 The following example shows the show fip-snooping enode command.
Field Description FC-MAP FC-Map value advertised by the FCF. ENode Interface Slot/number of the interface connected to the ENode. FKA_ADV_PERIOD Period of time (in milliseconds) during which FIP keep-alive advertisements are transmitted. No of ENodes Number of ENodes connected to the FCF. FC-ID Fibre Channel session ID assigned by the FCF. The following example shows the show fip-snooping statistics interface vlan command (VLAN and port).
Number of VN Port Session Timeouts :0 Number of Session failures due to Hardware Config :0 The following example shows the show fip-snooping statistics port-channel command.
Field Description Number of Multicast Discovery Advertisements Number of FIP-snooped multicast discovery advertisements received on the interface. Number of Unicast Discovery Advertisements Number of FIP-snooped unicast discovery advertisements received on the interface. Number of FLOGI Accepts Number of FIP FLOGI accept frames received on the interface. Number of FLOGI Rejects Number of FIP FLOGI reject frames received on the interface.
FCoE Transit Configuration Example The following illustration shows an S4810 switch used as a FIP snooping bridge for FCoE traffic between an ENode (server blade) and an FCF (ToR switch). The ToR switch operates as an FCF and FCoE gateway. Figure 40. Configuration Example: FIP Snooping on an S4810 Switch In this example, DCBx and PFC are enabled on the FIP snooping bridge and on the FCF ToR switch.
Example of Enabling an FC-MAP Value on a VLAN Dell(conf-if-vl-10)# fip-snooping fc-map 0xOEFC01 NOTE: Configuring an FC-MAP value is only required if you do not use the default FC-MAP value (0x0EFC00).
17 Enabling FIPS Cryptography Federal information processing standard (FIPS) cryptography is supported on the S4820T platform. This chapter describes how to enable FIPS cryptography requirements on Dell Networking platforms. This feature provides cryptographic algorithms conforming to various FIPS standards published by the National Institute of Standards and Technology (NIST), a non-regulatory agency of the US Department of Commerce.
Enabling FIPS Mode To enable or disable FIPS mode, use the console port. Secure the host attached to the console port against unauthorized access. Any attempts to enable or disable FIPS mode from a virtual terminal session are denied. When you enable FIPS mode, the following actions are taken: • If enabled, the SSH server is disabled. • All open SSH and Telnet sessions, as well as all SCP and FTP file transfers, are closed.
Monitoring FIPS Mode Status To view the status of the current FIPS mode (enabled/disabled), use the following commands. • Use either command to view the status of the current FIPS mode. show fips status show system Examples of the show fips status and show system Commands The following example shows the show fips status command. Dell#show fips status FIPS Mode : Enabled for the system using the show system command. The following example shows the show system command.
• New 1024–bit RSA and RSA1 host key-pairs are created. To disable FIPS mode, use the following command. • To disable FIPS mode from a console port. CONFIGURATION mode no fips mode enable The following Warning message displays: WARNING: Disabling FIPS mode will close all SSH/Telnet connections, restart those servers, and destroy all configured host keys.
18 Force10 Resilient Ring Protocol (FRRP) Force10 resilient ring protocol (FRRP) is supported on the S4820T platform. FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses.
The Member VLAN is the VLAN used to transmit data as described earlier. The Control VLAN is used to perform the health checks on the ring. The Control VLAN can always pass through all ports in the ring, including the secondary port of the Master node. Ring Status The ring failure notification and the ring status checks provide two ways to ensure the ring remains up and active in the event of a switch or port failure.
Multiple FRRP Rings Up to 255 rings are allowed per system and multiple rings can be run on one system. More than the recommended number of rings may cause interface instability. You can configure multiple rings with a single switch connection; a single ring can have multiple FRRP groups; multiple rings can be connected with a common link. The S4820T support up to 32 rings on a system (including stacked units).
Concept Explanation Control VLAN Each ring has a unique Control VLAN through which tagged ring health frames (RHF) are sent. Control VLANs are used only for sending RHF, and cannot be used for any other purpose. Member VLAN Each ring maintains a list of member VLANs. Member VLANs must be consistent across the entire ring. Port Role Each node has two ports for each ring: Primary and Secondary. The Master node Primary port generates RHFs. The Master node Secondary port receives the RHFs.
Concept Explanation There is no periodic transmission of TCRHFs. The TCRHFs are sent on triggered events of ring failure or ring restoration only. Implementing FRRP • FRRP is media and speed independent. • FRRP is a Dell proprietary protocol that does not interoperate with any other vendor. • You must disable the spanning tree protocol (STP) on both the Primary and Secondary interfaces before you can enable FRRP. • All ring ports must be Layer 2 ports.
Configuring the Control VLAN Control and member VLANS are configured normally for Layer 2. Their status as control or member is determined at the FRRP group commands. For more information about configuring VLANS in Layer 2 mode, refer to Layer 2. Be sure to follow these guidelines: • All VLANS must be in Layer 2 mode. • You can only add ring nodes to the VLAN. • A control VLAN can belong to one FRRP group only. • Tag control VLAN ports.
3. Assign the Primary and Secondary ports and the control VLAN for the ports on the ring. CONFIG-FRRP mode. interface primary int slot/port secondary int slot/port control-vlan vlan id Interface: • For a 10/100/1000 Ethernet interface, enter the keyword GigabitEthernet then the slot/port information. • For a Gigabit Ethernet interface, enter the keyword GigabitEthernet then the slot/port information. • For a SONET interface, enter the keyword sonet then the slot/port information.
To create the Members VLANs for this FRRP group, use the following commands on all of the Transit switches in the ring. 1. Create a VLAN with this ID number. CONFIGURATION mode. interface vlan vlan-id VLAN ID: the range is from 1 to 4094. 2. Tag the specified interface or range of interfaces to this VLAN. CONFIG-INT-VLAN mode. tagged interface slot/port {range} Interface: • Slot/Port, range: Slot and Port ID for the interface. The range is entered Slot/Port-Port.
5. Identify the Member VLANs for this FRRP group. CONFIG-FRRP mode. member-vlan vlan-id {range} VLAN-ID, Range: VLAN IDs for the ring’s Member VLANs. 6. Enable this FRRP group on this switch. CONFIG-FRRP mode. no disable Setting the FRRP Timers To set the FRRP timers, use the following command. NOTE: Set the Dead-Interval time 3 times the Hello-Interval. • Enter the desired intervals for Hello-Interval or Dead-Interval times. CONFIG-FRRP mode.
• Show the information for the identified FRRP group. EXEC or EXEC PRIVELEGED mode. show frrp ring-id • Ring ID: the range is from 1 to 255. Show the state of all FRRP groups. EXEC or EXEC PRIVELEGED mode. show frrp summary Ring ID: the range is from 1 to 255. Troubleshooting FRRP To troubleshoot FRRP, use the following information. Configuration Checks • • • • • • Each Control Ring must use a unique VLAN ID. Only two interfaces on a switch can be Members of the same control VLAN.
protocol frrp 101 interface primary GigabitEthernet 1/24 secondary GigabitEthernet 1/34 control-vlan 101 member-vlan 201 mode master no disable Example of R2 TRANSIT interface GigabitEthernet 2/14 no ip address switchport no shutdown ! interface GigabitEthernet 2/31 no ip address switchport no shutdown ! interface Vlan 101 no ip address tagged GigabitEthernet 2/14,31 no shutdown ! interface Vlan 201 no ip address tagged GigabitEthernet 2/14,31 no shutdown ! protocol frrp 101 interface primary GigabitEtherne
mode transit no disable Force10 Resilient Ring Protocol (FRRP) 373
19 GARP VLAN Registration Protocol (GVRP) GARP VLAN registration protocol (GVRP) is supported on the S4820T platform. Typical virtual local area network (VLAN) implementation involves manually configuring each Layer 2 switch that participates in a given VLAN. GVRP, defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches.
Configure GVRP To begin, enable GVRP. To facilitate GVRP communications, enable GVRP globally on each switch. Then, GVRP configuration is per interface on a switch-by-switch basis. Enable GVRP on each port that connects to a switch where you want GVRP information exchanged. In the following example, that type of port is referred to as a VLAN trunk port, but it is not necessary to specifically identify to the Dell Networking OS that the port is a trunk port. Figure 41.
• Configure a GARP Timer Enabling GVRP Globally To configure GVRP globally, use the following command. • Enable GVRP for the entire switch. CONFIGURATION mode gvrp enable Example of Configuring GVRP Dell(conf)#protocol gvrp Dell(config-gvrp)#no disable Dell(config-gvrp)#show config ! protocol gvrp no disable Dell(config-gvrp)# To inspect the global configuration, use the show gvrp brief command. Enabling GVRP on a Layer 2 Interface To enable GVRP on a Layer 2 interface, use the following command.
not be unconfigured when it receives a Leave PDU. Therefore, the registration mode on that interface is FIXED. • Forbidden Mode — Disables the port to dynamically register VLANs and to propagate VLAN information except information about VLAN 1. A port with forbidden registration type thus allows only VLAN 1 to pass through even though the PDU carries information for more VLANs.
LeaveAll Timer Dell(conf)# 5000 Dell Networking OS displays this message if an attempt is made to configure an invalid GARP timer: Dell(conf)#garp timers join 300 % Error: Leave timer should be >= 3*Join timer. RPM Redundancy The current version of Dell Networking OS supports 1+1 hitless route processor module (RPM) redundancy. The primary RPM performs all routing, switching, and control operations while the standby RPM monitors the primary RPM.
20 High Availability (HA) High availability (HA) is supported on the S4820T platform. HA is a collection of features that preserves system continuity by maximizing uptime and minimizing packet loss during system disruptions. To support all the features within the HA collection, you should have the latest boot code. The following table lists the boot code requirements as of this Dell Networking OS release. Table 26. Boot Code Requirements Component Boot Code S4820T 1 2.0.
Boot the Chassis with a Single RPM You can boot the chassis with one RPM and later add a second RPM, which automatically becomes the standby RPM. Dell Networking OS displays the following message when the standby RPM is online. %RPM-2-MSG:CP0 %POLLMGR-2-ALT_RPM_STATE: Alternate RPM is present %IRC-6-IRC_COMMUP: Link to peer RPM is up %RAM-6-RAM_TASK: RPM1 is in Standby State. Boot the Chassis with Dual RPMs When you boot the system with two RPMs installed, the RPM in slot R0 is the primary RPM by default.
* This RPM -> 7.4.2.0 * Peer RPM -> 7.4.1.0 * ************************************************ 00:00:12: Different 00:00:12: 00:00:14: %RPM0-U:CP %IRC-4-IRC_VERSION: Current RPM 7.4.2.0 Peer RPM 7.4.1.0 software version detected %RPM0-U:CP %IRC-6-IRC_COMMUP: Link to peer RPM is up %RPM0-U:CP %RAM-6-ELECTION_ROLE: RPM0 is transitioning to Primary RPM. Example of Boot Failure on Standby RPM System failed to boot up.
-- Last Data Block Sync Record: ------------------------------------------------Line Card Config: succeeded May 19 2008 11:34:06 Start-up Config: succeeded May 19 2008 11:34:06 Runtime Event Log: succeeded May 19 2008 11:34:06 Running Config: succeeded May 19 2008 11:34:07 Dell# Support for RPM Redundancy by Dell Networking OS Version Dell Networking OS supports increasing levels of RPM redundancy (warm and hot) as described in the table below. Table 28.
Forcing an Stack Unit Failover To force an Stack unit failover, use the following command. Use this feature when you are replacing a stack unit and when you are performing a warm upgrade. • To trigger a stack unit failover. EXEC Privilege mode redundancy force-failover stack-unit Example of the redundancy force-failover stack-unit Command Dell#redundancy force-failover stack-unit System configuration has been modified.
Online Insertion and Removal You can add, replace, or remove chassis components while the chassis is operating. This section contains the following sub-sections: • • RPM Online Insertion and Removal Linecard Online Insertion and Removal RPM Online Insertion and Removal Dell Networking systems are functional with only one RPM. If you insert a second RPM, it comes online as the standby RPM. To see SFM status information, use the show sfm all command.
0 online online [output omitted] E48VB E48VB 7-5-1-71 48 Dell(conf)#%RPM0-P:CP %CHMGR-2-CARD_DOWN: Line card 0 down - card removed Dell(conf)#do show linecard all -- Line cards -Slot Status NxtBoot ReqTyp CurTyp Version Ports --------------------------------------------------------------------------0 not present E48VB [output omitted] Pre-Configuring a Stack Unit Slot You may also pre-configure an empty stack unit slot with a logical stack unit.
Standby stack units such that, in the event of a stack unit failover, it is not necessary to notify the remote systems of a local state change. Hitless behavior is defined in the context of a stack unit failover only. • On the S4820T platform: Only failovers via the CLI are hitless. The system is not hitless in any other scenario. Hitless protocols are compatible with other hitless and graceful restart protocols.
System Health Monitoring Dell Networking OS also monitors the overall health of the system. Key parameters such as CPU utilization, free memory, and error counters (for example, CRC failures and packet loss) are measured, and after exceeding a threshold can be used to initiate recovery mechanism. Failure and Event Logging Dell Networking systems provide multiple options for logging failures and events. Trace Log Developers interlace messages with software code to track the execution of a program.
Hot-Lock Behavior Dell Networking OS hot-lock features allow you to append and delete their corresponding content addressable memory (CAM) entries dynamically without disrupting traffic. Existing entries are simply shuffled to accommodate new entries. Hot-Lock IP ACLs allows you to append rules to and delete rules from an access control list (ACL) that is already written to CAM. This behavior is enabled by default and is available for both standard and extended ACLs on ingress and egress.
• process restartable [process] [try number] [timestamp hours] Display the processes and tasks configured for restart. EXEC Privilege When a process restarts, FTOS displays a message similar to the following message.
Internet Group Management Protocol (IGMP) 21 Internet group management protocol (IGMP) is supported on the S4820T platform. Multicast is premised on identifying many hosts by a single destination IP address; hosts represented by the same IP address are a multicast group. IGMP is a Layer 3 multicast protocol that hosts use to join or leave a multicast group.
Figure 42. IGMP Messages in IP Packets Join a Multicast Group There are two ways that a host may join a multicast group: it may respond to a general query from its querier or it may send an unsolicited report to its querier. Responding to an IGMP Query The following describes how a host can join a multicast group. 1. One router on a subnet is elected as the querier. The querier periodically multicasts (to all-multicastsystems address 224.0.0.1) a general query to all hosts on the subnet. 2.
response, the querier removes the group from the list associated with forwarding port and stops forwarding traffic for that group to the subnet. IGMP Version 3 Conceptually, IGMP version 3 behaves the same as version 2. However, there are differences. • Version 3 adds the ability to filter by multicast source, which helps multicast routing protocols avoid forwarding traffic to subnets where there are no interested receivers.
Figure 44. IGMP Version 3–Capable Multicast Routers Address Structure Joining and Filtering Groups and Sources The following illustration shows how multicast routers maintain the group and source information from unsolicited reports. 1. The first unsolicited report from the host indicates that it wants to receive traffic for group 224.1.1.1. 2. The host’s second report indicates that it is only interested in traffic from group 224.1.1.1, source 10.11.1.1.
Figure 45. Membership Reports: Joining and Filtering Leaving and Staying in Groups The following illustration shows how multicast routers track and refresh state changes in response to group-and-specific and general queries. 1. Host 1 sends a message indicating it is leaving group 224.1.1.1 and that the included filter for 10.11.1.1 and 10.11.1.2 are no longer necessary. 2.
Figure 46. Membership Queries: Leaving and Staying Configure IGMP Configuring IGMP is a two-step process. 1. Enable multicast routing using the ip multicast-routing command. 2. Enable a multicast routing protocol.
• Fast Convergence after MSTP Topology Changes • Designating a Multicast Router Interface Viewing IGMP Enabled Interfaces Interfaces that are enabled with PIM-SM are automatically enabled with IGMP. To view IGMP-enabled interfaces, use the following command. • View IGMP-enabled interfaces. EXEC Privilege mode show ip igmp interface Example of the show ip igmp interface Command Dell#show ip igmp interface gig 7/16 GigabitEthernet 7/16 is up, line protocol is up Internet address is 10.87.3.
IGMP version is 3 Dell(conf-if-gi-1/13)# Viewing IGMP Groups To view both learned and statically configured IGMP groups, use the following command. • View both learned and statically configured IGMP groups. EXEC Privilege mode show ip igmp groups Example of the show ip igmp groups Command Dell(conf-if-gi-1/0)#do sho ip igmp groups Total Number of Groups: 2 IGMP Connected Group Membership Group Address Interface Uptime 224.1.1.1 GigabitEthernet 1/0 00:00:03 224.1.2.
INTERFACE mode • ip igmp query-interval Adjust the maximum response time. INTERFACE mode • ip igmp query-max-resp-time Adjust the last member query interval. INTERFACE mode ip igmp last-member-query-interval Adjusting the IGMP Querier Timeout Value If there is more than one multicast router on a subnet, only one is elected to be the querier, which is the router that sends queries to the subnet. 1. Routers send queries to the all multicast systems address, 224.0.0.1.
Enabling IGMP Immediate-Leave If the querier does not receive a response to a group-specific or group-and-source query, it sends another (querier robustness value). Then, after no response, it removes the group from the outgoing interface for the subnet. IGMP immediate leave reduces leave latency by enabling a router to immediately delete the group membership on an interface after receiving a Leave message (it does not send any group-specific or group-and-source queries before deleting the entry).
• View the configuration. CONFIGURATION mode • show running-config Disable snooping on a VLAN.
• Configure the switch to only forward unregistered packets to ports on a VLAN that are connected to mrouter ports. CONFIGURATION mode no ip igmp snooping flood Specifying a Port as Connected to a Multicast Router To statically specify or view a port in a VLAN, use the following commands. • Statically specify a port in a VLAN as connected to a multicast router. INTERFACE VLAN mode • ip igmp snooping mrouter View the ports that are connected to multicast routers. EXEC Privilege mode.
ip igmp snooping last-member-query-interval Fast Convergence after MSTP Topology Changes The following describes the fast convergence feature. When a port transitions to the Forwarding state as a result of an STP or MSTP topology change, Dell Networking OS sends a general query out of all ports except the multicast router ports. The host sends a response to the general query and the forwarding database is updated without having to wait for the query interval to expire.
routes. If SSH is specified as a management application, SSH links to and from an unknown destination uses the management default route. Protocol Separation When you configure the application application-type command to configure a set of management applications with TCP/UDP port numbers to the OS, the following table describes the association between applications and their port numbers. Table 29.
can configure two default routes, one configured on the management port and the other on the frontend port. Two tables, namely, Egress Interface Selection routing table and default routing table, are maintained. In the preceding table, the columns Client and Server indicate that the applications can act as both a client and a server within the switch. The Management Egress Interface Selection table contains all management routes (connected, static and default route).
When the feature is disabled using the no management egress-interface-selection command, the following operations are performed: • All management application configuration is removed. • All routes installed in the management EIS routing table are removed. Handling of Management Route Configuration When the EIS feature is enabled, the following processing occurs: • All existing management routes (connected, static and default) are duplicated and added to the management EIS routing table.
the show management application pkt-drop-cntr command. This counter is cleared using clear management application pkt-drop-cntr command. • Packets whose destination TCP/UDP port does not match a configured management application, take the regular route lookup flow in the IP stack. • In the ARP layer, for all ARP packets received through the management interface, a double route lookup is done, one in the default routing table and another in the management EIS routing table.
traffic for such end-user-originated sessions destined to management port ip1 is handled using the EIS route lookup. Handling of Transit Traffic (Traffic Separation) This is forwarded traffic where destination IP is not an IP address configured in the switch. • Packets received on the management port with destination on the front-end port is dropped. • Packets received on the front-end port with destination on the management port is dropped. • A separate drop counter is incremented for this case.
This phenomenon occurs where traffic is transiting the switch. Traffic has not originated from the switch and is not terminating on the switch. • Drop the packets that are received on the front-end data port with destination on the management port. • Drop the packets that received on the management port with destination as the front-end data port. Switch-Destined Traffic This phenomenon occurs where traffic is terminated on the switch.
Protocol Behavior when EIS is Enabled Behavior when EIS is Disabled dns EIS Behavior Default Behavior ftp EIS Behavior Default Behavior ntp EIS Behavior Default Behavior radius EIS Behavior Default Behavior Sflow-collector Default Behavior Snmp (SNMP Mib response and SNMP Traps) EIS Behavior Default Behavior ssh EIS Behavior Default Behavior syslog EIS Behavior Default Behavior tacacs EIS Behavior Default Behavior telnet EIS Behavior Default Behavior tftp EIS Behavior Defau
Default Behavior: Route lookup is done in the default routing table and appropriate egress port is selected.
Designating a Multicast Router Interface To designate an interface as a multicast router interface, use the following command. Dell Networking OS also has the capability of listening in on the incoming IGMP general queries and designate those interfaces as the multicast router interface when the frames have a non-zero IP source address. All IGMP control packets and IP multicast data traffic originating from receivers is forwarded to multicast router interfaces.
Interfaces 22 This chapter describes interface types, both physical and logical, and how to configure them with Dell Networking Operating System (OS). • 10 Gigabit Ethernet / 40 Gigabit Ethernet interfaces are supported on the S4820T platform.
Interface Types The following table describes different interface types.
Hardware is Force10Eth, address is 00:01:e8:05:f3:6a Current address is 00:01:e8:05:f3:6a Pluggable media present, XFP type is 10GBASE-LR. Medium is MultiRate, Wavelength is 1310nm XFP receive power reading is -3.7685 Interface index is 67436603 Internet address is 65.113.24.
interface GigabitEthernet 9/7 no ip address shutdown ! interface GigabitEthernet 9/8 no ip address shutdown ! interface GigabitEthernet 9/9 no ip address shutdown Enabling a Physical Interface After determining the type of physical interfaces available, to enable and configure the interfaces, enter INTERFACE mode by using the interface interface slot/port command. 1. Enter the keyword interface then the type of interface and slot/port information.
Configuration Task List for Physical Interfaces By default, all interfaces are operationally disabled and traffic does not pass through them.
Example of a Basic Layer 2 Interface Configuration Dell(conf-if)#show config ! interface Port-channel 1 no ip address switchport no shutdown Dell(conf-if)# Configuring Layer 2 (Interface) Mode To configure an interface in Layer 2 mode, use the following commands. • Enable the interface. INTERFACE mode • no shutdown Place the interface in Layer 2 (switching) mode. INTERFACE mode switchport For information about enabling and configuring the Spanning Tree Protocol, refer to Spanning Tree Protocol (STP).
no ip address switchport no shutdown Dell(conf-if)#ip address 10.10.1.1 /24 % Error: Port is in Layer 2 mode Gi 1/2. Dell(conf-if)# To determine the configuration of an interface, use the show config command in INTERFACE mode or the various show interface commands in EXEC mode. Configuring Layer 3 (Interface) Mode To assign an IP address, use the following commands. • Enable the interface. INTERFACE mode • no shutdown Configure a primary IP address and mask on the interface.
attacks on front-end ports. The following protocols support EIS: DNS, FTP, NTP, RADIUS, sFlow, SNMP, SSH, Syslog, TACACS, Telnet, and TFTP. This feature does not support sFlow on stacked units. When you enable this feature, all management routes (connected, static, and default) are copied to the management EIS routing table. Use the management route command to add new management routes to the default and EIS routing tables. Use the show ip management-eis-route command to view the EIS routes.
• Enter the slot and the port (0) to configure a Management interface. CONFIGURATION mode interface managementethernet interface • The slot range is 0. Configure an IP address and mask on a Management interface. INTERFACE mode ip address ip-address mask – ip-address mask: enter an address in dotted-decimal format (A.B.C.D). The mask must be in / prefix format (/x). Configuring Management Interfaces on the S-Series You can manage the S-Series from any port.
Gateway of last resort is 10.11.131.254 to network 0.0.0.0 Destination ----------*S 0.0.0.0/0 C 10.11.130.0/23 Dell# Gateway Dist/Metric Last Change ----------------- ----------via 10.11.131.254, Gi 0/48 1/0 1d2h Direct, Gi 0/48 0/0 1d2h VLAN Interfaces VLANs are logical interfaces and are, by default, in Layer 2 mode. Physical interfaces and port channels can be members of VLANs. For more information about VLANs and Layer 2, refer to Layer 2 and Virtual LANs (VLANs).
Loopback Interfaces A Loopback interface is a virtual interface in which the software emulates an interface. Packets routed to it are processed locally. Because this interface is not a physical interface, you can configure routing protocols on this interface to provide protocol stability. You can place Loopback interfaces in default Layer 3 mode. To configure, view, or delete a Loopback interface, use the following commands. • Enter a number as the Loopback interface.
Port Channel Definition and Standards Link aggregation is defined by IEEE 802.3ad as a method of grouping multiple physical interfaces into a single logical interface—a link aggregation group (LAG) or port channel. A LAG is “a group of links that appear to a MAC client as if they were a single link” according to IEEE 802.3ad. In Dell Networking OS, a LAG is referred to as a port channel interface. A port channel provides redundancy by aggregating physical interfaces into one logical interface.
Dell Networking OS brings up 10/100/1000 interfaces that are set to auto negotiate so that their speed is identical to the speed of the first channel member in the port channel. 10/100/1000 Mbps Interfaces in Port Channels When both 10/100/1000 interfaces and GigE interfaces are added to a port channel, the interfaces must share a common speed. When interfaces have a configured speed different from the port channel speed, the software disables those interfaces.
Creating a Port Channel You can create up to 128 port channels with eight port members per group on the S4820T. To configure a port channel, use the following commands. 1. Create a port channel. CONFIGURATION mode interface port-channel id-number 2. Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown After you enable the port channel, you can place it in Layer 2 or Layer 3 mode.
To add a physical interface to a port, use the following commands. 1. Add the interface to a port channel. INTERFACE PORT-CHANNEL mode channel-member interface The interface variable is the physical interface type and slot/port information. 2. Double check that the interface was added to the port channel.
When more than one interface is added to a Layer 2-port channel, Dell Networking OS selects one of the active interfaces in the port channel to be the primary port. The primary port replies to flooding and sends protocol data units (PDUs). An asterisk in the show interfaces port-channel brief command indicates the primary port. As soon as a physical interface is added to a port channel, the properties of the port channel determine the properties of the physical interface.
Dell(conf-if-po-4)#int port 3 Dell(conf-if-po-3)#channel tengi 0/8 Dell(conf-if-po-3)#sho conf ! interface Port-channel 3 no ip address channel-member TenGigabitEthernet 0/8 shutdown Dell(conf-if-po-3)# Configuring the Minimum Oper Up Links in a Port Channel You can configure the minimum links in a port channel (LAG) that must be in “oper up” status to consider the port channel to be in “oper up” status. To set the “oper up” status of your links, use the following command.
3. Verify the manually configured VLAN membership (show interfaces switchport interface command). EXEC mode Dell(conf)# interface tengigabitethernet 0/1 Dell(conf-if-te-0/1)#switchport Dell(conf-if-te-0/1)# vlan tagged 2-5,100,4010 Dell#show interfaces switchport te 0/1 Codes: U x G i VLT tagged Untagged, T - Tagged Dot1x untagged, X - Dot1x tagged GVRP tagged, M - Trunk, H - VSN tagged Internal untagged, I - Internal tagged, v - VLT untagged, V - Name: TenGigabitEthernet 0/1 802.
assigned to one link. In packet-based hashing, a single flow can be distributed on the LAG and uses one link. Packet based hashing is used to load balance traffic across a port-channel based on the IP Identifier field within the packet. Load balancing uses source and destination packet information to get the greatest advantage of resources by distributing traffic over multiple paths when transferring data to a destination.
• Change the default (0) to another algorithm and apply it to ECMP, LAG hashing, or a particular line card. CONFIGURATION mode hash-algorithm | [ecmp{crc16|crc16cc|crc32LSB|crc32MSB|crc-upper|dest-ip |lsb |xor1| xor2| xor4| xor8| xor16}|lag{crc16|crc16cc|crc32LSB|crc32MSB|xor1| xor2|xor4|xor8|xor16}| seed ] • For more information about algorithm choices, refer to the command details in the IP Routing chapter of the Dell Networking OS Command Reference Guide.
Bulk Configuration Bulk configuration allows you to determine if interfaces are present for physical interfaces or configured for logical interfaces. Interface Range An interface range is a set of interfaces to which other commands may be applied and may be created if there is at least one valid interface within the range. Bulk configuration excludes from configuration any non-existing interfaces from an interface range.
Create a Multiple-Range The following is an example of multiple range. Example of the interface range Command (Multiple Ranges) Dell(conf)#interface range tengigabitethernet 0/5 - 10 , tengigabitethernet 0/1 , vlan 1 Dell(conf-if-range-te-0/5-10,te-0/1,vl-1)# Exclude Duplicate Entries The following is an example showing how duplicate entries are omitted from the interface-range prompt.
Add Ranges The following example shows how to use commas to add VLAN and port-channel interfaces to the range. Example of Adding VLAN and Port-Channel Interface Ranges Dell(config-if-range-te-1/1-2)# interface range Vlan 2 – 100 , Port 1 – 25 Dell(config-if-range-te-1/1-2-so-5/1-vl-2-100-po-1-25)# no shutdown Defining Interface Range Macros You can define an interface-range macro to automatically select a range of interfaces for configuration.
Monitoring and Maintaining Interfaces Monitor interface statistics with the monitor interface command. This command displays an ongoing list of the interface status (up/down), number of packets, traffic statistics, and so on. To view the interface’s statistics, use the following command. • View the interface’s statistics.
Output throttles: m l T q - 0 Change mode Page up Increase refresh interval Quit 0 pps 0 c - Clear screen a - Page down t - Decrease refresh interval q Dell# Maintenance Using TDR The time domain reflectometer (TDR) is supported on all Dell Networking switch/routers. TDR is an assistance tool to resolve link issues that helps detect obvious open or short conditions within any of the four copper pairs. TDR sends a signal onto the physical cable and examines the reflection of the signal that returns.
NOTE: When you split a 40G port (such as fo 0/4) into four 10G ports, the 40G interface configuration is available in the startup configuration when you save the running configuration by using the write memory command. When a reload of the system occurs, the 40G interface configuration is not applicable because the 40G ports are split into four 10G ports after the reload operation. While the reload is in progress, you might see error messages when the configuration file is being loaded.
• improves network stability by penalizing misbehaving interfaces and redirecting traffic. • improves convergence times and stability throughout the network by isolating failures so that disturbances are not propagated. Important Points to Remember • Link dampening is not supported on VLAN interfaces. • Link dampening is disabled when the interface is configured for port monitoring. • You can apply link dampening to Layer 2 and Layer 3 interfaces.
clear dampening Example of the clear dampening Command Dell# clear dampening interface Gi 0/1 Dell# show interfaces dampening GigabitEthernet0/0 InterfaceStateFlapsPenaltyHalf-LifeReuseSuppressMax-Sup Gi 0/1Up00205001500300 Link Dampening Support for XML View the output of the following show commands in XML by adding | display xml to the end of the command.
• Enable link bundle monitoring. ecmp-group • View all LAG link bundles being monitored. show running-config ecmp-group Using Ethernet Pause Frames for Flow Control Ethernet pause frames and threshold settings are supported on the S4820T platform. Ethernet Pause Frames allow for a temporary stop in data transmission. A situation may arise where a sending device may transmit data faster than a destination device can accept it.
Threshold Settings Threshold settings are supported on the S4820T platform. When the transmission pause is set (tx on), you can set three thresholds to define the controls more closely. Ethernet pause frames flow control can be triggered when either the flow control buffer threshold or flow control packet pointer threshold is reached.
* Number of flow-control packet pointers: the range is from 1 to 2047 (default = 75). * Flow-control buffer threshold in KB: the range is from 1 to 2013 (default = 49KB). * Flow-control discard threshold in KB: the range is from 1 to 2013 (default= 75KB) Pause control is triggered when either the flow control buffer threshold or flow control packet pointer threshold is reached.
For example, the VLAN contains tagged members with Link MTU of 1522 and IP MTU of 1500 and untagged members with Link MTU of 1518 and IP MTU of 1500. The VLAN’s Link MTU cannot be higher than 1518 bytes and its IP MTU cannot be higher than 1500 bytes. Port-Pipes A port pipe is a Dell Networking-specific term for the hardware path that packets follow through a system.
4. Access the port. CONFIGURATION mode interface interface slot/port 5. Set the local port speed. INTERFACE mode speed {10 | 100 | 1000 | auto} 6. Optionally, set full- or half-duplex. INTERFACE mode duplex {half | full} 7. Disable auto-negotiation on the port. INTERFACE mode no negotiation auto If the speed was set to 1000, do not disable auto-negotiation. 8. Verify configuration changes.
interface GigabitEthernet 0/1 no ip address speed 100 duplex full no shutdown Set Auto-Negotiation Options The negotiation auto command provides a mode option for configuring an individual port to forced master/ forced slave once auto-negotiation is enabled. CAUTION: Ensure that only one end of the node is configured as forced-master and the other is configured as forced-slave.
Examples of the show Commands The following example lists the possible show commands that have the configured keyword available: Dell#show Dell#show Dell#show Dell#show Dell#show Dell#show Dell#show Dell#show Dell#show Dell#show Dell#show interfaces configured interfaces stack-unit 0 configured interfaces tengigabitEthernet 0 configured ip interface configured ip interface stack-unit 1 configured ip interface tengigabitEthernet 1 configured ip interface br configured ip interface br stack-unit 1 configured
Example of the rate-interval Command The bold lines shows the default value of 299 seconds, the change-rate interval of 100, and the new rate interval set to 100.
Dynamic Counters By default, counting is enabled for IPFLOW, IPACL, L2ACL, L2FIB. For the remaining applications, Dell Networking OS automatically turns on counting when you enable the application, and is turned off when you disable the application. NOTE: If you enable more than four counter-dependent applications on a port pipe, there is an impact on line rate performance.
– (OPTIONAL) To clear statistics for all VRRP groups configured, enter the keyword vrrp. Enter a number from 1 to 255 as the vrid. – (OPTIONAL) To clear unknown source address (SA) drop counters when you configure the MAC learning limit on the interface, enter the keywords learning-limit. Example of the clear counters Command When you enter this command, confirm that you want Dell Networking OS to clear the interface counters for that interface.
no ip address tagged te 0/0 tagged te 0/0 tagged te 0/0 no ip address no shut no ip address no ip address no ip address no shut shut shut shut int te 0/ 0 int te 0/2 int te 0/3 int te 0/4 int te 0/10 int te 0/34 no ip address no ip address no ip address no ip address no ip address switchport shut shut shut shut ip address 2.1.1.1/16 shut ip address 1.1.1.
shutdown no ip address ! shutdown interface TenGigabitEthernet 0/34 ! ip address 2.1.1.1/16 interface Vlan 1000 shutdown ip address 1.1.1.1/16 ! no shutdown interface Vlan 2 ! no ip address no shutdown Compressed config size – 27 lines.
ip address 1.1.1.1/16 no shutdown Uncompressed config size – 52 lines write memory compressed The write memory compressed CLI will write the operating configuration to the startup-config file in the compressed mode. In stacking scenario, it will also take care of syncing it to all the standby and member units.
Internet Protocol Security (IPSec) 23 Internet protocol security (IPSec) is available on the S4820Tplatform. IPSec is an end-to-end security scheme for protecting IP communications by authenticating and encrypting all packets in a communication session. Use IPSec between hosts, between gateways, or between hosts and gateways. IPSec is compatible with Telnet and FTP protocols. It supports two operational modes: Transport and Tunnel.
Configuring IPSec The following sample configuration shows how to configure FTP and telnet for IPSec. 1. Define the transform set. CONFIGURATION mode crypto ipsec transform-set myXform-seta esp-authentication md5 espencryption des 2. Define the crypto policy.
IPv4 Routing 24 IPv4 routing is supported on the S4820T platform. The Dell Networking Operating System (OS) supports various IP addressing features. This chapter describes the basics of domain name service (DNS), address resolution protocol (ARP), and routing principles and their implementation in the Dell Networking OS.
• • • Assigning IP Addresses to an Interface (mandatory) Configuring Static Routes (optional) Configure Static Routes for the Management Interface (optional) For a complete listing of all commands related to IP addressing, refer to the Dell Networking OS Command Line Interface Reference Guide.
interface GigabitEthernet 0/0 ip address 10.11.1.1/24 no shutdown ! Dell(conf-if)# Dell(conf-if)#show conf ! interface GigabitEthernet 0/0 ip address 10.11.1.1/24 no shutdown ! Dell(conf-if)# Configuring Static Routes A static route is an IP address that you manually configure and that the routing protocol does not learn, such as open shortest path first (OSPF). Often, static routes are used as backup routes in case other dynamically learned routes are unreachable.
S 6.1.2.4/32 S 6.1.2.5/32 S 6.1.2.6/32 S 6.1.2.7/32 S 6.1.2.8/32 S 6.1.2.9/32 S 6.1.2.10/32 S 6.1.2.11/32 S 6.1.2.12/32 S 6.1.2.13/32 S 6.1.2.14/32 S 6.1.2.15/32 S 6.1.2.16/32 S 6.1.2.17/32 S 11.1.1.0/24 Direct, Lo 0 --More-- via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.
S S S S S S S S S S S S S 6.1.2.6/32 6.1.2.7/32 6.1.2.8/32 6.1.2.9/32 6.1.2.10/32 6.1.2.11/32 6.1.2.12/32 6.1.2.13/32 6.1.2.14/32 6.1.2.15/32 6.1.2.16/32 6.1.2.17/32 11.1.1.0/24 --More-- via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.
Using the Configured Source IP Address in ICMP Messages This feature is supported on the S4820T platform. ICMP error or unreachable messages are now sent with the configured IP address of the source interface instead of the front-end port IP address as the source IP address. Enable the generation of ICMP unreachable messages through the ip unreachable command in Interface mode.
To configure the duration for which the device waits for the ACK packet to be sent from the requesting host to establish the TCP connection, perform the following steps: 1. Define the wait duration in seconds for the TCP connection to be established. CONFIGURATION mode Dell(conf)#ip tcp reduced-syn-ack-wait <9-75> You can use the no ip tcp reduced-syn-ack-wait command to restore the default behavior, which causes the wait period to be set as 8 seconds. 2.
CONFIGURATION mode • ip domain-lookup Specify up to six name servers. CONFIGURATION mode ip name-server ip-address [ip-address2 ... ip-address6] The order you entered the servers determines the order of their use. Example of the show hosts Command To view current bindings, use the show hosts command. Dell>show host Default domain is force10networks.com Name/address lookup uses domain service Name servers are not set Host Flags TTL Type Address -------- ----- ------- ------ks (perm, OK) - IP 2.2.2.
Configuring DNS with Traceroute To configure your switch to perform DNS with traceroute, use the following commands. • Enable dynamic resolution of host names. CONFIGURATION mode • ip domain-lookup Specify up to six name servers. CONFIGURATION mode ip name-server ip-address [ip-address2 ... ip-address6] • The order you entered the servers determines the order of their use.
corresponding IP address. This table is called the ARP Cache and dynamically learned addresses are removed after a defined period of time. For more information about ARP, refer to RFC 826, An Ethernet Address Resolution Protocol. In Dell Networking OS, Proxy ARP enables hosts with knowledge of the network to accept and forward packets from hosts that contain no knowledge of the network. Proxy ARP makes it possible for hosts to be ignorant of the network, including subnetting.
-------------------------------------------------------------------------------Internet 10.1.2.4 17 08:00:20:b7:bd:32 Ma 1/0 CP Dell# Enabling Proxy ARP By default, Proxy ARP is enabled. To disable Proxy ARP, use the no proxy-arp command in the interface mode. To re-enable Proxy ARP, use the following command. • Re-enable Proxy ARP. INTERFACE mode ip proxy-arp To view if Proxy ARP is enabled on the interface, use the show config command in INTERFACE mode.
• • • detect IP address conflicts inform switches of their presence on a port so that packets can be forwarded update the ARP table of other nodes on the network in case of an address change In the request, the host uses its own IP address in the Sender Protocol Address and Target Protocol Address fields. In Dell Networking OS versions prior to 8.3.1.0, if a gratuitous ARP is received some time after an ARP request is sent, only RP2 installs the ARP information. For example: 1.
Figure 48. ARP Learning via ARP Request with ARP Learning via Gratuitous ARP Enabled Whether you enable or disable ARP learning via gratuitous ARP, the system does not look up the target IP. It only updates the ARP entry for the Layer 3 interface with the source IP of the request. Configuring ARP Retries In Dell Networking OS versions prior to 8.3.1.0, the number of ARP retries is set to five and is not configurable.
ICMP For diagnostics, the internet control message protocol (ICMP) provides routing information to end stations by choosing the best route (ICMP redirect messages) or determining if a router is reachable (ICMP Echo or Echo Reply). ICMP error messages inform the router of problems in a particular packet. These messages are sent only on unicast traffic. Configuration Tasks for ICMP The following lists the configuration tasks for ICMP.
2. Configure a broadcast address on interfaces that will receive UDP broadcast traffic. Refer to Configuring a Broadcast Address. Important Points to Remember • The existing ip directed broadcast command is rendered meaningless if you enable UDP helper on the same interface. • The broadcast traffic rate should not exceed 200 packets per second when you enable UDP helper. • You may specify a maximum of 16 UDP ports.
untagged GigabitEthernet 1/2 no shutdown To view the configured broadcast address for an interface, use show interfaces command. R1_E600(conf)#do show interfaces vlan 100 Vlan 100 is up, line protocol is down Address is 00:01:e8:0d:b9:7a, Current address is 00:01:e8:0d:b9:7a Interface index is 1107787876 Internet address is 1.1.0.1/24 IP UDP-Broadcast address is 1.1.255.
Figure 49. UDP Helper with Broadcast-All Addresses UDP Helper with Subnet Broadcast Addresses When the destination IP address of an incoming packet matches the subnet broadcast address of any interface, the system changes the address to the configured broadcast address and sends it to matching interface. In the following illustration, Packet 1 has the destination IP address 1.1.1.255, which matches the subnet broadcast address of VLAN 101.
UDP Helper with Configured Broadcast Addresses Incoming packets with a destination IP address matching the configured broadcast address of any interface are forwarded to the matching interfaces. In the following illustration, Packet 1 has a destination IP address that matches the configured broadcast address of VLAN 100 and 101. If you enabled UDP helper and the UDP port number matches, the packet is flooded on both VLANs with an unchanged destination address. Packet 2 is sent from a host on VLAN 101.
When using the IP helper and UDP helper on the same interface, use the debug ip dhcp command. Example Output from the debug ip dhcp Command Packet 0.0.0.0:68 -> 255.255.255.255:67 TTL 128 2005-11-05 11:59:35 %RELAY-I-PACKET, BOOTP REQUEST (Unicast) received at interface 172.21.50.193 BOOTP Request, XID = 0x9265f901, secs = 0 hwaddr = 00:02:2D:8D: 46:DC, giaddr = 0.0.0.0, hops = 2 2005-11-05 11:59:35 %RELAY-I-BOOTREQUEST, Forwarded BOOTREQUEST for 00:02:2D:8D: 46:DC to 137.138.17.
IPv6 Routing 25 Internet protocol version 6 (IPv6) routing is supported on the S4820T platform. NOTE: The IPv6 basic commands are supported on all platforms. However, not all features are supported on all platforms, nor for all releases. To determine the Dell Networking Operating System (OS) version supporting which features and platforms, refer to Implementing IPv6 with Dell Networking OS. IPv6 is the successor to IPv4.
NOTE: Dell Networking OS provides the flexibility to add prefixes on Router Advertisements (RA) to advertise responses to Router Solicitations (RS). By default, RA response messages are sent when an RS message is received. Dell Networking OS manipulation of IPv6 stateless autoconfiguration supports the router side only. Neighbor discovery (ND) messages are advertised so the neighbor can use this information to autoconfigure its address. However, received ND messages are not used to create an IPv6 address.
IPv6 Header Fields The 40 bytes of the IPv6 header are ordered, as shown in the following illustration. Figure 52. IPv6 Header Fields Version (4 bits) The Version field always contains the number 6, referring to the packet’s IP version. Traffic Class (8 bits) The Traffic Class field deals with any data that needs special handling. These bits define the packet priority and are defined by the packet Source. Sending and forwarding routers use this field to identify different IPv6 classes and priorities.
The following lists the Next Header field values. Value Description 0 Hop-by-Hop option header 4 IPv4 6 TCP 8 Exterior Gateway Protocol (EGP) 41 IPv6 43 Routing header 44 Fragmentation header 50 Encrypted Security 51 Authentication header 59 No Next Header 60 Destinations option header NOTE: This table is not a comprehensive list of Next Header field values. For a complete and current listing, refer to the Internet Assigned Numbers Authority (IANA) web page at .
However, if the Destination Address is a Hop-by-Hop options header, the Extension header is examined by every forwarding router along the packet’s route. The Hop-by-Hop options header must immediately follow the IPv6 header, and is noted by the value 0 (zero) in the Next Header field. Extension headers are processed in the order in which they appear in the packet header. Hop-by-Hop Options Header The Hop-by-Hop options header contains information that is examined by every router along the packet’s path.
of double colons is supported in a single address. Any number of consecutive 0000 groups may be reduced to two colons, as long as there is only one double colon used in an address. Leading and/or trailing zeros in a group can also be omitted (as in ::1 for localhost, 1:: for network addresses and :: for unspecified addresses). All the addresses in the following list are all valid and equivalent.
Implementing IPv6 with Dell Networking OS Dell Networking OS supports both IPv4 and IPv6 and both may be used simultaneously in your system. The following table lists the Dell Networking OS version in which an IPv6 feature became available for each platform. The sections following the table give greater detail about the feature. Feature and Functionality Dell Networking OS Release Introduction Documentation and Chapter Location S4820T Basic IPv6 Commands 8.3.
Feature and Functionality Dell Networking OS Release Introduction Documentation and Chapter Location S4820T IS-IS for IPv6 8.3.19 Intermediate System to Intermediate System IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. IS-IS for IPv6 support for redistribution 8.3.19 Intermediate System to Intermediate System IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. ISIS for IPv6 support for distribute lists and administrative distance 8.3.
Feature and Functionality Dell Networking OS Release Introduction Documentation and Chapter Location S4820T (outbound SSH) Layer 3 only Secure Shell (SSH) server support over IPv6 (inbound SSH) Layer 3 only 8.3.19 Secure Shell (SSH) Over an IPv6 Transport IPv6 Access Control Lists 8.3.19 IPv6 Access Control Lists in the Dell Networking OS Command Line Reference Guide. 8.3.19 IPv6 PIM in the Dell Networking OS Command Line Reference Guide.
Figure 53. Path MTU Discovery Process IPv6 Neighbor Discovery IPv6 neighbor discovery protocol (NDP) is supported on the S4820T platform. NDP is a top-level protocol for neighbor discovery on an IPv6 network. In lieu of address resolution protocol (ARP), NDP uses “Neighbor Solicitation” and “Neighbor Advertisement” ICMPv6 messages for determining relationships between neighboring nodes.
Figure 54. NDP Router Redirect IPv6 Neighbor Discovery of MTU Packets You can set the MTU advertised through the RA packets to incoming routers, without altering the actual MTU setting on the interface. The ipv6 nd mtu command sets the value advertised to routers. It does not set the actual MTU rate. For example, if you set ipv6 nd mtu to 1280, the interface still passes 1500-byte packets, if that is what is set with the mtu command.
The DNS server address does not allow the following: • link local addresses • loopback addresses • prefix addresses • multicast addresses • invalid host addresses If you specify this information in the IPv6 RDNSS configuration, a DNS error is displayed. Example for Configuring an IPv6 Recursive DNS Server The following example configures a RDNNS server with an IPv6 address of 1000::1 and a lifetime of 1 second.
Displaying IPv6 RDNSS Information To display IPv6 interface information, including IPv6 RDNSS information, use the show ipv6 interface command in EXEC or EXEC Privilege mode. Examples of Displaying IPv6 RDNSS Information The following example displays IPv6 RDNSS information. The output in the last 3 lines indicates that the IPv6 RDNSS was correctly configured on interface te 0/1.
Secure Shell (SSH) Over an IPv6 Transport IPv6 secure shell (SSH) is supported on the S4820T platform. Dell Networking OS supports both inbound and outbound SSH sessions using IPv6 addressing. Inbound SSH supports accessing the system through the management interface as well as through a physical Layer 3 interface. For SSH configuration details, refer to the Security chapter in the Dell Networking OS Command Line Interface Reference Guide.
The total space allocated must equal 13. • The ipv6acl range must be a factor of 2. Show the current CAM settings. EXEC mode or EXEC Privilege mode • show cam-acl Provides information on FP groups allocated for the egress acl. CONFIGURATION mode show cam-acl-egress Allocate at least one group for L2ACL and IPv4 ACL. The total number of groups is 4. Assigning an IPv6 Address to an Interface IPv6 addresses are supported on the S4820T platform.
– prefix: IPv6 route prefix – type {slot/port}: interface type and slot/port – forwarding router: forwarding router’s address – tag: route tag Enter the keyword interface then the type of interface and slot/port information: – For a 10/100/1000 Ethernet interface, enter the keyword GigabitEthernet then the slot/ port information. – For a Gigabit Ethernet interface, enter the keyword GigabitEthernet then the slot/ port information.
• snmp-server community access-list-name ipv6 • snmp-server group ipv6 • snmp-server group access-list-name ipv6 Showing IPv6 Information All of the following show commands are supported on the S4820T platform. View specific IPv6 configuration with the following commands. • List the IPv6 show options.
– For a VLAN interface, enter the keyword vlan then the VLAN ID.
– To display information about an IPv6 Prefix lists, enter list and the prefix-list name. Examples of the show ipv6 route Commands The following example shows the show ipv6 route summary command. Dell#show ipv6 route summary Route Source Active Routes Non-active Routes connected 5 0 static 0 0 Total 5 0 The following example shows the show ipv6 route command.
– For a Gigabit Ethernet interface, enter the keyword GigabitEthernet then the slot/ port information. – For the Management interface on the RPM, enter the keyword ManagementEthernet then the slot/port information. – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information.
iSCSI Optimization 26 iSCSI optimization is supported on the S4820T platform. This chapter describes how to configure internet small computer system interface (iSCSI) optimization, which enables quality-of-service (QoS) treatment for iSCSI traffic.
• If you configure flow-control, iSCSI uses the current configuration. If you do not configure flowcontrol, iSCSI auto-configures flow control settings so that receive-only is enabled and transmit-only is disabled. . • iSCSI monitoring sessions — the switch monitors and tracks active iSCSI sessions in connections on the switch, including port information and iSCSI session information. • iSCSI QoS — A user-configured iSCSI class of service (CoS) profile is applied to all iSCSI traffic.
Monitoring iSCSI Traffic Flows The switch snoops iSCSI session-establishment and termination packets by installing classifier rules that trap iSCSI protocol packets to the CPU for examination. Devices that initiate iSCSI sessions usually use well-known TCP ports 3260 or 860 to contact targets. When you enable iSCSI optimization, by default the switch identifies IP packets to or from these ports as iSCSI traffic.
If more than 256 simultaneous sessions are logged continuously, the following message displays indicating the queue rate limit has been reached: %STKUNIT2-M:CP %iSCSI-5-ISCSI_OPT_MAX_SESS_EXCEEDED: New iSCSI Session Ignored: ISID 400001370000 InitiatorName - iqn.1991-05.com.microsoft:dt-brcd-cna-2 TargetName iqn.2001-05.com.equallogic:4-52aed6-b90d9446c-162466364804fa49-wj-v1 TSIH - 0" NOTE: If you are using EqualLogic or Compellent storage arrays, more than 256 simultaneous iSCSI sessions are possible.
Configuring Detection and Ports for Dell Compellent Arrays To configure a port connected to a Dell Compellent storage array, use the following command. • Configure a port connected to a Dell Compellent storage array. INTERFACE Configuration mode iscsi profile-compellent The command configures a port for the best iSCSI traffic conditions.
iSCSI optimization, which can turn on flow control again on reboot, use the no iscsi enable command and save the configuration. When you enable iSCSI on the switch, the following actions occur: • Link-level flow control is globally enabled, if it is not already enabled, and PFC is disabled. • iSCSI session snooping is enabled. • iSCSI LLDP monitoring starts to automatically detect EqualLogic arrays.
Parameter Default Value iSCSI session monitoring Disabled. The CAM allocation for iSCSI is set to zero (0). iSCSI Optimization Prerequisites The following are iSCSI optimization prerequisites. • iSCSI optimization requires LLDP on the switch. LLDP is enabled by default (refer to Link Layer Discovery Protocol (LLDP)). • iSCSI optimization requires configuring two ingress ACL groups The ACL groups are allocated after iSCSI Optimization is configured.
5. Reload the switch. EXEC Privilege mode reload After the switch is reloaded, DCB/ DCBx and iSCSI monitoring are enabled. 6. (Optional) Configure the iSCSI target ports and optionally the IP addresses on which iSCSI communication is monitored. CONFIGURATION mode [no] iscsi target port tcp-port-1 [tcp-port-2...tcp-port-16] [ip-address address] • tcp-port-n is the TCP port number or a list of TCP port numbers on which the iSCSI target listens to requests.
8. (Optional) Set the aging time for iSCSI session monitoring. CONFIGURATION mode [no] iscsi aging time time. The range is from 5 to 43,200 minutes. The default is 10 minutes. 9. (Optional) Configures DCBX to send iSCSI TLV advertisements. LLDP CONFIGURATION mode or INTERFACE LLDP CONFIGURATION mode [no] advertise dcbx-app-tlv iscsi. You can send iSCSI TLVs either globally or on a specified interface. The interface configuration takes priority over global configuration. The default is Enabled. 10.
Maximum number of connections is 256 -----------------------------------------------iSCSI Targets and TCP Ports: -----------------------------------------------TCP Port Target IP Address 3260 860 The following example shows the show iscsi session command. VLT PEER1 Dell#show iscsi session Session 0: ---------------------------------------------------------------------------------Target: iqn.2001-05.com.equallogic:0-8a0906-0e70c2002-10a0018426a48c94-iom010 Initiator: iqn.1991-05.com.
Intermediate System to Intermediate System 27 Intermediate system to intermediate system (Is-IS) is supported on the S4820T platform. • IS-IS is supported on the S4820T with Dell Networking OS 8.3(19.0). • • The IS-IS protocol is an interior gateway protocol (IGP) that uses a shortest-path-first algorithm. Dell Networking supports both IPv4 and IPv6 versions of IS-IS. • The IS-IS protocol standards are listed in the Standards Compliance chapter.
The NET length is variable, with a maximum of 20 bytes and a minimum of 8 bytes. It is composed of the following: • area address — within your routing domain or area, each area must have a unique area value. The first byte is called the authority and format indicator (AFI). • system address — the router’s MAC address. • N-selector — this is always 0. The following illustration is an example of the ISO-style address to show the address format IS-IS uses. In this example, the first five bytes (47.0005.
Transition Mode All routers in the area or domain must use the same type of IPv6 support, either single-topology or multitopology. A router operating in multi-topology mode does not recognize the ability of the singletopology mode router to support IPv6 traffic, which leads to holes in the IPv6 topology.
A new TLV (the Restart TLV) is introduced in the IIH PDUs, indicating that the router supports graceful restart. Timers Three timers are used to support IS-IS graceful restart functionality. After you enable graceful restart, these timers manage the graceful restart process. There are three times, T1, T2, and T3. • The T1 timer specifies the wait time before unacknowledged restart requests are generated.
• Accepts external IPv6 information and advertises this information in the PDUs. The following table lists the default IS-IS values. Table 33.
Enabling IS-IS By default, IS-IS is not enabled. The system supports one instance of IS-IS. To enable IS-IS globally, create an IS-IS routing process and assign a NET address. To exchange protocol information with neighbors, enable IS-IS on an interface, instead of on a network as with other routing protocols. In IS-IS, neighbors form adjacencies only when they are same IS type. For example, a Level 1 router never forms an adjacency with a Level 2 router.
4. Enter an IPv4 Address. INTERFACE mode ip address ip-address mask Assign an IP address and mask to the interface. The IP address must be on the same subnet as other IS-IS neighbors, but the IP address does not need to relate to the NET address. 5. Enter an IPv6 Address. INTERFACE mode ipv6 address ipv6-address mask • • ipv6 address: x:x:x:x::x mask: The prefix length is from 0 to 128.
Generate wide metrics: Accept wide metrics: Dell# none none To view IS-IS protocol statistics, use the show isis traffic command in EXEC Privilege mode.
3. Set the minimum interval between SPF calculations. ROUTER ISIS AF IPV6 mode spf-interval [level-l | level-2 | interval] [initial_wait_interval [second_wait_interval]] Use this command for IPv6 route computation only when you enable multi-topology. If using singletopology mode, to apply to both IPv4 and IPv6 route computations, use the spf-interval command in CONFIG ROUTER ISIS mode. 4. Implement a wide metric-style globally.
• – retry-times: number of times an unacknowledged restart request is sent before the restarting router gives up the graceful restart engagement with the neighbor. (The range is from 1 to 10 attempts. The default is 1.) Configure the time for the graceful restart timer T2 that a restarting router uses as the wait time for each database to synchronize.
Mode: Normal L1-State:NORMAL, L2-State: NORMAL L1: Send/Receive: RR:0/0, RA: 0/0, SA:0/0 T1 time left: 0, retry count left:0 L2: Send/Receive: RR:0/0, RA: 0/0, SA:0/0 T1 time left: 0, retry count left:0 Dell# To view all interfaces configured with IS-IS routing along with the defaults, use the show isis interface command in EXEC Privilege mode.
lsp-refresh-interval seconds – seconds: the range is from 1 to 65535. • The default is 900 seconds. Set the maximum time LSPs lifetime. ROUTER ISIS mode max-lsp-lifetime seconds – seconds: the range is from 1 to 65535. The default is 1200 seconds. Example of Viewing IS-IS Configuration (ROUTER ISIS Mode) To view the configuration, use the show config command in ROUTER ISIS mode or the show running-config isis command in EXEC Privilege mode.
Metric Style Characteristics Cost Range Supported on IS-IS Interfaces narrow transition Sends narrow (old) TLVs and accepts both narrow (old) and wide (new) TLVs. 0 to 63 wide transition Sends wide (new) TLVs and accepts both narrow (old) and wide (new) TLVs. 0 to 16777215 To change the IS-IS metric style of the IS-IS process, use the following command. • Set the metric style for the IS-IS process.
– default-metric: the range is from 0 to 63 if the metric-style is narrow, narrow-transition, or transition. • The range is from 0 to 16777215 if the metric style is wide or wide transition. Assign a metric for an IPv6 link or interface. INTERFACE mode isis ipv6 metric default-metric [level-1 | level-2] – default-metric: the range is from 0 to 63 for narrow and transition metric styles. The range is from 0 to 16777215 for wide metric styles. The default is 10. The default level is level-1.
• Change the IS-type for the IS-IS process. ROUTER ISIS mode is-type {level-1 | level-1-2 | level-2} Example of the show isis database Command to View Level 1-2 Link State Databases To view which IS-type is configured, use the show isis protocol command in EXEC Privilege mode. The show config command in ROUTER ISIS mode displays only non-default information. If you do not change the IS-type, the default value (level-1-2) is not displayed. The default is Level 1-2 router.
Distribute Routes Another method of controlling routing information is to filter the information through a prefix list. Prefix lists are applied to incoming or outgoing routes and routes must meet the conditions of the prefix lists or Dell Networking OS does not install the route in the routing table. The prefix lists are globally applied on all interfaces running IS-IS. Configure the prefix list in PREFIX LIST mode prior to assigning it to the IS-IS process.
Applying IPv6 Routes To apply prefix lists to incoming or outgoing IPv6 routes, use the following commands. NOTE: These commands apply to IPv6 IS-IS only. To apply prefix lists to IPv4 routes, use ROUTER ISIS mode, previously shown. • Apply a configured prefix list to all incoming IPv6 IS-IS routes.
NOTE: These commands apply to IPv4 IS-IS only. To apply prefix lists to IPv6 routes, use ADDRESSFAMILY IPV6 mode, shown later. • Include BGP, directly connected, RIP, or user-configured (static) routes in IS-IS. ROUTER ISIS mode redistribute {bgp as-number | connected | rip | static} [level-1 level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: – level-1, level-1-2, or level-2: assign all redistributed routes to a level.
• – map-name: enter the name of a configured route map. Include specific OSPF routes in IS-IS.ROUTER ISIS mode redistribute ospf process-id [level-1| level-1-2 | level-2] [metric value] [match external {1 | 2} | match internal] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: – – – – – – – – process-id: the range is from 1 to 65535. level-1, level-1-2, or level-2: assign all redistributed routes to a level. The default is level-2.
Setting the Overload Bit Another use for the overload bit is to prevent other routers from using this router as an intermediate hop in their shortest path first (SPF) calculations. For example, if the IS-IS routing database is out of memory and cannot accept new LSPs, Dell Networking OS sets the overload bit and IS-IS traffic continues to transit the system. To set or remove the overload bit manually, use the following commands. • Set the overload bit in LSPs.
To view specific information, enter the following optional parameter: • – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only. View information about IS-IS local update packets. EXEC Privilege mode debug isis local-updates [interface] To view specific information, enter the following optional parameter: • – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only.
• narrow (supports only type, length, and value [TLV] up to 63) • wide (supports TLV up to 16777215) • transition (supports both narrow and wide and uses a TLV up to 63) • narrow transition (accepts both narrow and wide and sends only narrow or old-style TLV) • wide transition (accepts both narrow and wide and sends only wide or new-style TLV) Configure Metric Values For any level (Level-1, Level-2, or Level-1-2), the value range possible in the isis metric command in INTERFACE mode changes depend
Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value NOTE: A truncated value is a value that is higher than 63, but set back to 63 because the higher value is not supported. wide narrow transition default value (10) if the original value is greater than 63. A message is sent to the console.
Table 36. Metric Value when the Metric Style Changes Multiple Times Beginning Metric Style Next Metric Style Resulting Metric Value Next Metric Style Final Metric Value wide transition truncated value wide original value is recovered wide transition transition truncated value wide transition original value is recovered wide transition truncated value narrow default value (10).
Level-1 Metric Style Level-2 Metric Style Resulting Metric Value wide transition narrow transition truncated value wide transition transition truncated value Sample Configurations The following configurations are examples for enabling IPv6 IS-IS. These examples are not comprehensive directions. They are intended to give you some guidance with typical configurations. NOTE: Only one IS-IS process can run on the router, even if both IPv4 and IPv6 routing is being used.
Figure 57. IPv6 IS-IS Sample Topography IS-IS Sample Configuration — Congruent Topology IS-IS Sample Configuration — Multi-topology IS-IS Sample Configuration — Multi-topology Transition The following is a sample configuration for enabling IPv6 IS-IS. Dell(conf-if-te-3/17)#show config ! interface TenGigabitEthernet 3/17 ip address 24.3.1.
router isis net 34.0000.0000.AAAA.00 ! address-family ipv6 unicast multi-topology exit-address-family Dell (conf-router_isis)# Dell (conf-if-te-3/17)#show config ! interface TenGigabitEthernet 3/17 ipv6 address 24:3::1/76 ipv6 router isis no shutdown Dell (conf-if-te-3/17)# Dell (conf-router_isis)#show config ! router isis net 34.0000.0000.AAAA.
28 Link Aggregation Control Protocol (LACP) Link aggregation control protocol (LACP) is supported on the S4820T platform. Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic. The benefits and constraints are basically the same, as described in Port Channel Interfaces in the Interfaces chapter.
• There is a difference between the shutdown and no interface port-channel commands: – The shutdown command on LAG “xyz” disables the LAG and retains the user commands. However, the system does not allow the channel number “xyz” to be statically created. – The no interface port-channel channel-number command deletes the specified LAG, including a dynamically created LAG. This command removes all LACP-specific commands on the member interfaces.
• Configure LACP mode. LACP mode [no] port-channel number mode [active | passive | off] – number: cannot statically contain any links. • The default is LACP active. Configure port priority. LACP mode [no] lacp port-priority priority-value The range is from 1 to 65535 (the higher the number, the lower the priority). The default is 32768. LACP Configuration Tasks The following are LACP configuration tasks.
Configuring the LAG Interfaces as Dynamic After creating a LAG, configure the dynamic LAG interfaces. To configure the dynamic LAG interfaces, use the following command. • Configure the dynamic LAG interfaces. CONFIGURATION mode port-channel-protocol lacp Example of the port-channel-protocol lacp Command Dell(conf)#interface Gigabitethernet 3/15 Dell(conf-if-gi-3/15)#no shutdown Dell(conf-if-gi-3/15)#port-channel-protocol lacp Dell(conf-if-gi-3/15-lacp)#port-channel 32 mode active ...
Dell(conf-if-po-32)#switchport Dell(conf-if-po-32)#lacp long-timeout Dell(conf-if-po-32)#end Dell# show lacp 32 Port-channel 32 admin up, oper up, mode lacp Actor System ID: Priority 32768, Address 0001.e800.a12b Partner System ID: Priority 32768, Address 0001.e801.
Figure 58. Shared LAG State Tracking To avoid packet loss, redirect traffic through the next lowest-cost link (R3 to R4). Dell Networking OS has the ability to bring LAG 2 down if LAG 1 fails, so that traffic can be redirected. This redirection is what is meant by shared LAG state tracking. To achieve this functionality, you must group LAG 1 and LAG 2 into a single entity, called a failover group. Configuring Shared LAG State Tracking To configure shared LAG state tracking, you configure a failover group.
As shown in the following illustration, LAGs 1 and 2 are members of a failover group. LAG 1 fails and LAG 2 is brought down after the failure. This effect is logged by Message 1, in which a console message declares both LAGs down at the same time. Figure 59.
• • If a LAG that is part of a failover group is deleted, the failover group is deleted. If a LAG moves to the Down state due to this feature, its members may still be in the Up state. LACP Basic Configuration Example The screenshots in this section are based on the following example topology. Two routers are named ALPHA and BRAVO, and their hostname prompts reflect those names. Figure 60. LACP Basic Configuration Example Configure a LAG on ALPHA The following example creates a LAG on ALPHA.
ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:02:11 Queueing strategy: fifo Input statistics: 132 packets, 163668 bytes 0 Vlans 0 64-byte pkts, 12 over 64-byte pkts, 120 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 132 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics 136 packets, 16718 bytes, 0 underruns 0 64-byte pkts, 15 over 64-byte pkts, 121 over 127-byte pkts 0 over 255-by
Figure 62.
Figure 63.
interface GigabitEthernet 2/31 no ip address Summary of the LAG Configuration on Bravo Bravo(conf-if-gi-3/21)#int port-channel 10 Bravo(conf-if-po-10)#no ip add Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config ! interface Port-channel 10 no ip address switchport no shutdown ! Bravo(conf-if-po-10)#exit Bravo(conf)#int gig 3/21 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-gi-3/21)#port-channel-protocol lacp Bravo(conf-if-gi-3/2
Figure 64.
Figure 65.
Figure 66. Inspecting the LAG Status Using the show lacp command The point-to-point protocol (PPP) is a connection-oriented protocol that enables layer two links over various different physical layer connections. It is supported on both synchronous and asynchronous lines, and can operate in Half-Duplex or Full-Duplex mode. It was designed to carry IP traffic but is general enough to allow any type of network layer datagram to be sent over a PPP connection.
Layer 2 29 Layer 2 features are supported on the S4820T platform. Manage the MAC Address Table Dell Networking OS provides the following management activities for the MAC address table. • Clearing the MAC Address Table • Setting the Aging Time for Dynamic Entries • Configuring a Static MAC Address • Displaying the MAC Address Table Clearing the MAC Address Table You may clear the MAC address table of dynamic entries. To clear a MAC address table, use the following command.
The range is from 10 to 1000000. Configuring a Static MAC Address A static entry is one that is not subject to aging. Enter static entries manually. To create a static MAC address entry, use the following command. • Create a static MAC address entry in the MAC address table. CONFIGURATION mode mac-address-table static Displaying the MAC Address Table To display the MAC address table, use the following command. • Display the contents of the MAC address table.
interface) before the system verifies that sufficient CAM space exists. If the CAM check fails, a message is displayed: %E90MH:5 %ACL_AGENT-2-ACL_AGENT_LIST_ERROR: Unable to apply access-list MacLimit on GigabitEthernet 5/84 In this case, the configuration is still present in the running-config and show output. Remove the configuration before re-applying a MAC learning limit with a lower value. Also, ensure that you can view the Syslog messages on your session.
mac learning-limit mac-address-sticky Using sticky MAC addresses allows you to associate a specific port with MAC addresses from trusted devices. If you enable sticky MAC, the specified port retains any dynamically-learned addresses and prevents them from being transferred or learned on other ports. If you configure mac-learning-limit and you enabled sticky MAC, all dynamically-learned addresses are converted to sticky MAC addresses for the selected port.
no ip address switchport mac learning-limit 1 dynamic no-station-move mac learning-limit station-move-violation log no shutdown Learning Limit Violation Actions Learning limit violation actions are supported only on the S4820T platform. To configure the system to take an action when the MAC learning limit is reached on an interface and a new address is received using one the following options with the mac learning-limit command, use the following commands.
Recovering from Learning Limit and Station Move Violations After a learning-limit or station-move violation shuts down an interface, you must manually reset it. To reset the learning limit, use the following commands. NOTE: Alternatively, you can reset the interface by shutting it down using the shutdown command and then re-enabling it using the no shutdown command. • Reset interfaces in the ERR_Disabled state caused by a learning limit violation or station move violation.
When you use NIC teaming, consider that the server MAC address is originally learned on Port 0/1 of the switch (shown in the following) and Port 0/5 is the failover port. When the NIC fails, the system automatically sends an ARP request for the gateway or host NIC to resolve the ARP and refresh the egress interface. When the ARP is resolved, the same MAC address is learned on the same port where the ARP is resolved (in the previous example, this location is Port 0/5 of the switch).
Apply all other configurations to each interface in the redundant pair such that their configurations are identical, so that transition to the backup interface in the event of a failure is transparent to rest of the network. Figure 69. Configuring Redundant Layer 2 Pairs without Spanning Tree You configure a redundant pair by assigning a backup interface to a primary interface with the switchport backup interface command.
LACP) port-channel interface as either the primary or backup link in a redundant pair with a physical interface. To ensure that existing network applications see no difference when a primary interface in a redundant pair transitions to the backup interface, be sure to apply identical configurations of other traffic parameters to each interface.
inactive: Vl 1 00:24:55: %RPM0-P:CP %IFMGR-5-OSTATE_UP: Changed interface state to up: Gi 3/42 00:24:55: %RPM0-P:CP %IFMGR-5-ACTIVE: Changed Vlan interface state to active: Vl 1 00:24:55: %RPM0-P:CP %IFMGR-5-STATE_STBY_ACT: Changed interface state from standby to active: Gi 3/42 Dell(conf-if-gi-3/41)#do show ip int brief | find 3/41 GigabitEthernet 3/41 unassigned NO Manual administratively down down GigabitEthernet 3/42 unassigned YES Manual up up [output omitted] Example of Configuring Redundant Pairs on
Figure 70. Configuring Far-End Failure Detection The report consists of several packets in SNAP format that are sent to the nearest known MAC address. In the event of a far-end failure, the device stops receiving frames and, after the specified time interval, assumes that the far-end is not available. The connecting line protocol is brought down so that upper layer protocols can detect the neighbor unavailability faster. FEFD State Changes FEFD has two operational modes, Normal and Aggressive.
4. If the FEFD enabled system is configured to use FEFD in Normal mode and neighboring echoes are not received after three intervals, (you can set each interval can be set between 3 and 300 seconds) the state changes to unknown. 5. If the FEFD system has been set to Aggressive mode and neighboring echoes are not received after three intervals, the state changes to Err-disabled.
To report interval frequency and mode adjustments, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Activate the necessary ports administratively. INTEFACE mode no shutdown 3. Enable fefd globally. CONFIGURATION mode fefd {interval | mode} Example of the show fefd Command To display information about the state of each interface, use the show fefd command in EXEC privilege mode.
To set up and activate two or more connected interfaces, use the following commands. 1. Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2. Activate the necessary ports administratively. INTERFACE mode no shutdown 3.
Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port(Gi 1/0) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Gi 4/0) Sender hold time -- 3 (second) 2w1d22h : FEFD packet received on interface Gi 4/0 Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port(Gi 1/0) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port(Gi 4/0) Sender hold time -- 3 (second) An RPM Failover In the event that an RPM failover occurs, FEFD becomes operationally down
Link Layer Discovery Protocol (LLDP) 30 The link layer discovery protocol (LLDP) is supported on the S4820T platform. 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices.
Table 39. Type, Length, Value (TLV) Types Type TLV Description 0 End of LLDPDU Marks the end of an LLDPDU. 1 Chassis ID An administratively assigned name that identifies the LLDP agent. 2 Port ID An administratively assigned name that identifies a port through which TLVs are sent and received. 3 Time to Live An administratively assigned name that identifies a port through which TLVs are sent and received.
Figure 73. Organizationally Specific TLV IEEE Organizationally Specific TLVs Eight TLV types have been defined by the IEEE 802.1 and 802.3 working groups as a basic part of LLDP; the IEEE OUI is 00-80-C2. You can configure the Dell Networking system to advertise any or all of these TLVs. Table 40. Optional TLV Types Type TLV Description 4 Port description A user-defined alphanumeric string that describes the port. Dell Networking OS does not currently support this TLV.
Type TLV Description 127 Protocol Identity Indicates the protocols that the port can process. Dell Networking OS does not currently support this TLV. 127 MAC/PHY Configuration/Status Indicates the capability and current setting of the duplex status and bit rate, and whether the current settings are the result of auto-negotiation. This TLV is not available in the Dell Networking OS implementation of LLDP, but is available and mandatory (non-configurable) in the LLDP-MED implementation.
Regarding connected endpoint devices, LLDP-MED provides network connectivity devices with the ability to: • manage inventory • manage Power over Ethernet (PoE) • identify physical location • identify network policy LLDP-MED is designed for, but not limited to, VoIP endpoints. TIA Organizationally Specific TLVs The Dell Networking system is an LLDP-MED Network Connectivity Device (Device Type 4).
Type SubType TLV Description None or all TLVs must be supported. Dell Networking OS does not currently support these TLVs. 127 5 Inventory — Hardware Revision Indicates the hardware revision of the LLDPMED device. 127 6 Inventory — Firmware Revision Indicates the firmware revision of the LLDPMED device. 127 7 Inventory — Software Revision Indicates the software revision of the LLDPMED device. 127 8 Inventory — Serial Number Indicates the device serial number of the LLDP-MED device.
Figure 74. LLDP-MED Capabilities TLV Table 42. Dell Networking OS LLDP-MED Capabilities Bit Position TLV Dell Networking OS Support 0 LLDP-MED Capabilities Yes 1 Network Policy Yes 2 Location Identification Yes 3 Extended Power via MDI-PSE Yes 4 Extended Power via MDI-PD No 5 Inventory No 6–15 reserved No Table 43.
NOTE: As shown in the following table, signaling is a series of control packets that are exchanged between an endpoint device and a network connectivity device to establish and maintain a connection. These signal packets might require a different network policy than the media packets for which a connection is made. In this case, configure the signaling application. Table 44.
Extended Power via MDI TLV The extended power via MDI TLV enables advanced PoE management between LLDP-MED endpoints and network connectivity devices. Advertise the extended power via MDI on all ports that are connected to an 802.3af powered, LLDP-MED endpoint device. • Power Type — there are two possible power types: power source entity (PSE) or power device (PD). The Dell Networking system is a PSE, which corresponds to a value of 0, based on the TIA-1057 specification.
Important Points to Remember • LLDP is enabled by default. • Dell Networking systems support up to eight neighbors per interface. • Dell Networking systems support a maximum of 8000 total neighbors per system. If the number of interfaces multiplied by eight exceeds the maximum, the system does not configure more than 8000. • INTERFACE level configurations override all CONFIGURATION level configurations. • LLDP is not hitless.
Enabling LLDP LLDP is enabled by default. Enable and disable LLDP globally or per interface. If you enable LLDP globally, all UP interfaces send periodic LLDPDUs. To enable LLDP, use the following command. 1. Enter Protocol LLDP mode. CONFIGURATION or INTERFACE mode protocol lldp 2. Enable LLDP. PROTOCOL LLDP mode no disable Disabling and Undoing LLDP To disable or undo LLDP, use the following command. • Disable LLDP globally or for an interface.
To advertise TLVs, use the following commands. 1. Enter LLDP mode. CONFIGURATION or INTERFACE mode protocol lldp 2. Advertise one or more TLVs. PROTOCOL LLDP mode advertise {dcbx-appln-tlv | dcbx-tlv | dot3-tlv | interface-port-desc | management-tlv | med } Include the keyword for each TLV you want to advertise. • For management TLVs: system-capabilities, system-description. • For 802.1 TLVs: port-protocol-vlan-id, port-vlan-id vlan-name. • For 802.3 TLVs: max-frame-size.
Viewing the LLDP Configuration To view the LLDP configuration, use the following command. • Display the LLDP configuration.
Example of Viewing Details Advertised by Neighbors Dell#show lldp neighbors detail ======================================================================== Local Interface Te 0/4 has 1 neighbor Total Frames Out: 6547 Total Frames In: 4136 Total Neighbor information Age outs: 0 Total Frames Discarded: 0 Total In Error Frames: 0 Total Unrecognized TLVs: 0 Total TLVs Discarded: 0 Next packet will be sent after 7 seconds The neighbors are given below: ------------------------------------------------------------
tx Tx only R1(conf-lldp)#mode tx R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description mode tx no disable R1(conf-lldp)#no mode R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)# Configuring Transmit an
mode tx no disable R1(conf-lldp)#no mode R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)# Configuring a Time to Live The information received from a neighbor expires after a specific amount of time (measured in seconds) called a time to live (TTL).
Debugging LLDP You can view the TLVs that your system is sending and receiving. To view the TLVs, use the following commands. • View a readable version of the TLVs. • debug lldp brief View a readable version of the TLVs plus a hexadecimal version of the entire LLDPDU. debug lldp detail Figure 78. The debug lldp detail Command — LLDPDU Packet Dissection Relevant Management Objects Dell Networking OS supports all IEEE 802.1AB MIB objects.
• received and transmitted LLDP-MED TLVs Table 45. LLDP Configuration MIB Objects MIB Object Category LLDP Variable LLDP adminStatus Configuration Basic TLV Selection LLDP MIB Object Description lldpPortConfigAdminStatus Whether you enable the local LLDP agent for transmit, receive, or both. msgTxHold lldpMessageTxHoldMultiplie Multiplier value. r msgTxInterval lldpMessageTxInterval Transmit Interval value. rxInfoTTL lldpRxInfoTTL Time to live for received TLVs.
MIB Object Category LLDP Variable LLDP MIB Object statsTLVsUnrecognizedTota lldpStatsRxPortTLVsUnreco l gnizedTotal Description Total number of all TLVs the local agent does not recognize. Table 46.
TLV Type TLV Name TLV Variable management address System LLDP MIB Object Remote lldpRemManAddrSu btype Local lldpLocManAddr Remote lldpRemManAddr interface numbering Local subtype interface number OID lldpLocManAddrIfSu btype Remote lldpRemManAddrIfS ubtype Local lldpLocManAddrIfId Remote lldpRemManAddrIfId Local lldpLocManAddrOID Remote lldpRemManAddrOI D Table 47. LLDP 802.
TLV Type TLV Name TLV Variable VLAN name System LLDP MIB Object Remote lldpXdot1RemVlanN ame Local lldpXdot1LocVlanNa me Remote lldpXdot1RemVlanN ame Table 48.
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object L2 Priority Local lldpXMedLocMediaP olicyPriority Remote lldpXMedRemMedia PolicyPriority Local lldpXMedLocMediaP olicyDscp Remote lldpXMedRemMedia PolicyDscp Local lldpXMedLocLocatio nSubtype Remote lldpXMedRemLocati onSubtype Local lldpXMedLocLocatio nInfo Remote lldpXMedRemLocati onInfo Local lldpXMedLocXPoED eviceType Remote lldpXMedRemXPoED eviceType Local lldpXMedLocXPoEPS EPowerSource DSCP Value 3 Location Ident
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object Power Value Local lldpXMedLocXPoEPS EPortPowerAv lldpXMedLocXPoEP DPowerReq Remote lldpXMedRemXPoEP SEPowerAv lldpXMedRemXPoEP DPowerReq Link Layer Discovery Protocol (LLDP) 583
Microsoft Network Load Balancing 31 This functionality is supported on the S4820T platform. Network Load Balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems. NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group.
• With NLB feature enabled, after learning the NLB ARP entry, all the subsequent traffic is flooded on all ports in VLAN1. With NLB, the data frame is forwarded to all the servers for them to perform load-balancing. NLB Multicast Mode Scenario Consider a sample topology in which four servers, namely S1 through S4, are configured as a cluster or a farm. This set of servers is connected to a Layer 3 switch, which in turn is connected to the end-clients.
flooded out of all member ports. Since all the servers in the cluster receive traffic, failover and balancing are preserved. Enable and Disable VLAN Flooding • The older ARP entries are overwritten whenever newer NLB entries are learned. • All ARP entries, learned after the feature is enabled, are deleted when the feature is disabled, and RP2 triggers an ARP resolution. The feature is disabled with the no ip vlan-flooding command.
Multicast Source Discovery Protocol (MSDP) 32 Multicast source discovery protocol (MSDP) is supported on the S4820T platform. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
Figure 79. Multicast Source Discovery Protocol (MSDP) RPs advertise each (S,G) in its domain in type, length, value (TLV) format. The total number of TLVs contained in the SA is indicated in the “Entry Count” field. SA messages are transmitted every 60 seconds, and immediately when a new source is detected. Figure 80.
Anycast RP Using MSDP, anycast RP provides load sharing and redundancy in PIM-SM networks. Anycast RP allows two or more rendezvous points (RPs) to share the load for source registration and the ability to act as hot backup routers for each other. Anycast RP allows you to configure two or more RPs with the same IP address on Loopback interfaces. The Anycast RP Loopback address are configured with a 32-bit mask, making it a host address.
• Accept Source-Active Messages that Fail the RFP Check • Specifying Source-Active Messages • Limiting the Source-Active Cache • Preventing MSDP from Caching a Local Source • Preventing MSDP from Caching a Remote Source • Preventing MSDP from Advertising a Local Source • Terminating a Peership • Clearing Peer Statistics • Debugging MSDP • MSDP with Anycast RP • MSDP Sample Configurations Figure 81.
Figure 82.
Figure 83.
Figure 84. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. 1. Enable MSDP. CONFIGURATION mode ip multicast-msdp 2. Peer PIM systems in different administrative domains.
Examples of Configuring and Viewing MSDP R3_E600(conf)#ip multicast-msdp R3_E600(conf)#ip msdp peer 192.168.0.1 connect-source Loopback 0 R3_E600(conf)#do show ip msdp summary Peer Addr Description Local Addr State Source SA Up/Down To view details about a peer, use the show ip msdp peer command in EXEC privilege mode. Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache).
Limiting the Source-Active Cache Set the upper limit of the number of active sources that the Dell Networking OS caches. The default active source limit is 500K messages. When the total number of active sources reaches the specified limit, subsequent active sources are dropped even if they pass the reverse path forwarding (RPF) and policy check. To limit the number of sources that SA cache stores, use the following command. • Limit the number of sources that can be stored in the SA cache.
Figure 85.
Figure 86.
Figure 87.
Figure 88. MSDP Default Peer, Scenario 4 Specifying Source-Active Messages To specify messages, use the following command. • Specify the forwarding-peer and originating-RP from which all active sources are accepted without regard for the RPF check. CONFIGURATION mode ip msdp default-peer ip-address list If you do not specify an access list, the peer accepts all sources that peer advertises. All sources from RPs that the ACL denies are subject to the normal RPF check.
Dell(conf)#ip access-list standard fifty Dell(conf)#seq 5 permit host 200.0.0.50 Dell#ip msdp sa-cache MSDP Source-Active Cache - 3 entries GroupAddr SourceAddr RPAddr LearnedFrom 229.0.50.2 24.0.50.2 200.0.0.50 10.0.50.2 229.0.50.3 24.0.50.3 200.0.0.50 10.0.50.2 229.0.50.4 24.0.50.4 200.0.0.50 10.0.50.2 Dell#ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 3 rejected SAs received, cache-size 32766 UpTime GroupAddr SourceAddr RPAddr 00:33:18 229.0.50.64 24.0.50.64 200.0.1.50 00:33:18 229.0.50.65 24.0.50.
Example of Verifying the System is not Caching Local Sources When you apply this filter, the SA cache is not affected immediately. When sources that are denied by the ACL time out, they are not refreshed. Until they time out, they continue to reside in the cache. To apply the redistribute filter to entries already present in the SA cache, first clear the SA cache. You may optionally store denied sources in the rejected SA cache. R1_E600(conf)#do show run msdp ! ip multicast-msdp ip msdp peer 192.168.0.
R3_E600(conf)#do show ip msdp sa-cache R3_E600(conf)# R3_E600(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 0.0.0.0(639) Connect Source: Lo 0 State: Listening Up/Down Time: 00:01:19 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 0/0 SAs learned from this peer: 0 SA Filtering: Input (S,G) filter: myremotefilter Output (S,G) filter: none Preventing MSDP from Advertising a Local Source To prevent MSDP from advertising a local source, use the following command.
Logging Changes in Peership States To log changes in peership states, use the following command. • Log peership state changes. CONFIGURATION mode ip msdp log-adjacency-changes Terminating a Peership MSDP uses TCP as its transport protocol. In a peering relationship, the peer with the lower IP address initiates the TCP session, while the peer with the higher IP address listens on port 639. • Terminate the TCP connection with a peer.
Example of the clear ip msdp peer Command and Verifying Statistics are Cleared R3_E600(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.3(639) Connect Source: Lo 0 State: Established Up/Down Time: 00:04:26 Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 5/0 SAs learned from this peer: 0 SA Filtering: Input (S,G) filter: myremotefilter Output (S,G) filter: none R3_E600(conf)#do clear ip msdp peer 192.168.0.
technique is less effective as traffic increases because preemptive load balancing requires prior knowledge of traffic distributions. • lack of scalable register decasulation: With only a single RP per group, all joins are sent to that RP regardless of the topological distance between the RP, sources, and receivers, and data is transmitted to the RP until the SPT switch threshold is reached.
Configuring Anycast RP To configure anycast RP, use the following commands. 1. In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback 2. Make this address the RP for the group. CONFIGURATION mode ip pim rp-address 3. In each routing domain that has multiple RPs serving a group, create another Loopback interface on each RP serving the group with a unique IP address.
CONFIGURATION mode ip msdp originator-id Examples of R1, R2, and R3 Configuration for MSDP with Anycast RP The following example shows an R1 configuration for MSDP with Anycast RP. ip multicast-routing ! interface GigabitEthernet 1/1 ip pim sparse-mode ip address 10.11.3.1/24 no shutdown ! interface GigabitEthernet 1/2 ip address 10.11.2.1/24 no shutdown ! interface GigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.1.12/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.
no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.1/32 no shutdown ! interface Loopback 1 ip address 192.168.0.22/32 no shutdown ! router ospf 1 network 10.11.1.0/24 area 0 network 10.11.4.0/24 area 0 network 192.168.0.22/32 area 0 redistribute static redistribute connected redistribute bgp 100 ! router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.3 ebgp-multihop 255 neighbor 192.168.0.3 no shutdown ! ip multicast-msdp ip msdp peer 192.168.0.
neighbor neighbor neighbor neighbor ! ip ip ip ip ! ip ip ! ip 192.168.0.22 192.168.0.22 192.168.0.22 192.168.0.22 remote-as 100 ebgp-multihop 255 update-source Loopback 0 no shutdown multicast-msdp msdp peer 192.168.0.11 connect-source Loopback 0 msdp peer 192.168.0.22 connect-source Loopback 0 msdp sa-filter out 192.168.0.22 route 192.168.0.1/32 10.11.0.23 route 192.168.0.22/32 10.11.0.23 pim rp-address 192.168.0.3 group-address 224.0.0.
interface GigabitEthernet 2/1 ip pim sparse-mode ip address 10.11.4.1/24 no shutdown ! interface GigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.1.21/24 no shutdown ! interface GigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.0.23/24 no shutdown ! interface Loopback 0 ip address 192.168.0.2/32 no shutdown ! router ospf 1 network 10.11.1.0/24 area 0 network 10.11.4.0/24 area 0 network 192.168.0.
redistribute connected redistribute bgp 200 ! router bgp 200 redistribute ospf 1 neighbor 192.168.0.2 remote-as 100 neighbor 192.168.0.2 ebgp-multihop 255 neighbor 192.168.0.2 update-source Loopback 0 neighbor 192.168.0.2 no shutdown ! ip multicast-msdp ip msdp peer 192.168.0.1 connect-source Loopback 0 ! ip route 192.168.0.2/32 10.11.0.23 ip multicast-routing ! interface GigabitEthernet 4/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown ! interface GigabitEthernet 4/22 ip address 10.10.42.
33 Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) is supported on the S4820T platform. Protocol Overview MSTP — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves on per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances.
Spanning Tree Variations The Dell Networking OS supports four variations of spanning tree, as shown in the following table. Table 49. Spanning Tree Variations Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information The following describes the MSTP implementation information.
• Prevent Network Disruptions with BPDU Guard • Enabling SNMP Traps for Root Elections and Topology Changes • Configuring Spanning Trees as Hitless Enable Multiple Spanning Tree Globally MSTP is not enabled by default. To enable MSTP globally, use the following commands. When you enable MSTP, all physical, VLAN, and port-channel interfaces that are enabled and in Layer 2 mode are automatically part of the MSTI 0. • Within an MSTI, only one path from any bridge to any other bridge is enabled.
msti Specify the keyword vlan then the VLANs that you want to participate in the MSTI. Examples of Configuring and Viewing MSTI The following examples shows the msti command. Dell(conf)#protocol spanning-tree mstp Dell(conf-mstp)#msti 1 vlan 100 Dell(conf-mstp)#msti 2 vlan 200-300 Dell(conf-mstp)#show config ! protocol spanning-tree mstp no disable MSTI 1 VLAN 100 MSTI 2 VLAN 200-300 All bridges in the MSTP region must have the same VLAN-to-instance mapping.
Influencing MSTP Root Selection MSTP determines the root bridge, but you can assign one bridge a lower priority to increase the probability that it becomes the root bridge. To change the bridge priority, use the following command. • Assign a number as the bridge priority. PROTOCOL MSTP mode msti instance bridge-priority priority A lower number increases the probability that the bridge becomes the root bridge. The range is from 0 to 61440, in increments of 4096. The default is 32768.
NOTE: Some non-Dell Networking OS equipment may implement a non-null default region name. SFTOS, for example, uses the Bridge ID, while others may use a MAC address. Changing the Region Name or Revision To change the region name or revision, use the following commands. • Change the region name. PROTOCOL MSTP mode • name name Change the region revision number.
To change the MSTP parameters, use the following commands on the root bridge. 1. Change the forward-delay parameter. PROTOCOL MSTP mode forward-delay seconds The range is from 4 to 30. The default is 15 seconds. 2. Change the hello-time parameter. PROTOCOL MSTP mode hello-time seconds NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. The default is 2 seconds. 3. Change the max-age parameter.
Modifying the Interface Parameters You can adjust two interface parameters to increase or decrease the probability that a port becomes a forwarding port. • • Port cost is a value that is based on the interface type. The greater the port cost, the less likely the port is selected to be a forwarding port. Port priority influences the likelihood that a port is selected to be a forwarding port in case that several ports have the same port cost.
you implement only bpduguard, although the interface is placed in an Error Disabled state when receiving the BPDU, the physical interface remains up and spanning-tree drops packets in the hardware after a BPDU violation. BPDUs are dropped in the software after receiving the BPDU violation. This feature is the same as PortFast mode in spanning tree. CAUTION: Configure EdgePort only on links connecting to an end station. EdgePort can cause loops if you enable it on an interface connected to a network.
To view the enable status of this feature, use the show running-config spanning-tree mstp command from EXEC Privilege mode. MSTP Sample Configurations The running-configurations support the topology shown in the following illustration. The configurations are from Dell Networking OS systems. Figure 91. MSTP with Three VLANs Mapped to Two Spanning Tree Instances Router 1 Running-Configuration This example uses the following steps: 1.
! (Step 3) interface Vlan 100 no ip address tagged GigabitEthernet 1/21,31 no shutdown ! interface Vlan 200 no ip address tagged GigabitEthernet 1/21,31 no shutdown ! interface Vlan 300 no ip address tagged GigabitEthernet 1/21,31 no shutdown Router 2 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3.
Router 3 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
(Step 2) interface 1/0/31 no shutdown spanning-tree port mode enable switchport protected 0 exit interface 1/0/32 no shutdown spanning-tree port mode enable switchport protected 0 exit (Step 3) interface vlan 100 tagged 1/0/31 tagged 1/0/32 exit interface vlan 200 tagged 1/0/31 tagged 1/0/32 exit interface vlan 300 tagged 1/0/31 tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. • Display BPDUs.
– As shown in the following, the MSTP routers are located in the same region. – Does the debug log indicate that packets are coming from a “Different Region”? If so, one of the key parameters is not matching. • MSTP Region Name and Revision. – The configured name and revisions must be identical among all the routers.
The following example shows viewing the debug log of an unsuccessful MSTP configuration. 4w0d4h : MSTP: Received BPDU on Gi 2/21 : ProtId: 0, Ver: 3, Bpdu Type: MSTP, Flags 0x78Different Region (Indicates MSTP routers are in different regions and are not communicating with each other.) CIST Root Bridge Id: 32768:0001.e806.953e, Ext Path Cost: 0 Regional Bridge Id: 32768:0001.e806.
Multicast Features 34 Multicast features are supported on the S4820T platform. NOTE: Multicast is supported on secondary IP addresses on the S4820T platform. NOTE: Multicast routing for IPv6 is not supported. The Dell Networking Operating System (OS) supports the following multicast protocols: • PIM Sparse-Mode (PIM-SM) • Internet Group Management Protocol (IGMP) • Multicast Source Discovery Protocol (MSDP) Enabling IP Multicast Enable IP multicast is supported on the S4820TS6000 platform.
Figure 92. Multicast with ECMP Implementation Information Because protocol control traffic in Dell Networking OS is redirected using the MAC address, and multicast control traffic and multicast data traffic might map to the same MAC address, Dell Networking OS might forward data traffic with certain MAC addresses to the CPU in addition to control traffic. As the upper5 bits of an IP Multicast address are dropped in the translation, 32 different multicast group IDs all map to the same Ethernet address.
Protocol Ethernet Address PIM-SM 01:00:5e:00:00:0d • The Dell Networking OS implementation of MTRACE is in accordance with IETF draft draft-fennertraceroute-ipm. • Multicast is not supported on secondary IP addresses. • Egress L3 ACL is not applied to multicast data traffic if you enable multicast routing. First Packet Forwarding for Lossless Multicast All initial multicast packets are forwarded to receivers to achieve lossless multicast.
• If the limit is decreased after it is reached, Dell Networking OS does not clear the existing sessions. Entries are cleared after a timeout (you may also clear entries using clear ip mroute). NOTE: Dell Networking OS waits at least 30 seconds between stopping and starting IGMP join processing. You may experience this delay when manipulating the limit after it is reached.
no access list limiting Receiver 1, so both IGMP reports are accepted, and two corresponding entries are created in the routing table. Figure 93. Preventing a Host from Joining a Group Table 51. Preventing a Host from Joining a Group — Description Location Description 1/21 • • • Multicast Features Interface GigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.
Location Description • no shutdown 1/31 • • • • Interface GigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.1/24 no shutdown 2/1 • • • • Interface GigabitEthernet 2/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface GigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31 • • • • Interface GigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.
Location Description • • ip igmp access-group igmpjoinfilR2G2 no shutdown Rate Limiting IGMP Join Requests If you expect a burst of IGMP Joins, protect the IGMP process from overload by limiting that rate at which new groups can be joined. Hosts whose IGMP requests are denied will use the retry mechanism built-in to IGMP so that they’re membership is delayed rather than permanently denied. • Limit the rate at which new groups can be joined.
Figure 94. Preventing a Source from Transmitting to a Group Table 52. Preventing a Source from Transmitting to a Group — Description Location Description 1/21 • • • • Interface GigabitEthernet 1/21 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31 • • • Interface GigabitEthernet 1/31 ip pim sparse-mode ip address 10.11.13.
Location Description • no shutdown 2/1 • • • • Interface GigabitEthernet 2/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11 • • • • Interface GigabitEthernet 2/11 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31 • • • • Interface GigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1 • • • • Interface GigabitEthernet 3/1 ip pim sparse-mode ip address 10.11.5.
Preventing a PIM Router from Processing a Join To permit or deny PIM Join/Prune messages on an interface using an extended IP access list, use the following command. NOTE: Dell Networking recommends not using the ip pim join-filter command on an interface between a source and the RP router. Using this command in this scenario could cause problems with the PIM-SM source registration process resulting in excessive traffic being sent to the CPU of both the RP and PIM DR of the source.
Open Shortest Path First (OSPFv2 and OSPFv3) 35 Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on the S4820T platform. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell Networking Operating System (OS). NOTE: The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same between OSPFv2 and OSPFv3.
Areas allow you to further organize your routers within in the AS. One or more areas are required within the AS. Areas are valuable in that they allow sub-networks to "hide" within the AS, thus minimizing the size of the routing tables on all routers. An area within the AS may not see the details of another area’s topology. AS areas are known by their area number or the router’s IP address. Figure 95. Autonomous System Areas Area Types The backbone of the network is Area 0. It is also called Area 0.0.0.
The backbone is the only area with a default area number. All other areas can have their Area ID assigned in the configuration. In the previous example, Routers A, B, C, G, H, and I are the Backbone. • A stub area (SA) does not receive external route information, except for the default route. These areas do receive information from inter-area (IA) routes. NOTE: Configure all routers within an assigned stub area as stubby, and not generate LSAs that do not apply.
Figure 96. OSPF Routing Examples Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example. Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone.
An ABR can connect to many areas in an AS, and is considered a member of each area it connects to. Autonomous System Border Router (ASBR) The autonomous system border area router (ASBR) connects to more than one AS and exchanges information with the routers in other ASs. Generally, the ASBR connects to a non-interior gate protocol (IGP) such as BGP or uses static routes.
available. An ABR floods the information for the router (for example, the ASBR where the Type 5 advertisement originated. The link-state ID for Type 4 LSAs is the router ID of the described ASBR). • Type 5: LSA — These LSAs contain information imported into OSPF from other routing processes. They are flooded to all areas, except stub areas. The link-state ID of the Type 5 LSA is the external network number.
Router Priority and Cost Router priority and cost is the method the system uses to “rate” the routers. For example, if not assigned, the system selects the router with the highest priority as the DR. The second highest priority is the BDR. • • Priority is a numbered rating 0 to 255. The higher the number, the higher the priority. Cost is a numbered rating 1 to 65535. The higher the number, the greater the cost. The cost assigned reflects the cost should the router fail.
Dell Networking OS supports stub areas, totally stub (no summary) and not so stubby areas (NSSAs) and supports the following LSAs, as described earlier.
• Helper-reject role in which OSPF does not participate in the graceful restart of a neighbor. OSPFv2 supports helper-only and restarting-only roles. By default, both helper and restarting roles are enabled. OSPFv2 supports the helper-reject role globally on a router. OSPFv3 supports helper-only and restarting-only roles. The helper-only role is enabled by default. To enable the restarting role in addition to the helper-only role, configure a grace period.
example, if you create five OSPFv2 processes on a system, there must be at least five interfaces assigned in Layer 3 mode. Each OSPFv2 process is independent. If one process loses adjacency, the other processes continue to function. Processing SNMP and Sending SNMP Traps Though there are may be several OSPFv2 processes, only one process can process simple network management protocol (SNMP) requests and send SNMP traps.
LSType:Type-5 AS External(5) Age:1 Seq:0x8000000c id:170.1.2.0 Adv:6.1.0.0 Netmask:255.255.255.0 fwd:0.0.0.0 E2, tos:0 metric:0 To confirm that you enabled RFC-2328–compliant OSPF flooding, use the show ip ospf command. Dell#show ip ospf Routing Process ospf 1 with ID 2.2.2.
Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 1.1.1.1 (Backup Designated Router) Dell (conf-if-gi-2/2)# Configuration Information The interfaces must be in Layer-3 mode (assigned an IP address) and enabled so that they can send and receive traffic. The OSPF process must know about these interfaces. To make the OSPF process aware of these interfaces, they must be assigned to OSPF areas. You must configure OSPF GLOBALLY on the system in CONFIGURATION mode.
If implementing multi-process OSPF, create an equal number of Layer 3 enabled interfaces and OSPF process IDs. For example, if you create four OSPFv2 process IDs, you must have four interfaces with Layer 3 enabled. 1. Assign an IP address to an interface. CONFIG-INTERFACE mode ip address ip-address mask The format is A.B.C.D/M. If you are using a Loopback interface, refer to Loopback Interfaces. 2. Enable the interface. CONFIG-INTERFACE mode no shutdown 3.
• Reset the OSPFv2 process. EXEC Privilege mode • clear ip ospf process-id View the current OSPFv2 status. EXEC mode show ip ospf process-id Example of Viewing the Current OSPFv2 Status Dell#show ip ospf 55555 Routing Process ospf 55555 with ID 10.10.10.
3. Return to CONFIGURATION mode to enable the OSPFv2 process globally. CONFIGURATION mode router ospf process-id [vrf] The range is from 0 to 65535. After the OSPF process and the VRF are tied together, the OSPF process ID cannot be used again in the system. If you try to enable more OSPF processes than available Layer 3 interfaces, the following message displays: C300(conf)#router ospf 1 % Error: No router ID available.
In the example below, an IP address is assigned to an interface and an OSPFv2 area is defined that includes the IP address of a Layer 3 interface. The first bold lines assign an IP address to a Layer 3 interface, and theno shutdown command ensures that the interface is UP. The second bold line assigns the IP address of an interface to an area. Example of Enabling OSPFv2 and Assigning an Area to an Interface Dell#(conf)#int gi 4/44 Dell(conf-if-gi-4/44)#ip address 10.10.10.
Example of Viewing OSPF Status on a Loopback Interface Dell#show ip ospf 1 int GigabitEthernet 13/23 is up, line protocol is up Internet Address 10.168.0.1/24, Area 0.0.0.1 Process ID 1, Router ID 10.168.253.2, Network Type BROADCAST, Cost: 1 Transmit Delay is 1 sec, State DROTHER, Priority 1 Designated Router (ID) 10.168.253.5, Interface address 10.168.0.4 Backup Designated Router (ID) 192.168.253.3, Interface address 10.168.0.
Example of the show ip ospf database database-summary Command To view which LSAs are transmitted, use the show ip ospf database process-id databasesummary command in EXEC Privilege mode. Dell#show ip ospf 34 database database-summary OSPF Router with ID (10.1.2.100) (Process ID 34) Area 2.2.2.2 3.3.3.3 Dell# ID Router Network S-Net S-ASBR Type-7 Subtotal 1 0 0 0 0 1 1 0 0 0 0 1 To view information on areas, use the show ip ospf process-id command in EXEC Privilege mode.
Example of Viewing Passive Interfaces When you configure a passive interface, the show ip ospf process-id interface command adds the words passive interface to indicate that the hello packets are not transmitted on that interface (shown in bold). Dell#show ip ospf 34 int GigabitEthernet 0/0 is up, line protocol is down Internet Address 10.1.2.100/24, Area 1.1.1.1 Process ID 34, Router ID 10.1.2.100, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State DOWN, Priority 1 Designated Router (ID) 10.1.
NOTE: A higher convergence level can result in occasional loss of OSPF adjacency. Generally, convergence level 1 meets most convergence requirements. Only select higher convergence levels following consultation with Dell Technical Support. Examples of the fast-converge Command In the examples below, Convergence Level shows the fast-converge parameter setting and Min LSA origination shows the LSA parameters (shown in bold).
• Change the time interval between hello-packet transmission. CONFIG-INTERFACE mode ip ospf hello-interval seconds – seconds: the range is from 1 to 65535 (the default is 10 seconds). • The hello interval must be the same on all routers in the OSPF network. Use the MD5 algorithm to produce a message digest or key, which is sent instead of the key. CONFIG-INTERFACE mode ip ospf message-digest-key keyid md5 key – keyid: the range is from 1 to 255. – Key: a character string.
The bold lines in the example show the change on the interface. The change is reflected in the OSPF configuration. Dell(conf-if)#ip ospf cost 45 Dell(conf-if)#show config ! interface GigabitEthernet 0/0 ip address 10.1.2.100 255.255.255.0 no shutdown ip ospf cost 45 Dell(conf-if)#end Dell#show ip ospf 34 interface GigabitEthernet 0/0 is up, line protocol is up Internet Address 10.1.2.100/24, Area 2.2.2.2 Process ID 34, Router ID 10.1.2.
Enabling OSPFv2 Graceful Restart Graceful restart is enabled for the global OSPF process. For more information, refer to Graceful Restart. The Dell Networking implementation of OSPFv2 graceful restart enables you to specify: • grace period — the length of time the graceful restart process can last before OSPF terminates it. • helper-reject neighbors — the router ID of each restart router that does not receive assistance from the configured router.
3. Configure the graceful restart role or roles that this OSPFv2 router performs. CONFIG-ROUTEROSPF- id mode graceful-restart role [helper-only | restart-only] Dell Networking OS supports the following options: • Helper-only: the OSPFv2 router supports graceful-restart only as a helper router. • Restart-only: the OSPFv2 router supports graceful-restart only during unplanned restarts. By default, OSPFv2 supports both restarting and helper roles.
seq sequence-number {deny |permit} ip-prefix [ge min-prefix-length] [le maxprefix-length] The optional parameters are: – ge min-prefix-length: is the minimum prefix length to match (from 0 to 32). – le max-prefix-length: is the maximum prefix length to match (from 0 to 32). For configuration information about prefix lists, refer to Access Control Lists (ACLs). Applying Prefix Lists To apply prefix lists to incoming or outgoing OSPF routes, use the following commands.
network 10.1.2.32 0.0.0.255 area 2.2.2.2 network 10.1.3.24 0.0.0.255 area 3.3.3.3 distribute-list dilling in Dell(conf-router_ospf)# Troubleshooting OSPFv2 Dell Networking OS has several tools to make troubleshooting easier. Be sure to check the following, as these questions represent typical issues that interrupt an OSPFv2 process. NOTE: The following is not a comprehensive list, just some examples of typical troubleshooting checks.
• View debug messages. EXEC Privilege mode debug ip ospf process-id [event | packet | spf | database-timers rate-limit] To view debug messages for a specific OSPF process ID, use the debug ip ospf process-id command. If you do not enter a process ID, the command applies to the first OSPF process. To view debug messages for a specific operation, enter one of the optional keywords: – event: view OSPF event messages. – packet: view OSPF packet information. – spf: view SPF information.
Figure 98. Basic Topology and CLI Commands for OSPFv2 OSPF Area 0 — Gl 1/1 and 1/2 router ospf 11111 network 10.0.11.0/24 area 0 network 10.0.12.0/24 area 0 network 192.168.100.0/24 area 0 ! interface GigabitEthernet 1/1 ip address 10.1.11.1/24 no shutdown ! interface GigabitEthernet 1/2 ip address 10.2.12.2/24 no shutdown ! interface Loopback 10 ip address 192.168.100.100/24 no shutdown OSPF Area 0 — Gl 3/1 and 3/2 router ospf 33333 network 192.168.100.0/24 area 0 network 10.0.13.0/24 area 0 network 10.
OSPF Area 0 — Gl 2/1 and 2/2 router ospf 22222 network 192.168.100.0/24 area 0 network 10.2.21.0/24 area 0 network 10.2.22.0/24 area 0 ! interface Loopback 20 ip address 192.168.100.20/24 no shutdown ! interface GigabitEthernet 2/1 ip address 10.2.21.2/24 no shutdown ! interface GigabitEthernet 2/2 ip address 10.2.22.2/24 no shutdown Configuration Task List for OSPFv3 (OSPF for IPv6) Open shortest path first version 3 (OSPF for IPv6) is supported on the S4820T platform.
Assigning IPv6 Addresses on an Interface To assign IPv6 addresses to an interface, use the following commands. 1. Assign an IPv6 address to the interface. CONF-INT-type slot/port mode ipv6 address ipv6 address IPv6 addresses are normally written as eight groups of four hexadecimal digits; separate each group by a colon (:). The format is A:B:C::F/128. 2. Bring up the interface.
– number: the IPv4 address. The format is A.B.C.D. NOTE: Enter the router-id for an OSPFv3 router as an IPv4 IP address. • Disable OSPF. CONFIGURATION mode • no ipv6 router ospf process-id Reset the OSPFv3 process. EXEC Privilege mode clear ipv6 ospf process Enter an example that illustrates the current task (optional). Enter the tasks the user should do after finishing this task (optional). Configuring Stub Areas To configure IPv6 stub areas, use the following command.
To indicate that hello packets are not transmitted on that interface, when you configure a passive interface, the show ipv6 ospf interface command adds the words passive interface. Redistributing Routes You can add routes from other routing instances or protocols to the OSPFv3 process. With the redistribute command, you can include RIP, static, or directly connected routes in the OSPF process. Route redistribution is also supported between OSPF Routing process IDs.
period command. The grace period is the time that the OSPFv3 neighbors continue to advertise the restarting router as though it is fully adjacent. When you enable graceful restart (restarting role), an OSPFv3 restarting expects its OSPFv3 neighbors to help when it restarts by not advertising the broken link. When you enable the helper-reject role on an interface using the ipv6 ospf graceful-restart helper-reject command, you reconfigure OSPFv3 graceful restart to function in a restarting-only role.
• Display the Type-11 Grace LSAs sent and received on an OSPFv3 router (shown in the following example). EXEC Privilege mode • show ipv6 ospf database grace-lsa Display the currently configured OSPFv3 parameters for graceful restart (shown in the following example). EXEC Privilege mode show ipv6 ospf database database-summary Examples of the Graceful Restart show Commands The following example shows the show run ospf command. Dell#show run ospf ! router ospf 1 router-id 200.1.1.
The following example shows the show ipv6 ospf database grace-lsa command. Dell#show ipv6 ospf database grace-lsa ! Type-11 Grace LSA (Area 0) LS Age Link State ID Advertising Router LS Seq Number Checksum Length Associated Interface Restart Interval Restart Reason : : : : : : : : : 10 6.16.192.66 100.1.1.1 0x80000001 0x1DF1 36 Gi 5/3 180 Switch to Redundant Processor OSPFv3 Authentication Using IPsec OSPFv3 authentication using IP security (IPsec) is supported only on S4820T platform.
between the two mechanisms is the extent of the coverage. ESP only protects IP header fields if they are encapsulated by ESP. You decide the set of IPsec protocols that are employed for authentication and encryption and the ways in which they are employed. When you correctly implement and deploy IPsec, it does not adversely affect users or hosts. AH and ESP are designed to be cryptographic algorithm-independent.
– Configuring IPsec Authentication on an Interface – Configuring IPsec Encryption on an Interface – Configuring IPsec Authentication for an OSPFv3 Area – Configuring IPsec Encryption for an OSPFv3 Area – Displaying OSPFv3 IPsec Security Policies Configuring IPsec Authentication on an Interface To configure, remove, or display IPsec authentication on an interface, use the following commands.
NOTE: When you configure encryption using the ipv6 ospf encryption ipsec command, you enable both IPsec encryption and authentication. However, when you enable authentication on an interface using the ipv6 ospf authentication ipsec command, you do not enable encryption at the same time. The SPI value must be unique to one IPsec security policy (authentication or encryption) on the router. Configure the same authentication policy (the same SPI and key) on each OSPFv3 interface in a link.
If you have enabled IPSec encryption in an OSPFv3 area using the area encryption command, you cannot use the area authentication command in the area at the same time. The configuration of IPSec authentication on an interface-level takes precedence over an area-level configuration. If you remove an interface configuration, an area authentication policy that has been configured is applied to the interface. • Enable IPSec authentication for OSPFv3 packets in an area.
– area area-id: specifies the area for which OSPFv3 traffic is to be encrypted. For area-id, enter a number or an IPv6 prefix. – spi number: is the security policy index (SPI) value. The range is from 256 to 4294967295. – esp encryption-algorithm: specifies the encryption algorithm used with ESP. The valid values are 3DES, DES, AES-CBC, and NULL. For AES-CBC, only the AES-128 and AES-192 ciphers are supported. – key: specifies the text string used in the encryption.
Examples of the show crypto ipsec Commands In the first example, the keys are not encrypted (shown in bold). In the second and third examples, the keys are encrypted (shown in bold). The following example shows the show crypto ipsec policy command.
outbound ah sas spi : 500 (0x1f4) transform : ah-md5-hmac in use settings : {Transport, } replay detection support : N STATUS : ACTIVE inbound esp sas outbound esp sas Interface: TenGigabitEthernet 0/1 Link Local address: fe80::201:e8ff:fe40:4d11 IPSecv6 policy name: OSPFv3-1-600 inbound ah sas outbound ah sas inbound esp sas spi : 600 (0x258) transform : esp-des esp-sha1-hmac in use settings : {Transport, } replay detection support : N STATUS : ACTIVE outbound esp sas spi : 600 (0x258) transform : esp-des
• show ipv6 routes Viewing Summary Information To get general route, configuration, links status, and debug information, use the following commands. • View the summary information of the IPv6 routes. EXEC Privilege mode • show ipv6 route summary View the summary information for the OSPFv3 database. EXEC Privilege mode • show ipv6 ospf database View the configuration of OSPFv3 neighbors. EXEC Privilege mode • show ipv6 ospf neighbor View debug messages for all OSPFv3 interfaces.
Policy-based Routing (PBR) 36 Policy-based Routing (PBR) allows a switch to make routing decisions based on policies applied to an interface.
To enable a PBR, you create a redirect list. Redirect lists are defined by rules, or routing policies.
Implementing Policy-based Routing with Dell Networking OS • Non-contiguous bitmasks for PBR • Hot-Lock PBR Non-contiguous bitmasks for PBR Non-contiguous bitmasks for PBR allows more granular and flexible control over routing policies. Network addresses that are in the middle of a subnet can be included or excluded. Specific bitmasks can be entered using the dotted decimal format. Non-contiguous bitmask example Dell#show ip redirect-list IP redirect-list rcl0: Defined as: seq 5 permit ip 200.200.200.
The following example creates a redirect list by the name of “xyz.” Dell(conf)#ip redirect-list ? WORD Redirect-list name (max 16 chars) Dell(conf)#ip redirect-list xyz Create a Rule for a Redirect-list Use the following command in CONFIGURATION REDIRECT-LIST mode to set the rules for the redirect list. You can enter the command multiple times and create a sequence of redirect rules. Use the seq nn redirect version of the command to organize your rules.
Dell(conf-redirect-list)#redirect 3.3.3.3 ? <0-255> An IP protocol number icmp Internet Control Message Protocol ip Any Internet Protocol tcp Transmission Control Protocol udp User Datagram Protocol Dell(conf-redirect-list)#redirect 3.3.3.3 ip ? A.B.C.D Source address any Any source host host A single source host Dell(conf-redirect-list)#redirect 3.3.3.3 ip 222.1.1.1 ? Mask A.B.C.D or /nn Mask in dotted decimal or in format Dell(conf-redirect-list)#redirect 3.3.3.3 ip 222.1.1.1 /32 ? A.B.C.
PBR Exceptions (Permit) Use the command permit to create an exception to a redirect list. Exceptions are used when a forwarding decision should be based on the routing table rather than a routing policy. Dell Networking OS assigns the first available sequence number to a rule configured without a sequence number and inserts the rule into the PBR CAM region next to the existing entries. Since the order of rules is important, ensure that you configure any necessary sequence numbers.
Applying a Redirect-list to an Interface Example: Dell(conf-if-te-2/0)#ip redirect-group xyz Dell(conf-if-te-2/0)# Applying a Redirect-list to an Interface Example: Dell(conf-if-te-1/0)#ip redirect-group test Dell(conf-if-te-1/0)#ip redirect-group xyz Dell(conf-if-te-1/0)#show config ! interface TenGigabitEthernet 1/0 no ip address ip redirect-group test ip redirect-group xyz shutdown Dell(conf-if-te-1/0)# In addition to supporting multiple redirect-lists in a redirect-group, multiple redirect-groups are su
NOTE: If, the redirect-list is applied to an interface, the output of show ip redirect-list redirect-listname command displays reachability and ARP status for the specified next-hop.
Create the Redirect-List GOLD EDGE_ROUTER(conf-if-Te-2/23)#ip redirect-list GOLD EDGE_ROUTER(conf-redirect-list)#description Route GOLD traffic to ISP_GOLD. EDGE_ROUTER(conf-redirect-list)#direct 10.99.99.254 ip 192.168.1.0/24 any EDGE_ROUTER(conf-redirect-list)#redirect 10.99.99.254 ip 192.168.2.0/24 any EDGE_ROUTER(conf-redirect-list)# seq 15 permit ip any any EDGE_ROUTER(conf-redirect-list)#show config ! ip redirect-list GOLD description Route GOLD traffic to ISP_GOLD. seq 5 redirect 10.99.99.254 ip 192.
View Redirect-List GOLD EDGE_ROUTER#show ip redirect-list IP redirect-list GOLD: Defined as: seq 5 redirect 10.99.99.254 ip 192.168.1.0/24 any, Next-hop reachable (via Te 3/23), ARP resolved seq 10 redirect 10.99.99.254 ip 192.168.2.
37 PIM Sparse-Mode (PIM-SM) Protocol-independent multicast sparse-mode (PIM-SM) is supported on the S4820T platform. PIM-SM is a multicast protocol that forwards multicast traffic to a subnet only after a request using a PIM Join message; this behavior is the opposite of PIM-Dense mode, which forwards multicast traffic to all subnets until a request to stop. Implementation Information Be aware of the following PIM-SM implementation information.
received becomes the outgoing interface associated with the (*,G) entry. This process constructs an RPT branch to the RP. 3. If a host on the same subnet as another multicast receiver sends an IGMP report for the same multicast group, the gateway takes no action.
Important Point to Remember If you use a Loopback interface with a /32 mask as the RP, you must enable PIM Sparse-mode on the interface. Configuring PIM-SM Configuring PIM-SM is a three-step process. 1. Enable multicast routing (refer to the following step). 2. Select a rendezvous point. 3. Enable PIM-SM on an interface. Enable multicast routing. CONFIGURATION mode ip multicast-routing Related Configuration Tasks The following are related PIM-SM configuration tasks.
NOTE: You can influence the selection of the Rendezvous Point by enabling PIM-Sparse mode on a Loopback interface and assigning a low IP address. To display PIM neighbors for each interface, use the show ip pim neighbor command EXEC Privilege mode. Dell#show ip Neighbor Address 127.87.5.5 127.87.3.5 127.87.50.
To configure a global expiry time or to configure the expiry time for a particular (S,G) entry, use the following commands. 1. Enable global expiry timer for S, G entries. CONFIGURATION mode ip pim sparse-mode sg-expiry-timer seconds The range is from 211 to 86,400 seconds. The default is 210. 2. Create an extended ACL. CONFIGURATION mode ip access-list extended access-list-name 3. Specify the source and group to which the timer is applied using extended ACLs with permit rules only.
Configuring a Static Rendezvous Point The rendezvous point (RP) is a PIM-enabled interface on a router that acts as the root a group-specific tree; every group must have an RP. • Identify an RP by the IP address of a PIM-enabled or Loopback interface. ip pim rp-address Example of Viewing an RP on a Loopback Interface Dell#sh run int loop0 ! interface Loopback 0 ip address 1.1.1.1/32 ip pim sparse-mode no shutdown Dell#sh run pim ! ip pim rp-address 1.1.1.1 group-address 224.0.0.
interface out of which it is sent and a DR priority value. The router with the greatest priority value is the DR. If the priority value is the same for two routers, then the router with the greatest IP address is the DR. By default, the DR priority value is 192, so the IP address determines the DR. • Assign a DR priority value. INTERFACE mode • ip pim dr-priority priority-value Change the interval at which a router sends hello messages.
PIM Source-Specific Mode (PIM-SSM) 38 PIM source-specific mode (PIM-SSM) is supported on the platform. PIM-SSM is a multicast protocol that forwards multicast traffic from a single source to a subnet. In the other versions of protocol independent multicast (PIM), a receiver subscribes to a group only. The receiver receives traffic not just from the source in which it is interested but from all sources sending to that group.
Configure PIM-SMM Configuring PIM-SSM is a two-step process. 1. Configure PIM-SMM. 2. Enable PIM-SSM for a range of addresses. Related Configuration Tasks • Use PIM-SSM with IGMP Version 2 Hosts Enabling PIM-SSM To enable PIM-SSM, follow these steps. 1. Create an ACL that uses permit rules to specify what range of addresses should use SSM. CONFIGURATION mode ip access-list standard name 2. Enter the ip pim ssm-range command and specify the ACL you created.
• • • When you remove the mapping configuration, Dell Networking OS removes the corresponding (S,G) states that it created and re-establishes the original (*,G) states. You may enter multiple ssm-map commands for different access lists. You may also enter multiple ssm-map commands for the same access list, as long as they use different source addresses. When an extended ACL is associated with this command, Dell Networking OS displays an error message.
Interface Vlan 400 Group 239.0.0.1 Uptime 00:00:05 Expires Never Router mode INCLUDE Last reporter 10.11.4.2 Last reporter mode INCLUDE Last report received ALLOW Group source list Source address Uptime Expires 10.11.5.
39 Port Monitoring Port monitoring is supported on the S4820T platform. Mirroring is used for monitoring Ingress or Egress or both Ingress and Egress traffic on a specific port(s). This mirrored traffic can be sent to a port where a network sniffer can connect and monitor the traffic.
2 Te 0/0 Te 0/2 both Port N/A N/A Dell (conf-mon-sess-2)#do show running-config monitor session ! monitor session 1 source TenGigabitEthernet 0/0 destination TenGigabitEthernet 0/1 direction both ! monitor session 2 source TenGigabitEthernet 0/0 destination TenGigabitEthernet 0/2 direction both Dell (conf-mon-sess-2)# ! Port Monitoring The S4820T supports multiple source-destination statements in a single monitor session. The maximum number of source ports that can be supported in a session is 128.
0 10 20 30 300 Te Te Te Te Te 0/13 0/14 0/15 0/16 0/17 Gi Gi Gi Gi Gi 0/1 0/2 0/3 0/37 0/1 rx rx rx rx tx interface interface interface interface interface Port-based Port-based Port-based Port-based Port-based Example of Viewing a Monitoring Session In the example below, 0/25 and 0/26 belong to Port-pipe 1. This port-pipe has the same restriction of only four destination ports, new or used.
Configuring Port Monitoring To configure port monitoring, use the following commands. 1. Verify that the intended monitoring port has no configuration other than no shutdown, as shown in the following example. EXEC Privilege mode show interface 2. Create a monitoring session using the command monitor session from CONFIGURATION mode, as shown in the following example. CONFIGURATION mode monitor session monitor session type rpm/erpm type is an optional keyword, required only for rpm and erpm 3.
Note: Source as VLAN is achieved via Flow based mirroring. Please refer section Enabling Flow-Based Monitoring. In the following example, the host and server are exchanging traffic which passes through the uplink interface 1/1. Port 1/1 is the monitored port and port 1/42 is the destination port, which is configured to only monitor traffic received on tengigabitethernet 1/1 (host-originated traffic). Figure 100.
3. Apply the ACL to the monitored port. INTERFACE mode ip access-group access-list Example of the flow-based enable Command To view an access-list that you applied to an interface, use the show ip accounting access-list command from EXEC Privilege mode. Dell(conf)#monitor session 0 Dell(conf-mon-sess-0)#flow-based enable Dell(conf)#ip access-list ext testflow Dell(config-ext-nacl)#seq 5 permit icmp any any count bytes monitor Dell(config-ext-nacl)#seq 10 permit ip 102.1.1.
Remote Port Mirroring Example Remote port mirroring uses the analyzers shown in the aggregation network in Site A. The VLAN traffic on monitored links from the access network is tagged and assigned to a dedicated L2 VLAN. Monitored links are configured in two source sessions shown with orange and green circles. Each source session uses a separate reserved VLAN to transmit mirrored packets (mirrored source-session traffic is shown with an orange or green circle with a blue border).
• You can configure any switch in the network with source ports and destination ports, and allow it to function in an intermediate transport session for a reserved VLAN at the same time for multiple remote-port mirroring sessions. You can enable and disable individual mirroring sessions. • BPDU monitoring is not required to use remote port mirroring.
• By default, destination port sends the mirror traffic to the probe port by stripping off the rpm header. We can also configure the destination port to send the mirror traffic with the rpm header intact in the original mirror traffic.. • By default, ingress traffic on a destination port is dropped. Restrictions When you configure remote port mirroring, the following restrictions apply: • You can configure the same source port to be used in multiple source sessions.
R R 100 300 Active Active T Fo 0/44 T Fo 0/52 Configuring the Sample Remote Port Mirroring Remote port mirroring requires a source session (monitored ports on different source switches), a reserved tagged VLAN for transporting mirrored traffic (configured on source, intermediate, and destination switches), and a destination session (destination ports connected to analyzers on destination switches).
Dell(conf)#mac access-list standard mac_acl Dell(config-std-macl)#permit 00:00:00:00:11:22 count monitor Dell(config-std-macl)#exit Dell(conf)#interface vlan 100 Dell(conf-if-vl-100)#mac access-group mac_acl1 in Dell(conf-if-vl-100)#exit Dell(conf)#inte te 0/30 Dell(conf-if-te-0/30)#no shutdown Dell(conf-if-te-0/30)#switchport Dell(conf-if-te-0/30)#exit Dell(conf)#interface vlan 30 Dell(conf-if-vl-30)#mode remote-port-mirroring Dell(conf-if-vl-30)#tagged te 0/30 Dell(conf-if-vl-30)#exit Dell(conf)#interface
Dell(conf-if-vl-20)#mode remote-port-mirroring Dell(conf-if-vl-20)#tagged te 0/1 Dell(conf-if-vl-20)#exit Dell(conf)#interface vlan 30 Dell(conf-if-vl-30)#mode remote-port-mirroring Dell(conf-if-vl-30)#tagged te 0/2 Dell(conf-if-vl-30)#exit Dell(conf)#monitor session 1 type rpm Dell(conf-mon-sess-1)#source remote-vlan 10 dest te 0/3 Dell(conf-mon-sess-1)#exit Dell(conf)#monitor session 2 type rpm Dell(conf-mon-sess-2)#source remote-vlan 20 destination te 0/4 Dell(conf-mon-sess-2)#tagged destination te 0/4 D
5. Show the output for the LACP. Dell#show interfaces port-channel brief Codes: L - LACP Port-channel O - OpenFlow Controller Port-channel LAG L1 L2 Dell# Mode L3 L2 Status up up Uptime 00:01:17 00:00:58 Ports Te 0/44 Te 0/45 (Up) (Up) Configuring the Encapsulated Remote Port Mirroring The ERPM session copies traffic from the source ports/lags or source VLANs and forwards the traffic using routable GRE-encapsulated packets to the destination ip address specified in the session.
4 direction Specify rx, tx or both in case to monitor ingress/egress or both ingress and egress packets on the specified port.. 5 erpm source-ip dest-ip Specify the source ip address and the destination ip where the packet needs to be sent. 6 flow-based enable Specify flow-based enable for mirroring on a flow by flow basis and also for vlan as source. 7 no enable (Optional) No disable command is mandatory in order for a erpm session to be active.
ERPM Behavior on a typical Dell Networking OS The Dell Networking OS is designed to support only the Encapsulation of the data received / transmitted at the specified source port (Port A). An ERPM destination session / decapsulation of the ERPM packets at the destination Switch are not supported. As seen in the above figure, the packets received/transmitted on Port A will be encapsulated with an IP/GRE header plus a new L2 header and sent to the destination ip address (Port D’s ip address) on the sniffer.
39th byte in a given ERPM packet. The first 38/42 bytes of the header needs to be ignored/ chopped off. – Some tools support options to edit the capture file. We can make use of such features (for example: editcap ) and chop the ERPM header part and save it to a new trace file. This new file (i.e. the original mirrored packet) can be converted back into stream and fed to any egress interface. b.
Private VLANs (PVLAN) 40 The private VLAN (PVLAN) feature is supported on the S4820T platform. For syntax details about the commands described in this chapter, refer to the Private VLANs commands chapter in the Dell Networking OS Command Line Reference Guide. Private VLANs extend the Dell Networking OS security suite by providing Layer 2 isolation between ports within the same virtual local area network (VLAN).
– A primary VLAN has one or more secondary VLANs. – A primary VLAN and each of its secondary VLANs decrement the available number of VLAN IDs in the switch. – A primary VLAN has one or more promiscuous ports. – A primary VLAN might have one or more trunk ports, or none. • Secondary VLAN — a subdomain of the primary VLAN. – There are two types of secondary VLAN — community VLAN and isolated VLAN.
INTERFACE VLAN mode • [no] private-vlan mapping secondary-vlan vlan-list Display type and status of PVLAN interfaces. EXEC mode or EXEC Privilege mode • show interfaces private-vlan [interface interface] Display PVLANs and/or interfaces that are part of a PVLAN. EXEC mode or EXEC Privilege mode • show vlan private-vlan [community | interface | isolated | primary | primary_vlan | interface interface] Display primary-secondary VLAN mapping.
4. Select the PVLAN mode. INTERFACE mode switchport mode private-vlan {host | promiscuous | trunk} • host (isolated or community VLAN port) • promiscuous (intra-VLAN communication port) • trunk (inter-switch PVLAN hub port) Example of the switchport mode private-vlan Command For interface details, refer to Enabling a Physical Interface in the Interfaces chapter. NOTE: You cannot add interfaces that are configured as PVLAN ports to regular VLANs.
4. Map secondary VLANs to the selected primary VLAN. INTERFACE VLAN mode private-vlan mapping secondary-vlan vlan-list The list of secondary VLANs can be: 5. • Specified in comma-delimited (VLAN-ID,VLAN-ID) or hyphenated-range format (VLAN-IDVLAN-ID). • Specified with this command even before they have been created. • Amended by specifying the new secondary VLAN to be added to the list. Add promiscuous ports as tagged or untagged interfaces.
4. Add one or more host ports to the VLAN. INTERFACE VLAN mode tagged interface or untagged interface You can enter the interfaces singly or in range format, either comma-delimited (slot/ port,port,port) or hyphenated (slot/ port-port). You can only add host (isolated) ports to the VLAN. Creating an Isolated VLAN An isolated VLAN is a secondary VLAN of a primary VLAN. An isolated VLAN port can only talk with the promiscuous ports in that primary VLAN. 1.
Dell(conf-vlan-100)# private-vlan mode isolated Dell(conf-vlan-100)# untagged Gi 2/2 Private VLAN Configuration Example The following example shows a private VLAN topology. Figure 101. Sample Private VLAN Topology The following configuration is based on the example diagram for the C300–1: • Gi 0/0 and Gi 23 are configured as promiscuous ports, assigned to the primary VLAN, VLAN 4000. • Gi 0/25 is configured as a PVLAN trunk port, also assigned to the primary VLAN 4000.
• The ports in isolated VLAN 4003 can only communicate with the promiscuous ports in the primary VLAN 4000. • All the ports in the secondary VLANs (both community and isolated VLANs) can only communicate with ports in the other secondary VLANs of that PVLAN over Layer 3, and only when the ip localproxy-arp command is invoked in the primary VLAN.
• The following examples show the results of using this command without the command options on the C300 and S50V switches in the topology diagram previously shown. Display the primary-secondary VLAN mapping. The following example shows the output from the S50V. show vlan private-vlan mapping This command is specific to the PVLAN feature. Examples of Viewing a Private VLAN using the show Commands The show arp and show vlan commands are revised to display PVLAN data.
switchport mode private-vlan promiscuous no shutdown ! interface GigabitEthernet 0/4 no ip address switchport switchport mode private-vlan host no shutdown ! interface GigabitEthernet 0/5 no ip address switchport switchport mode private-vlan host no shutdown ! interface GigabitEthernet 0/6 no ip address switchport switchport mode private-vlan host no shutdown ! interface GigabitEthernet 0/25 no ip address switchport switchport mode private-vlan trunk no shutdown ! interface Vlan 4000 private-vlan mode prim
Per-VLAN Spanning Tree Plus (PVST+) 41 Per-VLAN spanning tree plus (PVST+) is supported on the S4820T platform. Protocol Overview PVST+ is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN). For more information about spanning tree, refer to the Spanning Tree Protocol (STP) chapter. Figure 102.
Table 53. Spanning Tree Variations Dell Networking OS Supports Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information • The Dell Networking OS implementation of PVST+ is based on IEEE Standard 802.1w. • The Dell Networking OS implementation of PVST+ uses IEEE 802.
Enabling PVST+ When you enable PVST+, Dell Networking OS instantiates STP on each active VLAN. 1. Enter PVST context. PROTOCOL PVST mode protocol spanning-tree pvst 2. Enable PVST+. PROTOCOL PVST mode no disable Disabling PVST+ To disable PVST+ globally or on an interface, use the following commands. • Disable PVST+ globally. PROTOCOL PVST mode • disable Disable PVST+ on an interface, or remove a PVST+ parameter configuration.
Figure 103. Load Balancing with PVST+ The bridge with the bridge value for bridge priority is elected root. Because all bridges use the default priority (until configured otherwise), the lowest MAC address is used as a tie-breaker. To increase the likelihood that a bridge is selected as the STP root, assign bridges a low non-default value for bridge priority. To assign a bridge priority, use the following command. • Assign a bridge priority.
Root Identifier has priority 4096, Address 0001.e80d.b6d6 Root Bridge hello time 2, max age 20, forward delay 15 Bridge Identifier has priority 4096, Address 0001.e80d.b6d6 Configured hello time 2, max age 20, forward delay 15 We are the root of VLAN 100 Current root has priority 4096, Address 0001.e80d.b6d6 Number of topology changes 5, last change occurred 00:34:37 ago on Gi 1/32 Port 375 (GigabitEthernet 1/22) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.
PROTOCOL PVST mode vlan max-age The range is from 6 to 40. The default is 20 seconds. The values for global PVST+ parameters are given in the output of the show spanning-tree pvst command. Modifying Interface PVST+ Parameters You can adjust two interface parameters (port cost and port priority) to increase or decrease the probability that a port becomes a forwarding port. • Port cost — a value that is based on the interface type.
The range is from 0 to 240, in increments of 16. The default is 128. The values for interface PVST+ parameters are given in the output of the show spanning-tree pvst command, as previously shown. Configuring an EdgePort The EdgePort feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner. In this mode an interface forwards frames by default until it receives a BPDU that indicates that it should behave otherwise; it does not go through the Learning and Listening states.
PVST+ in Multi-Vendor Networks Some non-Dell Networking systems which have hybrid ports participating in PVST+ transmit two kinds of BPDUs: an 802.1D BPDU and an untagged PVST+ BPDU. Dell Networking systems do not expect PVST+ BPDU (tagged or untagged) on an untagged port. If this situation occurs, Dell Networking OS places the port in an Error-Disable state. This behavior might result in the network not converging.
Example of Viewing the Extend System ID in a PVST+ Configuration Dell(conf-pvst)#do show spanning-tree pvst vlan 5 brief VLAN 5 Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32773, Address 0001.e832.73f7 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32773 (priority 32768 sys-id-ext 5), Address 0001.e832.
no ip address tagged GigabitEthernet 2/12,32 no shutdown ! interface Vlan 200 no ip address tagged GigabitEthernet 2/12,32 no shutdown ! interface Vlan 300 no ip address tagged GigabitEthernet 2/12,32 no shutdown ! protocol spanning-tree pvst no disable vlan 200 bridge-priority 4096 Example of PVST+ Configuration (R3) interface GigabitEthernet 3/12 no ip address switchport no shutdown ! interface GigabitEthernet 3/22 no ip address switchport no shutdown ! interface Vlan 100 no ip address tagged GigabitEthe
Quality of Service (QoS) 42 Quality of service (QoS) is supported on the S4820T platform. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 55.
Feature Direction Configure a Scheduler to Queue Egress Specify WRED Drop Precedence Egress Create Policy Maps Ingress + Egress Create Input Policy Maps Ingress Honor DSCP Values on Ingress Packets Ingress Honoring dot1p Values on Ingress Packets Ingress Create Output Policy Maps Egress Specify an Aggregate QoS Policy Egress Create Output Policy Maps Egress Enabling QoS Rate Adjustment Enabling StrictPriority Queueing Weighted Random Early Detection Egress Create WRED Profiles Egress
Figure 105. Dell Networking QoS Architecture Implementation Information The Dell Networking QoS implementation complies with IEEE 802.1p User Priority Bits for QoS Indication.
Setting dot1p Priorities for Incoming Traffic Dell Networking OS places traffic marked with a priority in a queue based on the following table. If you set a dot1p priority for a port-channel, all port-channel members are configured with the same value. You cannot assign a dot1p value to an individual interface in a port-channel. • Change the priority of incoming traffic on the interface.
class dynamic dotp or trust dot1p. When priority-tagged frames ingress a tagged port, the frames are dropped because, for a tagged port, the default VLAN is 0. Dell Networking OS Behavior: Hybrid ports can receive untagged, tagged, and priority tagged frames. The rate metering calculation might be inaccurate for untagged ports because an internal assumption is made that all frames are treated as tagged. Internally, the ASIC adds a 4-bytes tag to received untagged frames.
Policy-Based QoS Configurations Policy-based QoS configurations consist of the components shown in the following example. Figure 106. Constructing Policy-Based QoS Configurations Classify Traffic Class maps differentiate traffic so that you can apply separate quality of service policies to different types of traffic. For both class maps, Layer 2 and Layer 3, Dell Networking OS matches packets against match criteria in the order that you configure them.
Creating a Layer 3 Class Map A Layer 3 class map differentiates ingress packets based on the DSCP value or IP precedence, and characteristics defined in an IP ACL. You can also use VLAN IDs and VRF IDs to classify the traffic using layer 3 class-maps. You may specify more than one DSCP and IP precedence value, but only one value must match to trigger a positive match for the class map. NOTE: IPv6 and IP-any class maps cannot match on ACLs or VLANs. Use step 1 or step 2 to start creating a Layer 3 class map.
The following example matches IPv6 traffic with a DSCP value of 40. Dell(conf)# class-map match-all test Dell(conf-class-map)# match ipv6 dscp 40 The following example matches IPv4 and IPv6 traffic with a precedence value of 3. Dell(conf)# class-map match-any test1 Dell(conf-class-map)#match ip-any precedence 3 Creating a Layer 2 Class Map All class maps are Layer 3 by default; however, you can create a Layer 2 class map by specifying the layer2 option with the class-map command.
numbers closer to 0) before rules with higher order numbers so that packets are matched as you intended. • Specify the order in which you want to apply ACL rules using the keyword order. order The order can range from 0 to 254. By default, all ACL rules have an order of 255. Displaying Configured Class Maps and Match Criteria To display all class-maps or a specific class map, use the following command.
----------------------------------------------------------------------20416 1 18 IP 0x0 0 0 23.64.0.5/32 0.0.0.0/0 20 2 20417 1 18 IP 0x0 0 0 0.0.0.0/0 0.0.0.0/0 0 20418 1 0 IP 0x0 0 0 23.64.0.2/32 0.0.0.0/0 10 1 20419 1 0 IP 0x0 0 0 0.0.0.0/0 0.0.0.0/0 0 20420 1 0 IP 0x0 0 0 23.64.0.3/32 0.0.0.0/0 12 1 20421 1 0 IP 0x0 0 0 0.0.0.0/0 0.0.0.0/0 0 20422 1 10 0 0x0 0 0 0.0.0.0/0 0.0.0.0/0 14 1 24511 1 0 0 0x0 0 0 0.0.0.0/0 0.0.0.0/0 0 In the previous example, the ClassAF1 does not classify traffic as intended.
Creating an Input QoS Policy To create an input QoS policy, use the following steps. 1. Create a Layer 3 input QoS policy. CONFIGURATION mode qos-policy-input Create a Layer 2 input QoS policy by specifying the keyword layer2 after the qos-policy-input command. 2.
Configuring Policy-Based Rate Shaping To configure policy-based rate shaping, use the following command. • Configure rate shape egress traffic. QOS-POLICY-OUT mode rate-shape Allocating Bandwidth to Queue Schedule packets for egress based on Deficit Round Robin (DRR). These strategies both offer a guaranteed data rate. The following table lists the default bandwidth weights for each queue, and their equivalent percentage which is derived by dividing the bandwidth weight by the sum of all queue weights.
Create Policy Maps There are two types of policy maps: input and output. Creating Input Policy Maps There are two types of input policy-maps: Layer 3 and Layer 2. 1. Create a Layer 3 input policy map. CONFIGURATION mode policy-map-input Create a Layer 2 input policy map by specifying the keyword layer2 with the policy-map-input command. 2.
Table 57.
Mapping dot1p Values to Service Queues All traffic is by default mapped to the same queue, Queue 0. If you honor dot1p on ingress, you can create service classes based the queueing strategy in Honoring dot1p Values on Ingress Packets. You may apply this queuing strategy globally by entering the following command from CONFIGURATION mode. • All dot1p traffic is mapped to Queue 0 unless you enable service-class dynamic dot1p on an interface or globally.
Creating Output Policy Maps Creating output policy maps is supported on the S4820T platform. 1. Create an output policy map. CONFIGURATION mode policy-map-output 2. After you create an output policy map, do one or more of the following: Applying an Output QoS Policy to a Queue Specifying an Aggregate QoS Policy Applying an Output Policy Map to an Interface 3. Apply the policy map to an interface.
• Display Color Map Configuration Creating a DSCP Color Map You can create a DSCP color map to outline the differentiated services codepoint (DSCP) mappings to the appropriate color mapping (green, yellow, red) for the input traffic. The system uses this information to classify input traffic on an interface based on the DSCP value of each packet and assigns it an initial drop precedence of green, yellow, or red The default setting for each DSCP value (0-63) is green (low drop precedence).
Create the DSCP color map profile, bat-enclave-map, with a yellow drop precedence , and set the DSCP values to 9,10,11,13,15,16 Dell(conf)# qos dscp-color-map bat-enclave-map Dell(conf-dscp-color-map)# dscp yellow 9,10,11,13,15,16 Dell (conf-dscp-color-map)# exit Assign the color map, bat-enclave-map to interface te 0/11.
Display detailed information about a color policy for a specific interface Dell# show qos dscp-color-policy detail te 0/10 Interface TenGigabitEthernet 0/10 Dscp-color-map mapONE yellow 4,7 red 20,30 Enabling QoS Rate Adjustment By default while rate limiting, policing, and shaping, Dell Networking OS does not include the Preamble, SFD, or the IFG fields.
The range is from 1 to 3. Weighted Random Early Detection Weighted random early detection (WRED) is supported on the S4820T platform. The WRED congestion avoidance mechanism drops packets to prevent buffering resources from being consumed. Traffic is a mixture of various kinds of packets. The rate at which some types of packets arrive might be greater than others.
Default Profile Name Minimum Threshold Maximum Threshold Maximum Drop Rate wred_teng_g 467 4671 50 wred_fortyg_y 467 4671 50 wred_fortyg_g 467 4671 25 Creating WRED Profiles To create WRED profiles, use the following commands. 1. Create a WRED profile. CONFIGURATION mode wred-profile 2. Specify the minimum and maximum threshold values.
wred_teng_y wred_teng_g wred_fortyg_y wred_fortyg_g 0 Dell# 467 467 467 467 4671 4671 4671 4671 100 50 50 25 Displaying WRED Drop Statistics To display WRED drop statistics, use the following command. • Display the number of packets Dell Networking OS the WRED profile drops.
• The estimated number of CAM entries the policy-map will consume. • Whether or not the policy-map can be applied. • The number of interfaces in a port-pipe to which the policy-map can be applied. Specifically: • Available CAM — the available number of CAM entries in the specified CAM partition for the specified line card or stack-unit port-pipe. • Estimated CAM — the estimated number of CAM entries that the policy will consume when it is applied to an interface.
are time-sensitive, such as video on demand (VoD) or voice over IP (VoIP) applications. In such cases, you can use ECN in conjunction with WRED to resolve the dropping of packets under congested conditions. Using ECN, the packets are marked for transmission at a later time after the network recovers from the heavy traffic state to an optimal load. In this manner, enhanced performance and throughput are achieved.
WRED/ECN configurations for the queues that belong to backplane ports are common to all the backplane ports and cannot be specified separately for each backplane port granularity. This behavior occurs to prevent system-level complexities in enabling this support for backplane ports. Also, WRED/ECN is not supported for multicast packets. The following table describes the WRED and ECN operations that occur for various scenarios of WRED and ECN configuration on the queue and service pool.
To configure the weight factor for WRED and ECN capabilities, global buffer pools for multiple queues, and associating a service class with ECN marking, perform the following: 1. Configure the weight factor for the computation of average-queue size. This weight value applies to front-end ports. QOS-POLICY-OUT mode Dell(conf-qos-policy-out)#wred—profile weight number 2. Configure a WRED profile, and specify the threshold and maximum drop rate.
Guidelines for Configuring ECN for Classifying and ColorMarking Packets Keep the following points in mind while configuring the marking and mapping of incoming packets using ECN fields in IPv4 headers: • Currently Dell Networking OS supports matching only the following TCP flags: – ACK – FIN – SYN – PSH – RST – URG In the existing software, ECE/CWR TCP flag qualifiers are not supported.
Applying this policy-map “ecn_0_pmap” will mark all the packets with ‘ecn == 0’ as yellow packets on queue0 (default queue). Classifying Incoming Packets Using ECN and Color-Marking Explicit Congestion Notification (ECN) is a capability that enhances WRED by marking the packets instead of causing WRED to drop them when the threshold value is exceeded.
Until Release 9.3(0.0), the software has the capability to qualify only on the 6-bit DSCP part of the ToS field in IPv4 Header. You can now accept and process incoming packets based on the 2-bit ECN part of the ToS field in addition to the DSCP categorization. The IPv4 ACLs (standard and Extended) are enhanced to add this qualifier. This new keyword ‘ecn’ is present for all L3 ACL types (TCP/UDP/IP/ICMP) at the level where the ‘DSCP’ qualifier is positioned in the current ACL commands.
This marking action to set the color of the packet is allowed only on the ‘match-any’ logical operator of the class-map.
seq 15 permit any dscp 40 ecn 3 ! ip access-list standard dscp_50_non_ecn seq 5 permit any dscp 50 ecn 0 ! ip access-list standard dscp_40_non_ecn seq 5 permit any dscp 40 ecn 0 ! class-map match-any class_dscp_40 match ip access-group dscp_40_non_ecn set-color yellow match ip access-group dscp_40_ecn ! class-map match-any class_dscp_50 match ip access-group dscp_50_non_ecn set-color yellow match ip access-group dscp_50_ecn ! policy-map-input pmap_dscp_40_50 service-queue 2 class-map class_dscp_40 service-q
Applying DSCP and VLAN Match Criteria on a Service Queue You can configure Layer 3 class maps which contain both a Layer 3 Differentiated Services Code Point (DSCP) and IP VLAN IDs as match criteria to filter incoming packets on a service queue on the switch. To configure a Layer 3 class map to classify traffic according to both an IP VLAN ID and DSCP value, use the match ip vlan vlan-id command in class-map input configuration mode.
Routing Information Protocol (RIP) 43 Routing information protocol (RIP) is supported on the S4820T platform. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter. Protocol Overview RIP is the oldest interior gateway protocol. There are two versions of RIP: RIP version 1 (RIPv1) and RIP version 2 (RIPv2).
Implementation Information Dell Networking OS supports both versions of RIP and allows you to configure one version globally and the other version on interfaces or both versions on the interfaces. The following table lists the defaults for RIP in Dell Networking OS. Table 61.
Enabling RIP Globally By default, RIP is not enabled in Dell Networking OS. To enable RIP globally, use the following commands. 1. Enter ROUTER RIP mode and enable the RIP process on Dell Networking OS. CONFIGURATION mode router rip 2. Assign an IP network address as a RIP network to exchange routing information.
192.162.2.0/24 [120/1] via 29.10.10.12, 00:01:21, Fa 0/0 192.162.2.0/24 auto-summary 192.161.1.0/24 [120/1] via 29.10.10.12, 00:00:27, Fa 0/0 192.161.1.0/24 auto-summary 192.162.3.0/24 [120/1] via 29.10.10.12, 00:01:22, Fa 0/0 192.162.3.0/24 auto-summary To disable RIP globally, use the no router rip command in CONFIGURATION mode. Configure RIP on Interfaces When you enable RIP globally on the system, interfaces meeting certain conditions start receiving RIP routes.
• distribute-list prefix-list-name in Assign a configured prefix list to all outgoing RIP routes. ROUTER RIP mode distribute-list prefix-list-name out To view the current RIP configuration, use the show running-config command in EXEC mode or the show config command in ROUTER RIP mode. Adding RIP Routes from Other Instances In addition to filtering routes, you can add routes from other routing instances or protocols to the RIP process.
You can set one RIP version globally on the system using system. This command sets the RIP version for RIP traffic on the interfaces participating in RIP unless the interface was specifically configured for a specific RIP version. • Set the RIP version sent and received on the system. ROUTER RIP mode • version {1 | 2} Set the RIP versions received on that interface. INTERFACE mode • ip rip receive version [1] [2] Set the RIP versions sent out on that interface.
The following example of the show ip protocols command confirms that both versions are sent out that interface. This interface no longer sends and receives the same RIP versions as Dell Networking OS does globally (shown in bold).
The autosummary command requires no other configuration commands. To disable automatic route summarization, enter no autosummary in ROUTER RIP mode. NOTE: If you enable the ip split-horizon command on an interface, the system does not advertise the summarized address. Controlling Route Metrics As a distance-vector protocol, RIP uses hop counts to determine the best route, but sometimes the shortest hop count is a route over the lowest-speed link.
Enable debugging of RIP. Example of the debug ip rip Command The following example shows the confirmation when you enable the debug function. Dell#debug ip rip RIP protocol debug is ON Dell# To disable RIP, use the no debug ip rip command. RIP Configuration Example The examples in this section show the command sequence to configure RIPv2 on the two routers shown in the following illustration — Core 2 and Core 3. The host prompts used in the following example reflect those names.
Core 2 RIP Output The examples in the section show the core 2 RIP output. Examples of the show ip Commands to View Core 2 Information • To display Core 2 RIP database, use the show ip rip database command. • To display Core 2 RIP setup, use the show ip route command. • To display Core 2 RIP activity, use the show ip protocols command. The following example shows the show ip rip database command to view the learned RIP routes on Core 2.
The following example shows the show ip protocols command to show the RIP configuration activity on Core 2.
Examples of the show ip Commands to View Learned RIP Routes on Core 3 The following example shows the show ip rip database command to view the learned RIP routes on Core 3. Core3#show ip rip database Total number of routes in RIP database: 7 10.11.10.0/24 [120/1] via 10.11.20.2, 00:00:13, GigabitEthernet 10.200.10.0/24 [120/1] via 10.11.20.2, 00:00:13, GigabitEthernet 10.300.10.0/24 [120/1] via 10.11.20.2, 00:00:13, GigabitEthernet 10.11.20.0/24 directly connected,GigabitEthernet 10.11.30.
GigabitEthernet 3/44 2 2 GigabitEthernet 3/43 2 2 Routing for Networks: 10.11.20.0 10.11.30.0 192.168.2.0 192.168.1.0 Routing Information Sources: Gateway Distance Last Update 10.11.20.2 120 00:00:22 Distance: (default is 120) Core3# RIP Configuration Summary Examples of Viewing RIP Configuration on Core 2 and Core 3 The following example shows viewing the RIP configuration on Core 2. ! interface GigabitEthernet 2/11 ip address 10.11.10.1/24 no shutdown ! interface GigabitEthernet 2/31 ip address 10.11.20.
ip address 192.168.2.1/24 no shutdown ! router rip version 2 network 10.11.20.0 network 10.11.30.0 network 192.168.1.0 network 192.168.2.
Remote Monitoring (RMON) 44 Remote monitoring (RMON) is supported on the S4820T platform. RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell Networking Ethernet interfaces. RMON operates with the simple network management protocol (SNMP) and monitors all nodes on a local area network (LAN) segment.
• • long as the master RPM had been running long enough to sample all the data. NMS backs up all the long-term data collection and displays the failover downtime from the performance graph. Chassis Down — When a chassis goes down, all sampled data is lost. But the RMON configurations are saved in the configuration file. The sampling process continues after the chassis returns to operation. Platform Adaptation — RMON supports all Dell Networking chassis and all Dell Networking Ethernet interfaces.
The following example configures RMON alarm number 10. The alarm monitors the MIB variable 1.3.6.1.2.1.2.2.1.20.1 (ifEntry.ifOutErrors) once every 20 seconds until the alarm is disabled, and checks the rise or fall of the variable. The alarm is triggered when the 1.3.6.1.2.1.2.2.1.20.1 value shows a MIB counter increase of 15 or more (such as from 100000 to 100015). The alarm then triggers event number 1, which is configured with the RMON event command. Possible events include a log entry or an SNMP trap.
– controlEntry: specifies the RMON group of statistics using a value. – integer: a value from 1 to 65,535 that identifies the RMON Statistics Table. The value must be unique in the RMON Statistic Table. – owner: (Optional) specifies the name of the owner of the RMON group of statistics. – ownername: (Optional) records the name of the owner of the RMON group of statistics. The default is a null-terminated string.
Rapid Spanning Tree Protocol (RSTP) 45 Rapid spanning tree protocol (RSTP) is supported on the S4820T platform. Protocol Overview RSTP is a Layer 2 protocol — specified by IEEE 802.1w — that is essentially the same as spanning-tree protocol (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). The Dell Networking OS supports three other variations of spanning tree, as shown in the following table. Table 62.
Important Points to Remember • RSTP is disabled by default. • Dell Networking OS supports only one Rapid Spanning Tree (RST) instance. • All interfaces in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the RST topology. • Adding a group of ports to a range of VLANs sends multiple messages to the rapid spanning tree protocol (RSTP) task, avoid using the range command.
3. Enable the interface. INTERFACE mode no shutdown Example of Verifying an Interface is in Layer 2 Mode and Enabled To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. The bold lines indicate that the interface is in Layer 2 mode.
Figure 109. Rapid Spanning Tree Enabled Globally To view the interfaces participating in RSTP, use the show spanning-tree rstp command from EXEC privilege mode. If a physical interface is part of a port channel, only the port channel is listed in the command output. Dell#show spanning-tree rstp Root Identifier has priority 32768, Address 0001.e801.cbb4 Root Bridge hello time 2, max age 20, forward delay 15, max hops 0 Bridge Identifier has priority 32768, Address 0001.e801.
BPDU : sent 121, received 2 The port is not in the Edge port mode Port 379 (GigabitEthernet 2/3) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.379 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.
Modifying Global Parameters You can modify RSTP parameters. The root bridge sets the values for forward-delay, hello-time, and max-age and overwrites the values set on other bridges participating in the Rapid Spanning Tree group. • Forward-delay — the amount of time an interface waits in the Listening state and the Learning state before it transitions to the Forwarding state. • Hello-time — the time interval in which the bridge sends RSTP BPDUs.
NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • The default is 2 seconds. Change the max-age parameter. PROTOCOL SPANNING TREE RSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree rstp command from EXEC privilege mode.
To view the current values for interface parameters, use the show spanning-tree rstp command from EXEC privilege mode. Enabling SNMP Traps for Root Elections and Topology Changes To enable SNMP traps collectively, use this command. Enable SNMP traps for RSTP, MSTP, and PVST+ collectively. snmp-server enable traps xstp Influencing RSTP Root Selection RSTP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it is selected as the root bridge.
• If the interface to be shut down is a port channel, all the member ports are disabled in the hardware. • When you add a physical port to a port channel already in the Error Disable state, the new member port is also disabled in the hardware. • When you remove a physical port from a port channel in the Error Disable state, the error disabled state is cleared on this physical port (the physical port is enabled in the hardware).
The range is from 50 to 950 milliseconds. Example of Verifying Hello-Time Interval Dell(conf-rstp)#do show spanning-tree rstp brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 0, Address 0001.e811.2233 Root Bridge hello time 50 ms, max age 20, forward delay 15 Bridge ID Priority 0, Address 0001.e811.2233 We are the root Configured hello time 50 ms, max age 20, forward delay 15 NOTE: The hello time is encoded in BPDUs in increments of 1/256ths of a second.
Software-Defined Networking (SDN) 46 Dell Networking operating software supports Software-Defined Networking (SDN). For more information, refer to the SDN Deployment Guide.
Security 47 Security features are supported on the S4820T platform. This chapter describes several ways to provide security to the Dell Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell Networking OS Command Reference Guide. AAA Accounting Accounting, authentication, and authorization (AAA) accounting is part of the AAA security model.
– system: sends accounting information of any other AAA configuration. – exec: sends accounting information when a user has logged in to EXEC mode. – command level: sends accounting of commands executed at the specified privilege level. – suppress: Do not generate accounting records for a specific type of user. – default | name: enter the name of a list of accounting methods.
CONFIG-LINE-VTY mode accounting commands 15 com15 accounting exec execAcct Example of Enabling AAA Accounting with a Named Method List Dell(config-line-vty)# accounting commands 15 com15 Dell(config-line-vty)# accounting exec execAcct Monitoring AAA Accounting Dell Networking OS does not support periodic interim accounting because the periodic command can cause heavy congestion when many users are logged in to the network. No specific show command exists for TACACS+ accounting.
NOTE: In the release 9.4.(0.0), RADIUS and TACACS servers support VRF-awareness functionality. You can create RADIUS and TACACS groups and then map multiple servers to a group. The group to which you map multiple servers is bound to a single VRF. Configuration Task List for AAA Authentication The following sections provide the configuration tasks.
3. Assign a method-list-name or the default list to the terminal line. LINE mode login authentication {method-list-name | default} To view the configuration, use the show config command in LINE mode or the show runningconfig in EXEC Privilege mode. NOTE: Dell Networking recommends using the none method only as a backup. This method does not authenticate users. The none and enable methods do not work with secure shell (SSH). You can create multiple method lists and assign them to different terminal lines.
The following example shows enabling authentication from the RADIUS server. Dell(config)# aaa authentication enable default radius tacacs Radius and TACACS server has to be properly setup for this. Dell(config)# radius-server host x.x.x.x key Dell(config)# tacacs-server host x.x.x.x key To use local authentication for enable secret on the console, while using remote authentication on VTY lines, issue the following commands.
Privilege levels 2 through 14 are not configured and you can customize them for different users and access. After you configure other privilege levels, enter those levels by adding the level parameter after the enable command or by configuring a user name or password that corresponds to the privilege level. For more information about configuring user names, refer to Configuring a Username and Password. By default, commands in Dell Networking OS are assigned to different privilege levels.
Configuring the Enable Password Command To configure Dell Networking OS, use the enable command to enter EXEC Privilege level 15. After entering the command, Dell Networking OS requests that you enter a password. Privilege levels are not assigned to passwords, rather passwords are assigned to a privilege level. You can always change a password for any privilege level. To change to a different privilege level, enter the enable command, then the privilege level.
To assign commands and passwords to a custom privilege level, use the following commands. You must be in privilege level 15. 1. Assign a user name and password. CONFIGURATION mode username name [access-class access-list-name] [privilege level] [nopassword | password [encryption-type] password Secret] Configure the optional and required parameters: • • • • • • • 2. name: Enter a text string up to 63 characters(maximum) long. access-class access-list-name: Restrict access by access-class..
Line 2: All other users are assigned a password to access privilege level 8. Line 3: The configure command is assigned to privilege level 8 because it needs to reach CONFIGURATION mode where the snmp-server commands are located. Line 4: The snmp-server commands, in CONFIGURATION mode, are assigned to privilege level 8.
• Configure a custom privilege level for the terminal lines. LINE mode privilege level level • – level level: The range is from 0 to 15. Levels 0, 1, and 15 are pre-configured. Levels 2 to 14 are available for custom configuration. Specify either a plain text or encrypted password. LINE mode password [encryption-type] password Configure the following optional and required parameters: – encryption-type: Enter 0 for plain text or 7 for encrypted text.
7. The Z9000 system boots up with factory default configuration. The default Dell> system prompt displays when the system boots. 8. Copy the startup-config into the running-config. 9. To display the content of the startup-config, remove the previous authentication configuration and set the new authentication parameters. The rest of the previous configuration is preserved. Example 1 Example 2 Version 2.00.1201. Copyright (C) 2009 American Megatrends, Inc. EVALUATION COPY.
RADIUS Authentication Dell Networking OS supports RADIUS for user authentication (text password) at login and can be specified as one of the login authentication methods in the aaa authentication login command. Idle Time Every session line has its own idle-time. If the idle-time value is not changed, the default value of 30 minutes is used. RADIUS specifies idle-time allow for a user during a session before timeout. When a user logs in, the lower of the two idle-time values (configured or default) is used.
• Defining a AAA Method List to be Used for RADIUS (mandatory) • Applying the Method List to Terminal Lines (mandatory except when using default lists) • Specifying a RADIUS Server Host (mandatory) • Setting Global Communication Parameters for all RADIUS Server Hosts (optional) • Monitoring RADIUS (optional) For a complete listing of all Dell Networking OS commands related to RADIUS, refer to the Security chapter in the Dell Networking OS Command Reference Guide.
• To use the method list. CONFIGURATION mode authorization exec methodlist Specifying a RADIUS Server Host When configuring a RADIUS server host, you can set different communication parameters, such as the UDP port, the key password, the number of retries, and the timeout. To specify a RADIUS server host and configure its communication parameters, use the following command. • Enter the host name or IP address of the RADIUS server host.
• Set a time interval after which a RADIUS host server is declared dead. CONFIGURATION mode radius-server deadtime seconds • – seconds: the range is from 0 to 2147483647. The default is 0 seconds. Configure a key for all RADIUS communications between the system and RADIUS server hosts. CONFIGURATION mode radius-server key [encryption-type] key – encryption-type: enter 7 to encrypt the password. Enter 0 to keep the password as plain text. • – key: enter a string. The key can be up to 42 characters long.
For a complete listing of all commands related to TACACS+, refer to the Security chapter in the Dell Networking OS Command Reference Guide. Choosing TACACS+ as the Authentication Method One of the login authentication methods available is TACACS+ and the user’s name and password are sent for authentication to the TACACS hosts specified. To use TACACS+ to authenticate users, specify at least one TACACS+ server for the system to communicate with and configure TACACS+ as one of your authentication methods.
aaa authentication login LOCAL local tacacs+ aaa authorization exec default tacacs+ none aaa authorization commands 1 default tacacs+ none aaa authorization commands 15 default tacacs+ none aaa accounting exec default start-stop tacacs+ aaa accounting commands 1 default start-stop tacacs+ aaa accounting commands 15 default start-stop tacacs+ Dell(conf)# Dell(conf)#do show run tacacs+ ! tacacs-server key 7 d05206c308f4d35b tacacs-server host 10.10.10.
tacacs-server host {hostname | ip-address} [port port-number] [timeout seconds] [key key] Configure the optional communication parameters for the specific host: – port port-number: the range is from 0 to 65535. Enter a TCP port number. The default is 49. – timeout seconds: the range is from 0 to 1000. Default is 10 seconds. – key key: enter a string for the key. The key can be up to 42 characters long. This key must match a key configured on the TACACS+ server host.
Enabling SCP and SSH Secure shell (SSH) is a protocol for secure remote login and other secure network services over an insecure network. Dell Networking OS is compatible with SSH versions 1.5 and 2, in both the client and server modes. SSH sessions are encrypted and use authentication. SSH is enabled by default. For details about the command syntax, refer to the Security chapter in the Dell Networking OS Command Line Interface Reference Guide.
Using SCP with SSH to Copy a Software Image To use secure copy (SCP) to copy a software image through an SSH connection from one switch to another, use the following commands. 1. On Chassis One, set the SSH port number (port 22 by default). CONFIGURATION mode ip ssh server port number 2. On Chassis One, enable SSH. CONFIGURATION mode ip ssh server enable 3. On Chassis Two, invoke SCP. CONFIGURATION mode copy scp: flash: 4.
Port number of the server [22]: 99 Source file name []: test.cfg User name to login remote host: admin Password to login remote host: Removing the RSA Host Keys and Zeroizing Storage Use the crypto key zeroize rsa command to delete the host key pairs, both the public and private key information for RSA 1 and or RSA 2 types. Note that when FIPS mode is enabled there is no RSA 1 key pair.
The following key exchange algorithms are available: • diffie-hellman-group-exchange-sha1 • diffie-hellman-group1-sha1 • diffie-hellman-group14-sha1 The default key exchange algorithms are the following: • diffie-hellman-group-exchange-sha1 • diffie-hellman-group1-sha1 • diffie-hellman-group14-sha1 When FIPS is enabled, the default is diffie-hellman-group14-sha1. Example of Configuring a Key Exchange Algorithm The following example shows you how to configure a key exchange algorithm.
The following example shows you how to configure a HMAC algorithm list. Dell(conf)# ip ssh server mac hmac-sha1-96 Configuring the SSH Server Cipher List To configure the cipher list supported by the SSH server, use the ip ssh server ciphers cipher-list command in CONFIGURATION mode. cipher-list-: Enter a space-delimited list of ciphers the SSH server will support. The following ciphers are available.
Enabling SSH Authentication by Password Authenticate an SSH client by prompting for a password when attempting to connect to the Dell Networking system. This setup is the simplest method of authentication and uses SSH version 1. To enable SSH password authentication, use the following command. • Enable SSH password authentication.
Configuring Host-Based SSH Authentication Authenticate a particular host. This method uses SSH version 2. To configure host-based authentication, use the following commands. 1. Configure RSA Authentication. Refer to Using RSA Authentication of SSH. 2. Create shosts by copying the public RSA key to the file shosts in the directory .ssh, and write the IP address of the host to the file. cp /etc/ssh/ssh_host_rsa_key.pub /.ssh/shosts Refer to the first example. 3.
The following example shows creating rhosts. admin@Unix_client# ls id_rsa id_rsa.pub rhosts shosts admin@Unix_client# cat rhosts 10.16.127.201 admin Using Client-Based SSH Authentication To SSH from the chassis to the SSH client, use the following command. This method uses SSH version 1 or version 2. If the SSH port is a non-default value, use the ip ssh server port number command to change the default port number. You may only change the port number when SSH is disabled.
VTY Line and Access-Class Configuration Various methods are available to restrict VTY access in Dell Networking OS. These depend on which authentication scheme you use — line, local, or remote. Table 64. VTY Access Authentication Method VTY access-class support? Username access-class support? Remote authorization support? Line YES NO NO Local NO YES NO TACACS+ YES NO YES (with Dell Networking OS version 5.2.1.0 and later) RADIUS YES NO YES (with Dell Networking OS version 6.1.1.
The following example shows how to allow or deny a Telnet connection to a user. Users see a login prompt even if they cannot log in. No access class is configured for the VTY line. It defaults from the local database.
Example of Configuring VTY Authorization Based on MAC ACL for the Line (Per MAC Address) Dell(conf)#mac access-list standard sourcemac Dell(config-std-mac)#permit 00:00:5e:00:01:01 Dell(config-std-mac)#deny any Dell(conf)# Dell(conf)#line vty 0 9 Dell(config-line-vty)#access-class sourcemac Dell(config-line-vty)#end Role-Based Access Control With Role-Based Access Control (RBAC), access and authorization is controlled based on a user’s role.
command to each role and as a result, it is easier and much more efficient to administer user rights. If a user’s role matches one of the allowed user roles for that command, then command authorization is granted. A constrained RBAC model provides for separation of duty and as a result, provides greater security than the hierarchical RBAC model. Essentially, a constrained model puts some limitations around each role’s permissions to allow you to partition of tasks. However, some inheritance is possible.
You must specify at least local authentication. For consistency, the best practice is to define the same authentication method list across all lines, in the same order of comparison; for example VTY and console port. You could also use the default authentication method to apply to all the LINES (console port, VTY). NOTE: The authentication method list should be in the same order as the authorization method list.
operator user role. This role does not have access to the commands that are available to the system security administrator for cryptography operations, AAA, or the commands reserved solely for the system administrator. • Security Administrator (secadmin): This user role can control the security policy across the systems that are within a domain or network topology.
• 1. If you inherit a user role, you cannot modify or delete the inheritance. If you want to change or remove the inheritance, delete the user role and create it again. If the user role is in use, you cannot delete the user role. Create a new user role CONFIGURATION mode userrole name [inherit existing-role-name] 2. Verify that the new user role has inherited the security administrator permissions. Dell(conf)#do show userroles EXEC Privilege mode 3.
When you modify a command for a role, you specify the role, the mode, and whether you want to restrict access using the deleterole keyword or grant access using the addrole keyword followed by the command you are controlling access. For information about how to create new roles, see also Creating a New User Role. The following output displays the modes available for the role command.
The following example shows that the secadmin role can now access Interface mode (highlighted in bold). Role Inheritance netoperator Modes netadmin secadmin sysadmin MAC Exec Config Interface Router IP RouteMap Protocol MAC Exec Config Interface Line Exec Config Interface Line Router IP RouteMap Protocol Example: Remove Security Administrator Access to Line Mode.
Adding and Deleting Users from a Role To create a user name that is authenticated based on a user role, use the username name password encryption-type password role role-name command in CONFIGURATION mode. Example The following example creates a user name that is authenticated based on a user role. Dell (conf) #username john password 0 password role secadmin The following example deletes a user role.
the same or greater than the privilege level of those commands. Users with defined roles can use commands provided their role is permitted to use those commands. Role inheritance is also used to determine authorization. Users with roles and privileges are authorized with the same mechanism. There are six methods available for authorization: radius, tacacs+, local, enable, line, and none. When role-based only AAA authorization is enabled, the enable, line, and none methods are not available.
accounting commands role netadmin line vty 3 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 4 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 5 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 6 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 7 login authentication ucraaa authorization exec ucraaa accounting comman
role is Force10-avpair= ”shell:role=“ where user-role is a user defined or systemdefined role. In the following example, you create an AV pair for a system-defined role, sysadmin. Force10-avpair= "shell:role=sysadmin" In the following example, you create an AV pair for a user-defined role. You must also define a role, using the userrole myrole inherit command on the switch to associate it with this AV pair.
Active accounted actions on tty2, User john Priv 1 Role netoperator Task ID 1, EXEC Accounting record, 00:00:30 Elapsed, service=shell Active accounted actions on tty3, User admin Priv 15 Role sysadmin Task ID 2, EXEC Accounting record, 00:00:26 Elapsed, service=shell Display Information About User Roles This section describes how to display information about user roles.
Role access: secadmin,sysadmin Dell#show role mode configure interface Role access: netadmin, sysadmin Dell#show role mode configure line Role access: netadmin,sysadmin Displaying Information About Users Logged into the Switch To display information on all users logged into the switch, using the show users command in EXEC Privilege mode. The output displays privilege level and/or user role. The mode is displayed at the start of the output and both the privilege and roles for all users is also displayed.
Service Provider Bridging 48 Service provider bridging is supported on the S4820T platform. VLAN Stacking Virtual local area network (VLAN) stacking is supported on the S4820T platform. VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.
Figure 110. VLAN Stacking in a Service Provider Network Important Points to Remember • Interfaces that are members of the Default VLAN and are configured as VLAN-Stack access or trunk ports do not switch untagged traffic. To switch traffic, add these interfaces to a non-default VLANStack-enabled VLAN. • Dell Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN.
Configure VLAN Stacking Configuring VLAN-Stacking is a three-step process. 1. Creating Access and Trunk Ports 2. Assign access and trunk ports to a VLAN (Creating Access and Trunk Ports). 3. Enabling VLAN-Stacking for a VLAN.
interface GigabitEthernet 7/12 no ip address switchport vlan-stack trunk no shutdown Enable VLAN-Stacking for a VLAN To enable VLAN-Stacking for a VLAN, use the following command. • Enable VLAN-Stacking for the VLAN. INTERFACE VLAN mode vlan-stack compatible Example of Viewing VLAN Stack Member Status To display the status and members of a VLAN, use the show vlan command from EXEC Privilege mode. Members of a VLAN-Stacking-enabled VLAN are marked with an M in column Q.
To configure trunk ports, use the following commands. 1. Configure a trunk port to carry untagged, single-tagged, and double-tagged traffic by making it a hybrid port. INTERFACE mode portmode hybrid NOTE: You can add a trunk port to an 802.1Q VLAN as well as a Stacking VLAN only when the TPID 0x8100. 2. Add the port to a 802.1Q VLAN as tagged or untagged.
Example of Debugging a VLAN and its Ports The port notations are as follows: • MT — stacked trunk • MU — stacked access port • T — 802.1Q trunk port • U — 802.
untagged traffic and maps each to the appropriate VLAN, as shown by the packet originating from Building A. Therefore, a mismatched TPID results in the port not differentiating between tagged and untagged traffic. Figure 111.
Figure 112.
Figure 113. Single and Double-Tag TPID Mismatch The following table details the outcome of matched and mismatched TPIDs in a VLAN-stacking network with the S-Series. Table 65. Behaviors for Mismatched TPID Network Position Incoming Packet TPID System TPID Match Type Pre-Version 8.2.1.0 Version 8.2.1.
Network Position Core Egress Access Point Incoming Packet TPID System TPID Match Type Pre-Version 8.2.1.0 Version 8.2.1.
• Make packets eligible for dropping based on their DEI value. CONFIGURATION mode dei enable By default, packets are colored green, and DEI is marked 0 on egress. Honoring the Incoming DEI Value To honor the incoming DEI value, you must explicitly map the DEI bit to an Dell Networking OS drop precedence. Precedence can have one of three colors. Precedence Description Green High-priority packets that are the least preferred to be dropped. Yellow Lower-priority packets that are treated as best-effort.
Example of Viewing DEI-Marking Configuration To display the DEI-marking configuration, use the show interface dei-mark [interface slot/ port | linecard number port-set number] in EXEC Privilege mode.
configuration, the queue selected by Dynamic Mode CoS takes precedence. However, rate policing for the queue is determined by QoS configuration. For example, the following access-port configuration maps all traffic to Queue 0: vlan-stack dot1p-mapping c-tag-dot1p 0-7 sp-tag-dot1p 1 However, if the following QoS configuration also exists on the interface, traffic is queued to Queue 0 but is policed at 40Mbps (qos-policy-input for queue 3) because class-map "a" of Queue 3 also matches the traffic.
Mapping C-Tag to S-Tag dot1p Values To map C-Tag dot1p values to S-Tag dot1p values and mark the frames accordingly, use the following commands. 1. Allocate CAM space to enable queuing frames according to the C-Tag or the S-Tag. CONFIGURATION mode cam-acl l2acl number ipv4acl number ipv6acl number ipv4qos number l2qos number l2pt number ipmacacl number ecfmacl number {vman-qos | vman-qos-dualfp} number • vman-qos: mark the S-Tag dot1p and queue the frame according to the original C-Tag dot1p.
Figure 115. VLAN Stacking without L2PT You might need to transport control traffic transparently through the intermediate network to the other region. Layer 2 protocol tunneling enables BPDUs to traverse the intermediate network by identifying frames with the Bridge Group Address, rewriting the destination MAC to a user-configured non-reserved address, and forwarding the frames.
the intermediate network because only Dell Networking OS could recognize the significance of the destination MAC address and rewrite it to the original Bridge Group Address. In Dell Networking OS version 8.2.1.0 and later, the L2PT MAC address is user-configurable, so you can specify an address that non-Dell Networking systems can recognize and rewrite the address at egress edge. Figure 116. VLAN Stacking with L2PT Implementation Information • L2PT is available for STP, RSTP, MSTP, and PVST+ BPDUs.
Enabling Layer 2 Protocol Tunneling To enable Layer 2 protocol tunneling, use the following command. 1. Verify that the system is running the default CAM profile. Use this CAM profile for L2PT. EXEC Privilege mode show cam-profile 2. Enable protocol tunneling globally on the system. CONFIGURATION mode protocol-tunnel enable 3. Tunnel BPDUs the VLAN.
4. Set a maximum rate at which the RPM processes BPDUs for L2PT. VLAN STACKING mode protocol-tunnel rate-limit The default is: no rate limiting. The range is from 64 to 320 kbps. Debugging Layer 2 Protocol Tunneling To debug Layer 2 protocol tunneling, use the following command. • Display debugging information for L2PT. EXEC Privilege mode debug protocol-tunnel Provider Backbone Bridging IEEE 802.1ad—Provider Bridges amends 802.
sFlow 49 Configuring sFlow is supported on the S4820T platform. Overview The Dell Networking Operating System (OS) supports sFlow version 5. sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic. It is designed to provide traffic monitoring for high-speed networks with many switches and routers. sFlow uses two types of sampling: • Statistical packet-based sampling of switched or routed packet flows.
Important Points to Remember • The Dell Networking OS implementation of the sFlow MIB supports sFlow configuration via snmpset. • Dell Networking recommends the sFlow Collector be connected to the Dell Networking chassis through a line card port rather than the route processor module (RPM) management Ethernet port. • Dell Networking OS exports all sFlow packets to the collector. A small sampling rate can equate to many exported packets.
0 UDP packets dropped 165 sFlow samples collected 69 sFlow samples dropped due to sub-sampling Linecard 1 Port set 0 H/W sampling rate 8192 Gi 1/16: configured rate 8192, actual rate 8192, sub-sampling rate 1 Gi 1/17: configured rate 16384, actual rate 16384, sub-sampling rate 2 Linecard 3 Port set 1 H/W sampling rate 16384 Gi 3/40: configured rate 16384, actual rate 16384, sub-sampling rate 1 If you did not enable any extended information, the show output displays the following (shown in bold).
Dell#show sflow sFlow services are enabled Global default sampling rate: 32768 Global default counter polling interval: 20 1 collectors configured Collector IP addr: 133.33.33.53, Agent IP addr: 133.33.33.
Example of Viewing sFlow Configuration (Line Card) Dell#show sflow stack-unit 1 stack-unit 1 Samples rcvd from h/w :165 Samples dropped for sub-sampling :69 Total UDP packets exported :77 UDP packets exported via RPM :77 UDP packets dropped : Configuring Specify Collectors The sflow collector command allows identification of sFlow collectors to which sFlow datagrams are forwarded. You can specify up to two sFlow collectors. If you specify two collectors, the samples are sent to both.
As a result of back-off, the actual sampling-rate of an interface may differ from its configured sampling rate. You can view the actual sampling-rate of the interface and the configured sample-rate by using the show sflow command. sFlow on LAG ports When a physical port becomes a member of a LAG, it inherits the sFlow configuration from the LAG port. Enabling Extended sFlow The S-Series platforms support extended-switch information processing only.
0 0 0 0 UDP packets exported UDP packets dropped sFlow samples collected sFlow samples dropped due to sub-sampling Important Points to Remember • To export extended-gateway data, BGP must learn the IP destination address. • If the IP destination address is not learned via BGP the Dell Networking system does not export extended-gateway data. • If the IP source address is learned via IGP, srcAS and srcPeerAS are zero.
IP SA IP DA srcAS and srcPeerAS dstAS and dstPeerAS Description where is source is reachable over ECMP. BGP sFlow BGP Exported Exported Extended gateway data is packed.
50 Simple Network Management Protocol (SNMP) Simple network management protocol (SNMP) is supported on the S4820T platform. NOTE: On Dell Networking routers, standard and private SNMP management information bases (MIBs) are supported, including all Get and a limited number of Set operations (such as set vlan and copy cmd). Protocol Overview Network management stations use SNMP to retrieve or alter management data from network elements.
Configuration mode. When the FIPS mode is enabled on the system, SNMPv3 operates in a FIPScompliant manner, and only the FIPS-approved algorithm options are available for SNMPv3 user configuration. When the FIPS mode is disabled on the system, all options are available for SNMPv3 user configuration.
Configuration Task List for SNMP Configuring SNMP version 1 or version 2 requires a single step. NOTE: The configurations in this chapter use a UNIX environment with net-snmp version 5.4. This environment is only one of many RFC-compliant SNMP utilities you can use to manage your Dell Networking system using SNMP. Also, these configurations use SNMP version 2c. • Creating a Community Configuring SNMP version 3 requires configuring SNMP users in one of three methods.
Creating a Community For SNMPv1 and SNMPv2, create a community to enable the community-based security in Dell Networking OS. The management station generates requests to either retrieve or alter the value of a management object and is called the SNMP manager. A network element that processes SNMP requests is called an SNMP agent. An SNMP community is a group of SNMP agents and managers that are allowed to interact.
• snmp-server group group-name 3 noauth auth read name write name Configure an SNMPv3 view. CONFIGURATION mode snmp-server view view-name oid-tree {included | excluded} NOTE: To give a user read and write view privileges, repeat this step for each privilege type. • Configure the user with an authorization password (password privileges only). CONFIGURATION mode • snmp-server user name group-name 3 noauth auth md5 auth-password Configure an SNMP group (password privileges only).
• Read the value of a single managed object. • snmpget -v version -c community agent-ip {identifier.instance | descriptor.instance} Read the value of the managed object directly below the specified object. • snmpgetnext -v version -c community agent-ip {identifier.instance | descriptor.instance} Read the value of many objects at once. snmpwalk -v version -c community agent-ip {identifier.instance | descriptor.
Configuring Contact and Location Information using SNMP You may configure system contact and location information from the Dell Networking system or from the management station using SNMP. To configure system contact and location information from the Dell Networking system and from the management station using SNMP, use the following commands. • (From a Dell Networking system) Identify the system manager along with this person’s contact information (for example, an email address or phone number).
Subscribing to Managed Object Value Updates using SNMP By default, the Dell Networking system displays some unsolicited SNMP messages (traps) upon certain events and conditions. You can also configure the system to send the traps to a management station. Traps cannot be saved on the system. Dell Networking OS supports the following three sets of traps: • • • RFC 1157-defined traps — coldStart, warmStart, linkDown, linkUp, authenticationFailure, and egpNeighbborLoss.
snmp coldstart snmp linkdown snmp linkup SNMP_COLD_START: Agent Initialized - SNMP COLD_START. SNMP_WARM_START:Agent Initialized - SNMP WARM_START. PORT_LINKDN:changed interface state to down:%d PORT_LINKUP:changed interface state to up:%d Enabling a Subset of SNMP Traps You can enable a subset of Dell Networking enterprise-specific SNMP traps using one of the following listed command options. To enable a subset of Dell Networking enterprise-specific SNMP traps, use the following command.
envmon fan FAN_TRAY_BAD: Major alarm: fantray %d is missing or down FAN_TRAY_OK: Major alarm cleared: fan tray %d present FAN_BAD: Minor alarm: some fans in fan tray %d are down FAN_OK: Minor alarm cleared: all fans in fan tray %d are good vlt Enable VLT traps. vrrp Enable VRRP state change traps xstp %SPANMGR-5-STP_NEW_ROOT: New Spanning Tree Root, Bridge ID Priority 32768, Address 0001.e801.fc35.
SNMP OID %RPM0-P:CP %SNMP-4-RMON_HC_RISING_THRESHOLD: threshold alarm from SNMP OID STACKUNIT0 high-capacity rising Copy Configuration Files Using SNMP To do the following, use SNMP from a remote client. • copy the running-config file to the startup-config file • copy configuration files from the Dell Networking system to a server • copy configuration files from a server to the Dell Networking system You can perform all of these tasks using IPv4 or IPv6 addresses.
MIB Object OID Object Values Description copySrcFileName is not required. copyDestFileType . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.5 1 = Dell Networking OS file Specifies the type of file to copy to. 2 = running-config • 3 = startup-config • copyDestFileLocation . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.6 1 = flash 2 = slot0 If copySourceFileType is running-config or startup-config, the default copyDestFileLocatio n is flash.
Copying a Configuration File To copy a configuration file, use the following commands. NOTE: In UNIX, enter the snmpset command for help using the following commands. Place the f10-copy-config.mib file in the directory from which you are executing the snmpset command or in the snmpset tool path. 1. Create an SNMP community string with read/write privileges. CONFIGURATION mode snmp-server community community-name rw 2. Copy the f10-copy-config.
• Copy the running-config to the startup-config from the UNIX machine. snmpset -v 2c -c public force10system-ip-address copySrcFileType.index i 2 copyDestFileType.index i 3 Examples of Copying Configuration Files The following examples show the command syntax using MIB object names and the same command using the object OIDs. In both cases, a unique index number follows the object. The following example shows copying configuration files using MIB object names. > snmpset -v 2c -r 0 -t 60 -c private -m .
Copying the Startup-Config Files to the Server via FTP To copy the startup-config to the server via FTP from the UNIX machine, use the following command. Copy the startup-config to the server via FTP from the UNIX machine. snmpset -v 2c -c public -m ./f10-copy-config.mib force10system-ip-address copySrcFileType.index i 2 copyDestFileName.index s filepath/filename copyDestFileLocation.index i 4 copyServerAddress.index a server-ip-address copyUserName.index s server-login-id copyUserPassword.
s filepath/filename copyDestFileType.index i 3 copyServerAddress.index a server-ip-address copyUserName.index s server-login-id copyUserPassword.index s server-login-password Example of Copying a Binary File From the Server to the Startup-Configuration via FTP > snmpset -v 2c -c private -m ./f10-copy-config.mib 10.10.10.10 copySrcFileType. 10 i 1 copySrcFileLocation.10 i 4 copyDestFileType.10 i 3 copySrcFileName.10 s /home/ myfilename copyServerAddress.10 a 172.16.1.56 copyUserName.
Obtaining a Value for MIB Objects To obtain a value for any of the MIB objects, use the following command. • Get a copy-config MIB object value. snmpset -v 2c -c public -m ./f10-copy-config.mib force10system-ip-address [OID.index | mib-object.index] index: the index value used in the snmpset command used to complete the copy operation. NOTE: You can use the entire OID rather than the object name. Use the form: OID.index.
Assigning a VLAN Alias Write a character string to the dot1qVlanStaticName object to assign a name to a VLAN. Example of Assigning a VLAN Alias using SNMP [Unix system output] > snmpset -v2c -c mycommunity 10.11.131.185 . 1.3.6.1.2.1.17.7.1.4.3.1.1.1107787786 s "My VLAN" SNMPv2-SMI::mib-2.17.7.1.4.3.1.1.
• Seven hex pairs represent a stack unit. Seven pairs accommodate the greatest number of ports available — 64 ports on the S4820T. On the S4820T, the last stack unit begins on the 66th bit. The first hex pair, 00 in the previous example, represents ports 1 to 7 in Stack Unit 0. The next pair to the right represents ports 8 to 15. To resolve the hex pair into a representation of the individual ports, convert the hex pair to binary.
Example of Adding an Untagged Port to a VLAN using SNMP In the following example, Port 0/2 is added as an untagged member of VLAN 10. >snmpset -v2c -c mycommunity 10.11.131.185 . 1.3.6.1.2.1.17.7.1.4.3.1.2.1107787786 x "40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" .1.3.6.1.2.1.17.7.1.4.3.1.4.
The following OIDs are configurable through the snmpset command. The node OID is 1.3.6.1.4.1.6027.3.18 F10-ISIS-MIB::f10IsisSysOloadSetOverload F10-ISIS-MIB::f10IsisSysOloadSetOloadOnStartupUntil F10-ISIS-MIB::f10IsisSysOloadWaitForBgp F10-ISIS-MIB::f10IsisSysOloadV6SetOverload F10-ISIS-MIB::f10IsisSysOloadV6SetOloadOnStartupUntil F10-ISIS-MIB::f10IsisSysOloadV6WaitForBgp To enable overload bit for IPv4 set 1.3.6.1.4.1.6027.3.18.1.1 and IPv6 set 1.3.6.1.4.1.6027.3.18.1.4 To set time to wait set 1.3.6.1.4.1.
Fetch Dynamic MAC Entries using SNMP Dell Networking supports the RFC 1493 dot1d table for the default VLAN and the dot1q table for all other VLANs. NOTE: The 802.1q Q-BRIDGE MIB defines VLANs regarding 802.1d, as 802.1d itself does not define them. As a switchport must belong a VLAN (the default VLAN or a configured VLAN), all MAC address learned on a switchport are associated with a VLAN. For this reason, the Q-Bridge MIB is used for MAC address query.
Example of Fetching MAC Addresses Learned on a Non-default VLAN Using SNMP In the following example, GigabitEthernet 1/21 is moved to VLAN 1000, a non-default VLAN. To fetch the MAC addresses learned on non-default VLANs, use the object dot1qTpFdbTable. The instance number is the VLAN number concatenated with the decimal conversion of the MAC address.
To display the interface number, use the following command. • Display the interface index number. EXEC Privilege mode show interface Example of Deriving the Interface Index Number To view the system image on Flash Partition A, use the chSysSwInPartitionAImgVers object or, to view the system image on Flash Partition B, use the chSysSwInPartitionBImgVers object. Table 71. MIB Objects for Viewing the System Image on Flash Partitions MIB Object OID Description MIB chSysSwInPartitionAImg 1.3.6.1.4.1.6027.
Untagged 2) dot3aCommonAggFdbStatus SNMPv2-SMI::enterprises.6027.3.2.1.1.6.1.4.1107755009.1 = INTEGER: 1 << Status active, 2 – status inactive Example of Viewing Status of Learned MAC Addresses If we learn MAC addresses for the LAG, status is shown for those as well. dot3aCurAggVlanId SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.1.1.0.0.0.0.0.1.1 dot3aCurAggMacAddr SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.2.1.0.0.0.0.0.1.1 00 00 00 01 dot3aCurAggIndex SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.3.1.0.0.0.0.0.1.
• When you query an IPv4 icmpMsgStatsInPkts object in the ICMP table by using the snmpwalk command, the echo response output may not be displayed. To correctly display ICMP statistics, such as echo response, use the show ip traffic command.
Stacking 51 Stacking is supported on the S4820T platform. Stacking is supported on the S4820T platform with the Dell Networking OS version 8.3.19.0 and newer. NOTE: The S4820T commands accept Unit ID numbers 0-11, though The S4820T supports stacking up to six units with Dell Networking OS version 8.3.19.0. Using the Dell Networking OS stacking feature, you can interconnect multiple S-Series switch units with dedicated stacking ports or front end user ports.
• Switch failure • Inter-switch stacking link failure • Switch insertion • Switch removal If the master switch goes off line, the standby replaces it as the new master and the switch with the next highest priority or MAC address becomes standby. Stack Master Election The stack elects a master and standby unit at bootup time based on two criteria. • Unit priority — User-configurable. The range is from 1 to 14. A higher value (14) means a higher priority. The default is 1.
3 4 5 6 7 8 9 10 Member Member Member Member Member Member Member Member online online not present not present not present not present not present not present S4810 S4810 S4810 S4810 4810-8-3-12-1447 64 4810-8-3-12-1447 64 Virtual IP You can manage the stack using a single IP, known as a virtual IP, that is retained in the stack even after a failover. The virtual IP address is used to log in to the current master unit of the stack. Both IPv4 and IPv6 addresses are supported as virtual IPs.
-----------------------------------------------------0 Management online S4820TS4820T 7.8.1.
4 5 6 7 Member Member Member Member not not not not present present present present Stacking LAG When multiple links are used between stack units, Dell Networking OS automatically bundles them in a stacking LAG to provide aggregated throughput and redundancy.
High Availability on S-Series Stacks S-Series stacks have master and standby management units analogous to Dell Networking route processor modules (RPM). The master unit synchronizes the running configuration and protocol states so that the system fails over in the event of a hardware or software fault on the master unit. In such an event, or when the master unit is removed, the standby unit becomes the stack manager and Dell Networking OS elects a new standby unit.
Management Access on S-Series Stacks You can access the stack via the console port or VTY line. • Console access — You may access the stack through the console port of the master unit (stack manager) only. Similar to a standby RPM, the console port of the standby unit does not provide management capability; only a limited number of commands are available. Member units provide a limited set of commands.
• • – Stacking with 1G interfaces is not supported. Stacking on the S4820T is accomplished through front-end user ports on the chassis. All stack units must have the same version of Dell Networking OS. S-Series Stacking Installation Tasks The following are the S-Series stacking installation tasks.
If the stack is running Dell Networking OS version 8.3.12.0 and the new unit is running an earlier software version, the new unit is put into a card problem state. • If the unit is running Dell Networking OS version 8.3.10.x, it is upgraded to use the same Dell Networking OS version as the stack, rebooted, and joined the stack. • If the new unit is running an Dell Networking OS version prior to 8.3.10.
3. Reload the switch. EXEC Privilege mode reload Dell Networking OS automatically assigns a number to the new unit and adds it as member switch in the stack. The new unit synchronizes its running and startup configurations with the stack. 4. After the units are reloaded, the system reboots. The units come up in a stack after the reboot completes. To view the port assignments, use the show system stack-unit command.
7. Reload the stack one unit at a time. EXEC Privilege mode show system brief Start with the management unit, then the standby, then each of the members in order of their assigned stack number (or the position in the stack you want each unit to take). Allow each unit to completely boot, and verify that the stack manager detects the unit, then power the next unit. Example of a Syslog Figure 119.
Dell(conf)# Dell#02:39:18: %STKUNIT4-M:CP %SYS-5-CONFIG_I: Configured from console Reload each unit in the stack. After the reload is complete, the four units come up as a stack with unit 1 as the management unit, unit 2 as the standby unit, and the remaining units as stack-members. All units in the stack can be accessed from the management unit. To view the stack unit information after the reload, use the show system brief command.
Setting ports Te 0/0 Te 0/1 Te 0/2 Te 0/3 as stack group will make their interface configs obsolete after a reload. [confirm yes/no]:yes S4810-1#show system stack-ports Topology: Ring Interface Connection Link Speed Admin Link Trunk (Gb/s) Status Status Group -----------------------------------------------------------------0/0 1/0 10 up up 0/1 1/1 10 up up 0/2 1/2 10 up up 0/3 1/3 10 up up S4810-1# Add Units to an Existing S-Series Stack You can add units to an existing stack in one of three ways.
4. Assign a stack group to each unit. CONFIGURATION mode stack-unit id stack-group id 5. Connect the new unit to the stack using stacking cables. Example of Adding an S4820T Stack Unit with a Conflicting Stack Number (Before and After) The following example shows adding a stack unit with a conflicting stack number (before).
stack group configuration conflict occurs between the new unit and the provisioned stack unit, the configuration of the new unit takes precedence. 1. Add the configured unit to the top or bottom of the stack. 2. Power on the switch. 3. Attach cables to connect ports on the added switch to one or more existing switches in the stack. 4. Log on to the CLI and enter global configuration mode.
• Dell Networking OS resets all the units in the losing stack; they all become stack members. • If there is no unit numbering conflict, the stack members retain their previous unit numbers. Otherwise, the stack manager assigns new unit numbers, based on the order that they come online. • The stack manager overwrites the startup and running config on the losing stack members with its own to synchronize the configuration on the new stack members.
Creating a Virtual Stack Unit on an S-Series Stack Use virtual stack units to configure ports on the stack before adding a new unit. • Create a virtual stack unit. CONFIGURATION mode stack-unit provision Displaying Information about an S-Series Stack To display information about the S-Series stack, use the following command. • Display for stack-identity, status, and hardware information on every unit in a stack. EXEC Privilege mode show system • Refer to the following example.
Up Time Dell Networking Jumbo Capable POE Capable Burned In MAC : No Of MACs : 3 : 57 min, 0 sec OS Version : 8-3-7-13 : yes : no 00:01:e8:8a:df:e6 -- Power Supplies -Unit Bay Status Type FanStatus -----------------------------------------0 0 absent absent 0 1 up AC up -- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed ------------------------------------------0 0 up up 6960 up 6960 0 1 up up 6720 up 6720 Speed in RPM -- Unit 1 -Unit Type Status Required Type : Member Unit : not present : S4810 - 5
3 4 5 6 7 8 9 10 11 Management Member Member Member Member Member Member Member Member online not present not present not present not present not present not present not present not present S4810 S4810 8-3-12-13 64 The following example shows the show system stack-ports command.
redundancy force-failover stack-unit • A new standby is elected. When the former stack master comes back online, it becomes a member unit. Prevent the stack master from rebooting after a failover. CONFIGURATION mode redundancy disable-auto-reboot stack-unit • This command does not affect a forced failover, manual reset, or a stack-link disconnect. Display redundancy information.
Examples of Viewing the Status for Stacked Switches The following example shows four switches stacked together with two 40G links in a ring topology.
1 1 0 1 up up up up 7200 7200 up up 7200 7440 Speed in RP The following example shows three switches stacked together in a daisy chain topology.
1 2 3 Member Member Standby online S4810 not present online S4810 S4810 8-3-7-13 64 S4810 8-3-7-13 64 The following examples shows removing a stack member (after).
Recover from Stack Link Flaps S-Series stack link integrity monitoring enables units to monitor their own stack ports and disable any stack port that flaps five times within 10 seconds. Dell Networking OS displays console messages for the local and remote members of a flapping link, and on the primary (master) and standby management units as KERN-2-INT messages if the flapping port belongs to either of these units. In the following example, a stack-port on the master flaps.
6 7 8 9 10 11 Member Member Member Member Member Member not not not not not not present present present present present present -- Power Supplies -Unit Bay Status Type FanStatus -----------------------------------0 0 down DC down 0 1 up DC up 1 0 absent absent 1 1 up AC up -- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed -------------------------------------------0 0 up up 9360 up 9360 0 1 up up 9600 up 9360 1 0 up up 6720 up 6720 1 1 up up 6960 up 6720 Speed in RPM stack-1# Recover from a Card
4 Member not present 5 Member not present 6 Member not present 7 Member not present ------------------STANDALONE UNIT AFTER------------------------01:38:34: %STKUNIT0-M:CP %POLLMGR-2-ALT_STACK_UNIT_STATE: Alternate Stack-unit is present 01:38:34: %STKUNIT0-M:CP %CHMGR-5-STACKUNITDETECTED: Stack unit 1 present Going for reboot.
52 Storm Control Storm control is supported on the S4820T platform. The storm control feature allows you to control unknown-unicast and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell Networking Operating System (OS) Behavior: Dell Networking OS supports broadcast control (the storm-control broadcast command) for Layer 2 and Layer 3 traffic. Dell Networking OS Behavior: The minimum number of packets per second (PPS) that storm control can limit on the S4820T is two.
Spanning Tree Protocol (STP) 53 The spanning tree protocol (STP) is supported on the S4820T platform. Protocol Overview STP is a Layer 2 protocol — specified by IEEE 802.1d — that eliminates loops in a bridged topology by enabling only a single path through the network. By eliminating loops, the protocol improves scalability in a large network and allows you to implement redundant paths, which can be activated after the failure of active paths.
Important Points to Remember • • • • • STP is disabled by default. The Dell Networking OS supports only one spanning tree instance (0). For multiple instances, enable the multiple spanning tree protocol (MSTP) or per-VLAN spanning tree plus (PVST+). You may only enable one flavor of spanning tree at any one time. All ports in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the spanning tree topology at the time you enable the protocol.
To configure and enable the interfaces for Layer 2, use the following command. 1. If the interface has been assigned an IP address, remove it. INTERFACE mode no ip address 2. Place the interface in Layer 2 mode. INTERFACE switchport 3. Enable the interface. INTERFACE mode no shutdown Example of the show config Command To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode.
Figure 121. Spanning Tree Enabled Globally To enable STP globally, use the following commands. 1. Enter PROTOCOL SPANNING TREE mode. CONFIGURATION mode protocol spanning-tree 0 2. Enable STP. PROTOCOL SPANNING TREE mode no disable Examples of Verifying Spanning Tree Information To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode.
To view the spanning tree configuration and the interfaces that are participating in STP, use the show spanning-tree 0 command from EXEC privilege mode. If a physical interface is part of a port channel, only the port channel is listed in the command output. R2#show spanning-tree 0 Executing IEEE compatible Spanning Tree Protocol Bridge Identifier has priority 32768, address 0001.e826.ddb7 Configured hello time 2, max age 20, forward delay 15 Current root has priority 32768, address 0001.e80d.
spanning-tree 0 Modifying Global Parameters You can modify the spanning tree parameters. The root bridge sets the values for forward-delay, hellotime, and max-age and overwrites the values set on other bridges participating in STP. NOTE: Dell Networking recommends that only experienced network administrators change the spanning tree parameters. Poorly planned modification of the spanning tree parameters can negatively affect network performance. The following table displays the default values for STP.
PROTOCOL SPANNING TREE mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree 0 command from EXEC privilege mode. Refer to the second example in Enabling Spanning Tree Protocol Globally. Modifying Interface STP Parameters You can set the port cost and port priority values of interfaces in Layer 2 mode. • Port cost — a value that is based on the interface type.
CAUTION: Enable PortFast only on links connecting to an end station. PortFast can cause loops if it is enabled on an interface connected to a network. To enable PortFast on an interface, use the following command. • Enable PortFast on an interface.
• When you add a physical port to a port channel already in the Error Disable state, the new member port is also disabled in the hardware. • When you remove a physical port from a port channel in the Error Disable state, the Error Disabled state is cleared on this physical port (the physical port is enabled in the hardware). • The reset linecard command does not clear the Error Disabled state of the port or the Hardware Disabled state. The interface continues to be disables in the hardware.
• disables spanning tree on an interface • drops all BPDUs at the line card without generating a console message Example of Blocked BPDUs Dell(conf-if-gi-0/7)#do show spanning-tree rstp brief Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32768, Address 0001.e805.fb07 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32768, Address 0001.e85d.0e90 Configured hello time 2, max age 20, forward delay 15 Interface Name PortID Prio ---------- -------Gi 0/6 128.
Root Bridge hello time 2, max age 20, forward delay 15 Dell# STP Root Guard STP root guard is supported on the S4820T platform. Use the STP root guard feature in a Layer 2 network to avoid bridging loops. In STP, the switch in the network with the lowest priority (as determined by STP or set with the bridge-priority command) is selected as the root bridge. If two switches have the same priority, the switch with the lower MAC address is selected as the root.
Figure 123. STP Root Guard Prevents Bridging Loops Configuring Root Guard Enable STP root guard on a per-port or per-port-channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with STP root guard: • Root guard is supported on any STP-enabled port or port-channel interface except when used as a stacking port.
• Enable root guard on a port or port-channel interface. INTERFACE mode or INTERFACE PORT-CHANNEL mode spanning-tree {0 | mstp | rstp | pvst} rootguard – 0: enables root guard on an STP-enabled port assigned to instance 0. – mstp: enables root guard on an MSTP-enabled port. – rstp: enables root guard on an RSTP-enabled port. – pvst: enables root guard on a PVST-enabled port.
STP Loop Guard STP loop guard is supported only on the S4820T platform. The STP loop guard feature provides protection against Layer 2 forwarding loops (STP loops) caused by a hardware failure, such as a cable failure or an interface fault. When a cable or interface fails, a participating STP link may become unidirectional (STP requires links to be bidirectional) and an STP port does not receive BPDUs. When an STP blocking port does not receive BPDUs, it transitions to a Forwarding state.
Figure 124. STP Loop Guard Prevents Forwarding Loops Configuring Loop Guard Enable STP loop guard on a per-port or per-port channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with loop guard: • Loop guard is supported on any STP-enabled port or port-channel interface.
• You cannot enable root guard and loop guard at the same time on an STP port. For example, if you configure loop guard on a port on which root guard is already configured, the following error message is displayed: % Error: RootGuard is configured. Cannot configure LoopGuard. • Enabling Portfast BPDU guard and loop guard at the same time on a port results in a port that remains in a blocking state and prevents traffic from flowing through it.
System Time and Date 54 System time and date settings and the network time protocol (NTP) are supported on the S4820T platform. You can set system times and dates and maintained through the NTP. They are also set through the Dell Networking Operating System (OS) command line interfaces (CLIs) and hardware settings. In the release 9.4.(0.0), support for reaching an NTP server through different VRFs is included. You can configure a maximum of eight logging servers across different VRFs or the same VRF.
certain fields in the message, recalculates the checksum and returns the message immediately. Information included in the NTP message allows the client to determine the server time regarding local time and adjust the local clock accordingly. In addition, the message includes information to calculate the expected timekeeping accuracy and reliability, as well as select the best from possibly several servers.
Implementation Information Dell Networking systems can only be an NTP client. Configure the Network Time Protocol Configuring NTP is a one-step process. • Enabling NTP Related Configuration Tasks • Configuring NTP Broadcasts • Setting the Hardware Clock with the Time Derived from NTP • Disabling NTP on an Interface • Configuring a Source IP Address for NTP Packets (optional) Enabling NTP NTP is disabled by default.
CONFIGURATION mode ntp update-calendar Example of Updating the System Clock Relative to NTP R5/R8(conf)#do show calendar 06:31:02 UTC Mon Mar 13 1989 R5/R8(conf)#ntp update-calendar 1 R5/R8(conf)#do show calendar 06:31:26 UTC Mon Mar 13 1989 R5/R8(conf)#do show calendar 12:24:11 UTC Thu Mar 12 2009 Configuring NTP Broadcasts With Dell Networking OS, you can receive broadcasts of time information. You can set interfaces within the system to receive NTP information through broadcast.
– For a 1-Gigabit Ethernet interface, enter the keyword GigabitEthernet then the slot/port information. – For a loopback interface, enter the keyword loopback then a number between 0 and 16383. – For a port channel interface, enter the keyword lag then a number from 1 to 255 for TeraScale and ExaScale. – For a SONET interface, enter the keyword sonet then the slot/port information. – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port information.
4. Configure an NTP server. CONFIGURATION mode ntp server ip-address [key keyid] [prefer] [version number] Configure the IP address of a server and the following optional parameters: • key keyid: configure a text string as the key exchanged between the NTP server and the client. • prefer: enter the keyword prefer to set this NTP server as the preferred server. • version number: enter a number as the NTP version. The range is from 1 to 3.
NOTE: • Leap Indicator (sys.leap, peer.leap, pkt.leap) — This is a two-bit code warning of an impending leap second to be inserted in the NTP time scale. The bits are set before 23:59 on the day of insertion and reset after 00:00 on the following day. This causes the number of seconds (rollover interval) in the day of insertion to be increased or decreased by one.
Dell Networking OS Time and Date You can set the time and date using the Dell Networking OS CLI. Configuration Task List The following is a configuration task list for configuring the time and date settings.
– month: enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year. – day: enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year. – year: enter a four-digit number as the year. The range is from 1993 to 2035.
– time-zone: enter the three-letter name for the time zone. This name displays in the show clock output. – start-month: enter the name of one of the 12 months in English. You can enter the name of a day to change the order of the display to time day month year. – start-day: enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year. – start-year: enter a four-digit number as the year. The range is from 1993 to 2035.
– start-day: Enter the number of the day. The range is from 1 to 31. You can enter the name of a month to change the order of the display to time day month year. – start-year: Enter a four-digit number as the year. The range is from 1993 to 2035. – start-time: Enter the time in hours:minutes. For the hour variable, use the 24-hour format; example, 17:15 is 5:15 pm.
Tunneling 55 Tunnel interfaces create a logical tunnel for IPv4 or IPv6 traffic. Tunneling supports RFC 2003, RFC 2473, and 4213. DSCP, hop-limits, flow label values, OSPFv2, and OSPFv3 are also supported. ICMP error relay, PATH MTU transmission, and fragmented packets are not supported. Configuring a Tunnel You can configure a tunnel in IPv6 mode, IPv6IP mode, and IPIP mode. You can configure a tunnel in IPv6 mode, IPv6IP mode, and IPIP mode.
ipv6 address 2::1/64 tunnel destination 90.1.1.1 tunnel source 60.1.1.1 tunnel mode ipv6ip no shutdown The following sample configuration shows a tunnel configured in IPIP mode (IPv4 tunnel carries IPv4 and IPv6 traffic): Dell(conf)#interface tunnel 3 Dell(conf-if-tu-3)#tunnel source 5::5 Dell(conf-if-tu-3)#tunnel destination 8::9 Dell(conf-if-tu-3)#tunnel mode ipv6 Dell(conf-if-tu-3)#ip address 3.1.1.
Configuring a Tunnel Interface You can configure the tunnel interface using the ip unnumbered and ipv6 unnumbered commands. To configure the tunnel interface to operate without a unique explicit ip or ipv6 address, select the interface from which the tunnel will borrow its address. The following sample configuration shows how to use the tunnel interface configuration commands. Dell(conf-if-te-0/0)#show config ! interface TenGigabitEthernet 0/0 ip address 20.1.1.
Configuring Tunnel source anylocal Decapsulation The tunnel source anylocal command allows a multipoint receive-only tunnel to decapsulate tunnel packets addressed to any IPv4 or IPv6 (depending on the tunnel mode) address configured on the switch that is operationally UP. The source anylocal parameters can be used for packet decapsulation instead of the ip address or interface (tunnel allow-remote command), but only on multipoint receive-only mode tunnels.
Uplink Failure Detection (UFD) 56 Uplink failure detection (UFD) is supported on the S4820T platform. Feature Description UFD provides detection of the loss of upstream connectivity and, if used with network interface controller (NIC) teaming, automatic recovery from a failed link. A switch provides upstream connectivity for devices, such as servers. If a switch loses its upstream connectivity, downstream devices also lose their connectivity.
Figure 126. Uplink Failure Detection How Uplink Failure Detection Works UFD creates an association between upstream and downstream interfaces. The association of uplink and downlink interfaces is called an uplink-state group. An interface in an uplink-state group can be a physical interface or a port-channel (LAG) aggregation of physical interfaces. An enabled uplink-state group tracks the state of all assigned upstream interfaces.
Figure 127. Uplink Failure Detection Example If only one of the upstream interfaces in an uplink-state group goes down, a specified number of downstream ports associated with the upstream interface are put into a Link-Down state. You can configure this number and is calculated by the ratio of the upstream port bandwidth to the downstream port bandwidth in the same uplink-state group.
– An uplink-state group is considered to be operationally down if it has no upstream interfaces in the Link-Up state. No uplink-state tracking is performed when a group is disabled or in an Operationally Down state. • You can assign physical port or port-channel interfaces to an uplink-state group. – You can assign an interface to only one uplink-state group. Configure each interface assigned to an uplink-state group as either an upstream or downstream interface, but not both.
Configuring Uplink Failure Detection To configure UFD, use the following commands. 1. Create an uplink-state group and enable the tracking of upstream links on the switch/router. CONFIGURATION mode uplink-state-group group-id • group-id: values are from 1 to 16. To delete an uplink-state group, use the no uplink-state-group group-id command. 2. Assign a port or port-channel to the uplink-state group as an upstream or downstream interface.
4. (Optional) Enable auto-recovery so that UFD-disabled downstream ports in the uplink-state group come up when a disabled upstream port in the group comes back up. UPLINK-STATE-GROUP mode downstream auto-recover The default is auto-recovery of UFD-disabled downstream ports is enabled. To disable auto-recovery, use the no downstream auto-recover command. 5. (Optional) Enters a text description of the uplink-state group.
Example of Syslog Messages Before and After Entering the clear ufd-disable uplink-stategroup Command (S50) The following example message shows the Syslog messages that display when you clear the UFDDisabled state from all disabled downstream interfaces in an uplink-state group by using the clear ufd-disable uplink-state-group group-id command. All downstream interfaces return to an operationally up state.
02:38:53: %RPM0-P:CP %IFMGR-5-OSTATE_UP: Changed interface state to up: Fo 13/3 02:38:53: %RPM0-P:CP %IFMGR-5-OSTATE_UP: Changed interface state to up: Fo 13/5 02:38:53: %RPM0-P:CP %IFMGR-5-OSTATE_UP: Changed interface state to up: Fo 13/6 Displaying Uplink Failure Detection To display information on the UFD feature, use any of the following commands. • Display status information on a specified uplink-state group or all groups.
Dell#show uplink-state-group detail (Up): Interface up (Dwn): Interface down (Dis): Interface disabled Uplink State Group : 1 Upstream Interfaces : Downstream Interfaces : Status: Enabled, Up Uplink State Group : 3 Status: Enabled, Up Upstream Interfaces : Gi 0/46(Up) Gi 0/47(Up) Downstream Interfaces : Te 13/0(Up) Te 13/1(Up) Te 13/3(Up) Te 13/5(Up) Te 13/6(Up) Uplink State Group : 5 Status: Enabled, Down Upstream Interfaces : Gi 0/0(Dwn) Gi 0/3(Dwn) Gi 0/5(Dwn) Downstream Interfaces : Te 13/2(Dis) Te 13
The following example shows viewing the UFD configuration for the S50.
Dell(conf-uplink-state-group-3)# Dell(conf-uplink-state-group-3)#exit Dell(conf)#exit Dell# 00:13:06: %STKUNIT0-M:CP %SYS-5-CONFIG_I: Configured from console by console Dell# show running-config uplink-state-group ! uplink-state-group 3 description Testing UFD feature downstream disable links 2 downstream GigabitEthernet 0/1-2,5,9,11-12 upstream GigabitEthernet 0/3-4 Dell# show uplink-state-group 3 Uplink State Group: 3 Status: Enabled, Up Dell# show uplink-state-group detail (Up): Interface up (Dwn): Inter
Upgrade Procedures 57 To find the upgrade procedures, go to the Dell Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell Networking OS version. To upgrade your system type, follow the procedures in the Dell Networking OS Release Notes. Get Help with Upgrades Direct any questions or concerns about the Dell Networking OS upgrade procedures to the Dell Technical Support Center. You can reach Technical Support: • On the web: http://support.dell.
58 Virtual LANs (VLANs) Virtual LANs (VLANs) are supported on the S4820T platform. VLANs are a logical broadcast domain or logical grouping of interfaces in a local area network (LAN) in which all data received is kept locally and broadcast to all members of the group. When in Layer 2 mode, VLANs move traffic at wire speed and can span multiple devices. The Dell Networking Operating System (OS) supports up to 4093 port-based VLANs and one default VLAN, as specified in IEEE 802.1Q.
By default, VLAN 1 is the Default VLAN. To change that designation, use the default vlan-id command in CONFIGURATION mode. You cannot delete the Default VLAN. NOTE: You cannot assign an IP address to the Default VLAN. To assign an IP address to a VLAN that is currently the Default VLAN, create another VLAN and assign it to be the Default VLAN. For more information about assigning IP addresses, refer to Assigning an IP Address to a VLAN. • Untagged interfaces must be part of a VLAN.
information is preserved as the frame moves through the network. The following example shows the structure of a frame with a tag header. The VLAN ID is inserted in the tag header. Figure 128. Tagged Frame Format The tag header contains some key information that Dell Networking OS uses: • The VLAN protocol identifier identifies the frame as tagged according to the IEEE 802.1Q specifications (2 bytes). • Tag control information (TCI) includes the VLAN ID (2 bytes total).
• Configure a port-based VLAN (if the VLAN-ID is different from the Default VLAN ID) and enter INTERFACE VLAN mode. CONFIGURATION mode interface vlan vlan-id To activate the VLAN, after you create a VLAN, assign interfaces in Layer 2 mode to the VLAN. Example of Verifying a Port-Based VLAN To view the configured VLANs, use the show vlan command in EXEC Privilege mode.
The following example shows the steps to add a tagged interface (in this case, port channel 1) to VLAN 4. To view the interface’s status. Interface (po 1) is tagged and in VLAN 2 and 3, use the show vlan command. In a port-based VLAN, use the tagged command to add the interface to another VLAN. The show vlan command output displays the interface’s (po 1) changed status. Except for hybrid ports, only a tagged interface can be a member of multiple VLANs.
Moving Untagged Interfaces To move untagged interfaces from the Default VLAN to another VLAN, use the following commands. 1. Access INTERFACE VLAN mode of the VLAN to which you want to assign the interface. CONFIGURATION mode interface vlan vlan-id 2. Configure an interface as untagged. INTERFACE mode untagged interface This command is available only in VLAN interfaces.
4 Dell# Active T U Gi 3/1 Gi 3/2 The only way to remove an interface from the Default VLAN is to place the interface in Default mode by using the no switchport command in INTERFACE mode. Assigning an IP Address to a VLAN VLANs are a Layer 2 feature. For two physical interfaces on different VLANs to communicate, you must assign an IP address to the VLANs to route traffic between the two interfaces.
To configure a port so that it can be a member of an untagged and tagged VLANs, use the following commands. 1. Remove any Layer 2 or Layer 3 configurations from the interface. INTERFACE mode 2. Configure the interface for Hybrid mode. INTERFACE mode portmode hybrid 3. Configure the interface for Switchport mode. INTERFACE mode switchport 4. Add the interface to a tagged or untagged VLAN.
Virtual Link Trunking (VLT) 59 Virtual link trunking (VLT) is supported on the S4820T platform. Overview VLT allows physical links between two chassis to appear as a single virtual link to the network core or other switches such as Edge, Access, or top-of-rack (ToR). VLT reduces the role of spanning tree protocols (STPs) by allowing link aggregation group (LAG) terminations on two separate distribution or core switches, and by supporting a loop-free topology.
Figure 129. VLT on S4820T Switches VLT on Core Switches You can also deploy VLT on core switches. Uplinks from servers to the access layer and from access layer to the aggregation layer are bundled in LAG groups with end-to-end Layer 2 multipathing. This set up requires “horizontal” stacking at the access layer and VLT at the aggregation layer such that all the uplinks from servers to access and access to aggregation are in Active-Active Load Sharing mode.
Figure 130. Enhanced VLT VLT Terminology The following are key VLT terms. • Virtual link trunk (VLT) — The combined port channel between an attached device and the VLT peer switches. • VLT backup link — The backup link monitors the vitality of VLT peer switches. The backup link sends configurable, periodic keep alive messages between the VLT peer switches. • VLT interconnect (VLTi) — The link used to synchronize states between the VLT peer switches. Both ends must be on 10G or 40G interfaces.
Configure Virtual Link Trunking VLT requires that you enable the feature and then configure the same VLT domain, backup link, and VLT interconnect on both peer switches. Important Points to Remember • You cannot enable S4820T stacking simultaneously with VLT. If you enable both at the same time, unexpected behavior occurs. Refer to VLT and Stacking. • VLT port channel interfaces must be switch ports. • If you include RSTP on the system, configure it before VLT. Refer to Configure Rapid Spanning Tree.
• VLT Heartbeat is supported only on default VRFs. • In a scenario where one hundred hosts are connected to a Peer1 on a non-VLT domain and traffic flows through Peer1 to Peer2; when you move these hosts from a non-VLT domain to a VLT domain and send ARP requests to Peer1, only half of these ARP requests reach Peer1, while the remaining half reach Peer2 (beacuse of LAG hashing).
– The port channel must be in Default mode (not Switchport mode) to have VLTi recognize it. – The system automatically includes the required VLANs in VLTi. You do not need to manually select VLANs. – VLT peer switches operate as separate chassis with independent control and data planes for devices attached to non-VLT ports. – Port-channel link aggregation (LAG) across the ports in the VLT interconnect is required; individual ports are not supported.
– The chassis backup link does not carry control plane information or data traffic. Its use is restricted to health checks only. • Virtual link trunks (VLTs) between access devices and VLT peer switches – To connect servers and access switches with VLT peer switches, you use a VLT port channel, as shown in Overview. Up to 48 port-channels are supported; up to eight member links are supported in each port channel between the VLT domain and an access device.
• Software features supported on VLT physical ports – In a VLT domain, the following software features are supported on VLT physical ports: 802.1p, LLDP, flow control, IPv6 dynamic routing, port monitoring, and jumbo frames. • Software features not supported with VLT – In a VLT domain, the following software features are supported on non-VLT ports: 802.1x, DHCP snooping, FRRP, ingress and egress QOS.
MAC address is selected as the Primary Peer. You can configure another peer as the Primary Peer using the VLT domain domain-id role priority priority-value command. If the VLTi link fails, the status of the remote VLT Primary Peer is checked using the backup link. If the remote VLT Primary Peer is available, the Secondary Peer disables all VLT ports to prevent loops.
VLT and Stacking You cannot enable stacking on S4820T units with VLT. If you enable stacking on a unit on which you want to enable VLT, you must first remove the unit from the existing stack. For information about how to remove a unit from a stack, refer to Removing a Unit from an S-Series Stack. After you remove the unit, you can configure VLT on the unit.
PIM-Sparse Mode Support on VLT The designated router functionality of the PIM Sparse-Mode multicast protocol is supported on VLT peer switches for multicast sources and receivers that are connected to VLT ports. VLT peer switches can act as a last-hop router for IGMP receivers and as a first-hop router for multicast sources. Figure 131.
(DR) if they are incorrectly hashed. In addition to being first-hop or last -hop routers, the peer node can also act as an intermediate router. On a VLT-enabled PIM router, if any PIM neighbor is reachable through a Spanned Layer 3 (L3) VLAN interface, this must be the only PIM-enabled interface to reach that neighbor. A Spanned L3 VLAN is any L3 VLAN configured on both peers in a VLT domain. This does not apply to server-side L2 VLT ports because they do not connect to any PIM routers.
local DA entries in TCAM. In case a VLT node is down, a timer that allows you to configure the amount of time needed for peer recovery provides resiliency. You can enable VLT unicast across multiple configurations using VLT links. You can enable ECMP on VLT nodes using VLT unicast. VLT unicast routing is supported on both IPv6/IPv4. To enable VLT unicast routing, both VLT peers must be in L3 mode. Static route and routing protocols such as RIP, OSPF, ISIS, and BGP are supported.
• VLT resiliency — After a VLT link or peer failure, if the traffic hashes to the VLT peer, the traffic continues to be routed using multicast until the PIM protocol detects the failure and adjusts the multicast distribution tree. • Optimal routing — The VLT peer that receives the incoming traffic can directly route traffic to all downstream routers connected on VLT ports.
Non-VLT ARP Sync Synchronization for non-ARP routing table entries is supported on the S4820T platform. ARP entries (including ND entries) learned on other ports are synced with the VLT peer to support station move scenarios. NOTE: ARP entries learned on non-VLT, non-spanned VLANs are not synced with VLT peers. RSTP Configuration RSTP is supported in a VLT domain. Before you configure VLT on peer switches, configure RSTP in the network.
Sample RSTP Configuration The following is a sample of an RSTP configuration. Using the example shown in the Overview section as a sample VLT topology, the primary VLT switch sends BPDUs to an access device (switch or server) with its own RSTP bridge ID. BPDUs generated by an RSTP-enabled access device are only processed by the primary VLT switch. The secondary VLT switch tunnels the BPDUs that it receives to the primary VLT switch over the VLT interconnect.
Configuring a VLT Interconnect To configure a VLT interconnect, follow these steps. 1. Configure the port channel for the VLT interconnect on a VLT switch and enter interface configuration mode. CONFIGURATION mode interface port-channel id-number Enter the same port-channel number configured with the peer-link port-channel command as described in Enabling VLT and Creating a VLT Domain. NOTE: To be included in the VLTi, the port channel must be in Default mode (no switchport or VLAN assigned). 2.
Enabling VLT and Creating a VLT Domain To enable VLT and create a VLT domain, use the following steps. 1. Enable VLT on a switch, then configure a VLT domain and enter VLT-domain configuration mode. CONFIGURATION mode vlt domain domain-id The domain ID range is from 1 to 1000. Configure the same domain ID on the peer switch to allow for common peering. VLT uses the domain ID to automatically create a VLT MAC address for the domain.
Configuring a VLT Backup Link To configure a VLT backup link, use the following command. 1. Specify the management interface to be used for the backup link through an out-of-band management network. CONFIGURATION mode interface managementethernet slot/ port Enter the slot (0-1) and the port (0). 2. Configure an IPv4 address (A.B.C.D) or IPv6 address (X:X:X:X::X) and mask (/x) on the interface.
Reconfiguring the Default VLT Settings (Optional) To reconfigure the default VLT settings, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 2. (Optional) After you configure the VLT domain on each peer switch on both sides of the interconnect trunk, by default, Dell Networking OS elects a primary and secondary VLT peer device.
Connecting a VLT Domain to an Attached Access Device (Switch or Server) To connect a VLT domain to an attached access device, use the following commands. On a VLT peer switch: To connect to an attached device, configure the same port channel ID number on each peer switch in the VLT domain. 1. Configure the same port channel to be used to connect to an attached device and enter interface configuration mode. CONFIGURATION mode interface port-channel id-number 2. Remove an IP address from the interface.
Configuring a VLT VLAN Peer-Down (Optional) To configure a VLT VLAN peer-down, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 2. Enter the port-channel number that acts as the interconnect trunk. VLT DOMAIN CONFIGURATION mode peer-link port-channel id-number The range is from 1 to 128. 3.
3. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 4. Enter the port-channel number that acts as the interconnect trunk. VLT DOMAIN CONFIGURATION mode peer-link port-channel id-number The range is from 1 to 128. 5. Configure the IP address of the management interface on the remote VLT peer to be used as the endpoint of the VLT backup link for sending out-of-band hello messages.
8. Configure enhanced VLT. Configure the port channel to be used for the VLT interconnect on a VLT switch and enter interface configuration mode. CONFIGURATION mode interface port-channel id-number Enter the same port-channel number configured with the peer-link port-channel command in the Enabling VLT and Creating a VLT Domain. 9. Place the interface in Layer 2 mode. INTERFACE PORT-CHANNEL mode switchport 10.
VLT Sample Configuration To review a sample VLT configuration setup, study these steps. 1. Configure the VLT domain with the same ID in VLT peer 1 and VLT peer 2. VLT DOMAIN mode vlt domain domain id 2. Configure the VLTi between VLT peer 1 and VLT peer 2. 3. You can configure LACP/static LAG between the peer units (not shown).
13. Verify that the VLT LAG is running in both VLT peer units. EXEC mode or EXEC Privilege mode show interfaces interface Example of Configuring VLT In the following sample VLT configuration steps, VLT peer 1 is S4820T-2, VLT peer 2 is S4820T-4, and the ToR is S60-1. NOTE: If you use a third-party ToR unit, Dell Networking recommends using static LAGs with VLT peers to avoid potential problems if you reboot the VLT peers. Configure the VLT domain with the same ID in VLT peer 1 and VLT peer 2.
Configure the VLT links between VLT peer 1 and VLT peer 2 to the Top of Rack unit. In the following example, port Te 0/40 in VLT peer 1 is connected to Te 0/48 of TOR and port Te 0/18 in VLT peer 2 is connected to Te 0/50 of TOR. 1. Configure the static LAG/LACP between the ports connected from VLT peer 1 and VLT peer 2 to the Top of Rack unit. 2. Configure the VLT peer link port channel id in VLT peer 1 and VLT peer 2. 3.
no ip address switchport no shutdown s60-1# s60-1#show interfaces port-channel 100 brief Codes: L - LACP Port-channel L LAG 100 Mode L2 Status up Uptime 03:33:48 s60-1# Ports Te 0/48 (Up) Te 0/50 (Up) Verify VLT is up. Verify that the VLTi (ICL) link, backup link connectivity (heartbeat status), and VLT peer link (peer chassis) are all up.
Figure 132. eVLT Configuration Example eVLT Configuration Step Examples In Domain 1, configure the VLT domain and VLTi on Peer 1. Domain_1_Peer1#configure Domain_1_Peer1(conf)#interface port-channel 1 Domain_1_Peer1(conf-if-po-1)# channel-member TenGigabitEthernet 0/8-9 Domain_1_Peer1(conf)#vlt domain 1000 Domain_1_Peer1(conf-vlt-domain)# peer-link port-channel 1 Domain_1_Peer1(conf-vlt-domain)# back-up destination 10.16.130.
Domain_1_Peer2(conf-vlt-domain)# back-up destination 10.16.130.12 Domain_1_Peer2(conf-vlt-domain)# system-mac mac-address 00:0a:00:0a:00:0a Domain_1_Peer2(conf-vlt-domain)# unit-id 1 Configure eVLT on Peer 2. Domain_1_Peer2(conf)#interface port-channel 100 Domain_1_Peer2(conf-if-po-100)# switchport Domain_1_Peer2(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_1_Peer2(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 2.
Configure eVLT on Peer 4. Domain_2_Peer4(conf)#interface port-channel 100 Domain_2_Peer4(conf-if-po-100)# switchport Domain_2_Peer4(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_2_Peer4(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 4.
Verifying a VLT Configuration To monitor the operation or verify the configuration of a VLT domain, use any of the following show commands on the primary and secondary VLT switches. • Display information on backup link operation. EXEC mode • show vlt backup-link Display general status information about VLT domains currently configured on the switch.
Examples of the show vlt and show spanning-tree rstp Commands The following example shows the show vlt backup-link command. Dell_VLTpeer1# show vlt backup-link VLT Backup Link ----------------Destination: Peer HeartBeat status: HeartBeat Timer Interval: HeartBeat Timeout: UDP Port: HeartBeat Messages Sent: HeartBeat Messages Received: 10.11.200.
The following example shows the show vlt detail command. Dell_VLTpeer1# show vlt detail Local LAG Id -----------100 127 Peer LAG Id ----------100 2 Local Status Peer Status Active VLANs ------------ ----------- ------------UP UP 10, 20, 30 UP UP 20, 30 Dell_VLTpeer2# show vlt detail Local LAG Id -----------2 100 Peer LAG Id ----------127 100 Local Status -----------UP UP Peer Status ----------UP UP Active VLANs ------------20, 30 10, 20, 30 The following example shows the show vlt role command.
Dell_VLTpeer2# show vlt statistics VLT Statistics ---------------HeartBeat Messages Sent: HeartBeat Messages Received: ICL Hello's Sent: ICL Hello's Received: 994 978 89 89 The following example shows the show spanning-tree rstp command. The bold section displays the RSTP state of port channels in the VLT domain. Port channel 100 is used in the VLT interconnect trunk (VLTi) to connect to VLT peer2. Port channels 110, 111, and 120 are used to connect to access switches or servers (vlt).
Configuring Virtual Link Trunking (VLT Peer 1) Enable VLT and create a VLT domain with a backup-link and interconnect trunk (VLTi). Dell_VLTpeer1(conf)#vlt domain 999 Dell_VLTpeer1(conf-vlt-domain)#peer-link port-channel 100 Dell_VLTpeer1(conf-vlt-domain)#back-up destination 10.11.206.35 Dell_VLTpeer1(conf-vlt-domain)#exit Configure the backup link. Dell_VLTpeer1(conf)#interface ManagementEthernet 0/0 Dell_VLTpeer1(conf-if-ma-0/0)#ip address 10.11.206.
Configure the backup link. Dell_VLTpeer2(conf)#interface ManagementEthernet 0/0 Dell_VLTpeer2(conf-if-ma-0/0)#ip address 10.11.206.35/ Dell_VLTpeer2(conf-if-ma-0/0)#no shutdown Dell_VLTpeer2(conf-if-ma-0/0)#exit Configure the VLT interconnect (VLTi).
Troubleshooting VLT To help troubleshoot different VLT issues that may occur, use the following information. NOTE: For information on VLT Failure mode timing and its impact, contact your Dell Networking representative. Table 74. Troubleshooting VLT Description Behavior at Peer Up Behavior During Run Time Action to Take Bandwidth monitoring A syslog error message and an SNMP trap is generated when the VLTi bandwidth usage goes above the 80% threshold and when it drops below 80%.
Description Behavior at Peer Up Behavior During Run Time Action to Take that the MAC address is the same on both units. The VLT peer does not boot up. The VLTi is forced to a down state. The VLT peer does not boot up. The VLTi is forced to a down state. A syslog error message is generated. A syslog error message is generated. Version ID mismatch A syslog error message and an SNMP trap are generated. A syslog error message and an SNMP trap are generated.
Specifying VLT Nodes in a PVLAN You can configure VLT peer nodes in a private VLAN (PVLAN). VLT enables redundancy without the implementation of Spanning Tree Protocol (STP), and provides a loop-free network with optimal bandwidth utilization. Because the VLT LAG interfaces are terminated on two different nodes, PVLAN configuration of VLT VLANs and VLT LAGs are symmetrical and identical on both the VLT peers. PVLANs provide Layer 2 isolation between ports within the same VLAN.
not validated if you associate an ICL to a PVLAN. Similarly, if you dissociate an ICL from a PVLAN, although the PVLAN parity exists, ICL is removed from that PVLAN. Association of VLTi as a Member of a PVLAN If a VLAN is configured as a non-VLT VLAN on both the peers, the VLTi link is made a member of that VLAN if the VLTi link is configured as a PVLAN or normal VLAN on both the peers.
PVLAN Operations When a VLT Peer is Restarted When the VLT peer node is rebooted, the VLAN membership of the VLTi link is preserved and when the peer node comes back online, a verification is performed with the newly received PVLAN configuration from the peer. If any differences are identified, the VLTi link is either added or removed from the VLAN. When the peer node restarts and returns online, all the PVLAN configurations are exchanged across the peers.
VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Mac Synchronization Peer1 Peer2 Peer1 Peer2 Promiscuo us Trunk Primary Primary Yes No Trunk Access Primary Secondary No No Promiscuo us Promiscuo us Primary Primary Yes Yes Promiscuo us Access Primary Secondary No No Promiscuo us Promiscuo us Primary Primary Yes Yes - Secondary (Community) - Secondary (Isolated) No No Secondary (Community) Secondary (Isolated) No No • • Yes Yes Access Promiscuo us Acc
VLT LAG Mode PVLAN Mode of VLT VLAN ICL VLAN Membership Mac Synchronization Peer1 Peer2 Peer1 Peer2 Access Access Secondary (Community) Secondary (Community) No No - Primary VLAN Y - Primary VLAN X No No Promiscuo us Access Primary Secondary No No Trunk Access Primary/Normal Secondary No No Configuring a VLT VLAN or LAG in a PVLAN You can configure the VLT peers or nodes in a private VLAN (PVLAN).
4. Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown 5. To configure the VLT interconnect, repeat Steps 1–4 on the VLT peer switch. 6. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 7. Enter the port-channel number that acts as the interconnect trunk. VLT DOMAIN CONFIGURATION mode peer-link port-channel id-number The range is from 1 to 128. 8.
5. Access INTERFACE VLAN mode for the VLAN to which you want to assign the PVLAN interfaces. CONFIGURATION mode interface vlan vlan-id 6. Enable the VLAN. INTERFACE VLAN mode no shutdown 7. To obtain maximum VLT resiliency, configure the PVLAN IDs and mappings to be identical on both the VLT peer nodes. Set the PVLAN mode of the selected VLAN to primary. INTERFACE VLAN mode private-vlan mode primary 8. Map secondary VLANs to the selected primary VLAN.
proxy ARP. For example, consider a sample topology in which VLAN 100 is configured on two VLT nodes, node 1 and node 2. ICL link is not configured between the two VLT nodes. Assume that the VLAN 100 IP address in node 1 is 10.1.1.1/24 and VLAN 100 IP address in node 2 is 20.1.1.2/24. In this case, if the ARP request for 20.1.1.1 reaches node 1, node 1 will not perform the ARP request for 20.1.1.2. Proxy ARP is supported only for the IP address belongs to the received interface IP network.
VLT Nodes as Rendezvous Points for Multicast Resiliency You can configure virtual link trunking (VLT) peer nodes as rendezvous points (RPs) in a Protocol Independent Multicast (PIM) domain. PIM uses a VLT node as the RP to distribute multicast traffic to a multicast group. Messages to join the multicast group (Join messages) and data are sent towards the RP, so that receivers can discover who the senders are and begin receiving traffic destined for the multicast group.
VLT Proxy Gateway 60 You can configure a proxy gateway in VLT domains. A proxy gateway enables you to locally route the packets that are destined to a L3 endpoint in another VLT domain. Proxy Gateway in VLT Domains Using a proxy gateway, the VLT peers in a domain can route the L3 packets destined for VLT peers in another domain as long as they have L3 reachability of these IP destinations.
When the routing table across DCs is not symmetrical, there is a possibility of a routing miss by a DC that do not have the route for the L3 traffic. Since routing protocols will enabled and both the DC’s comes in same subnet there will not be route asymmetry dynamically. But if static route is configured on one DC and not on the other, it will result is asymmetry. Proxy routing can still be achieved locally by configuring a static route or default gateway.
8. LLDP port channel interface can’t be changed to legacy lag when proxy gateway is enabled. 9.“vlt-peer-mac transmit” is recommended only for square VLT without any diagonal links. 10. VRRP and IPv6 routing is not supported now. 11. With the existing hardware capabilities, only 512 my_station_tcam entries can be supported. 12. PVLAN not supported 13. After VM Motion, it’s expected that VM Host will send GARP in term, host previous VLT Domain will have mac movement points to newer VLT Domain 14.
• There are only a couple of MACs for each unit to be transmitted so that all current active MACs can definitely be carried on the newly defined TLV. • This TLV is recognizable only by FTOS devices with this feature support. Other device will ignore this field and should still be able to process other standard TLVs. The LLDP organizational TLV passes local DA information to peer VLT domain devices so they can act as proxy gateway.
2. Trace route across VLT domains may show extra hops. 3. IP route symmetry must be maintained across the VLT domains. Assume if the route to a destination is not available at C2, though the packet hits the MY_STATION_TCAM and routing is enabled for that VLAN, if there is no entry for that prefix in the routing table it will dropped to CPU. By default, all route miss packets are given to CPU. To avoid this static entry must be configured. 4.
8. Packet duplication – Assume exclude-vlan (say VLAN 10) is configured on C2/D2 for C1’s MAC. If packets for VLAN 10 with C1’s MAC get a hit at C2, they will be switched to both D2 (via ICL) and C1 via inter DC link. This could lead to packet duplication. So, if C1’s MAC is learnt at C2 then the packet would not have flooded (to D2) and only switched to C1 and thus avoided packet duplication.
Virtual Routing and Forwarding (VRF) 61 Virtual Routing and Forwarding (VRF) allows a physical router to partition itself into multiple Virtual Routers (VRs). The control and data plane are isolated in each VR so that traffic does NOT flow across VRs.Virtual Routing and Forwarding (VRF) allows multiple instances of a routing table to co-exist within the same router at the same time. VRF Overview VRF improves functionality by allowing network paths to be segmented without using multiple devices.
Figure 133. VRF Network Example VRF Configuration Notes Although there is no restriction on the number of VLANs that can be assigned to a VRF instance, the total number of routes supported in VRF is limited by the size of the IPv4 CAM. VRF is implemented in a network device by using Forwarding Information Bases (FIBs).
A network device may have the ability to configure different virtual routers, where entries in the FIB that belong to one VRF cannot be accessed by another VRF on the same device. Only Layer 3 interfaces can belong to a VRF.
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF FRRP (if applicable) for VLANs Yes No Multicast protocols (PIM-SM, PIM-DM, MSDP) Yes No Layer 3 (IPv4/IPv6) ACLs, TraceLists, PBR, QoS on VLANs Yes Yes Layer 3 (IPv4/IPv6) ACLs, TraceLists, PBR, QoS on physical interfaces and LAGs Yes IPv4 ARP Yes Yes IPv6 Neighbor Discovery Yes No Layer 2 ACLs on VLANs Yes No FEED Yes No Layer 2 QoS Yes Yes Support for storm-control (broadcast and unknownunicas
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF BGP Yes No ACL Yes Yes Multicast Yes No NDP Yes No RAD Yes No Ingress/Egress Storm-Control (per-interface/global) Yes No DHCP DHCP requests are not forwarded across VRF instances. The DHCP client and server must be on the same VRF instance. VRF Configuration The VRF configuration tasks are: 1. Enabling VRF in Configuration Mode 2. Creating a Non-Default VRF 3.
Task Command Syntax Command Mode Create a non-default VRF instance by specifying a name and VRF ID number, and enter VRF configuration mode. ip vrf vrf-name vrf-id VRF CONFIGURATION ID range: 1 to 63 and 0 (default VRF) Assigning an Interface to a VRF You must enter the ip vrf forwarding command before you configure the IP address or any other setting on an interface.
Configuring VRRP on a VRF Instance You can configure the VRRP feature on interfaces that belong to a VRF instance. In a virtualized network that consists of multiple VRFs, various overlay networks can exist on a shared physical infrastructure. Nodes (hosts and servers) that are part of the VRFs can be configured with IP static routes for reaching specific destinations through a given gateway in a VRF.
Figure 134.
Figure 135. Setup VRF Interfaces The following example relates to the configuration shown in Figure1 and Figure 2.
Router 1 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet 3/0 no ip address switchport no shutdown ! interface GigabitEthernet 7/0 ip vrf forwarding blue ip address 10.0.0.1/24 no shutdown ! interface GigabitEthernet 7/1 ip vrf forwarding orange ip address 20.0.0.1/24 no shutdown ! interface GigabitEthernet 7/2 ip vrf forwarding green ip address 30.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.
Router 2 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet 3/0 no ip address switchport no shutdown ! interface GigabitEthernet 9/18 ip vrf forwarding blue ip address 11.0.0.1/24 no shutdown ! interface GigabitEthernet 9/19 ip vrf forwarding orange ip address 21.0.0.1/24 no shutdown ! interface GigabitEthernet 9/20 ip vrf forwarding green ip address 31.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.
The following shows the output of the show commands on Router 1. Router 1 Dell#show ip vrf VRF-Name VRF-ID Interfaces default-vrf 0 blue 1 orange 2 green 3 Dell#show ip ospf 1 neighbor Neighbor ID Pri State 1.0.0.2 1 FULL/DR Dell#sh ip ospf 2 neighbor Neighbor ID Pri State 2.0.0.
O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Last Change --------------------------C 2.0.0.0/24 Direct, Vl 192 00:20:55 C 20.0.0.0/24 Direct, Gi 7/1 0/0 00:10:05 O 21.0.0.0/24 via 2.0.0.
9/0-17,21-47, Gi 11/0-47, Gi 12/0-47, Gi 13/0-47, blue 1 orange 9/19, 2 green Dell#show ip ospf 1 neighbor Neighbor ID Pri Interface Area 1.0.0.1 1 FULL/BDR 128 0 ! Dell#sh ip ospf 2 neighbor Neighbor ID Pri Interface Area 2.0.0.1 1 FULL/BDR 192 0 ! Dell#show ip route vrf blue Ma 0/0, Ma 1/0, Nu 0, Vl 1 Gi 9/18, Vl 128 Gi Vl 192 Gi 9/20, Vl 256 3 State Dead Time 00:00:36 State Dead Time 00:00:33 Address 1.0.0.1 Vl Address 2.0.0.
L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Last Change --------------------C 2.0.0.0/24 00:26:44 O 20.0.0.0/24 00:14:22 C 21.0.0.0/24 0/0 Gateway Dist/Metric ------- ----------- Direct, Vl 192 via 2.0.0.
ip vrf forwarding VRF2 ip address 140.0.0.1/24 ip route vrf VRF1 20.0.0.0/16 140.0.0.2 vrf VRF2 ip route vrf VRF2 40.0.0.0/16 120.0.0.
Virtual Router Redundancy Protocol (VRRP) 62 Virtual router redundancy protocol (VRRP) is supported on the S4820T platform. VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN). The MASTER router is chosen from the virtual routers by an election process and forwards packets sent to the next hop IP address.
Figure 136. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. End-station connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. VRRP Implementation Within a single VRRP group, up to 12 virtual IP addresses are supported.
decreases based on the dynamics of the network, the advertisement intervals may increase or decrease accordingly. CAUTION: Increasing the advertisement interval increases the VRRP Master dead interval, resulting in an increased failover time for Master/Backup election. Take caution when increasing the advertisement interval, as the increased dead interval may cause packets to be dropped during that switch-over time. Table 77.
• Create a virtual router for that interface with a VRID. INTERFACE mode vrrp-group vrid The VRID range is from 1 to 255. • NOTE: The interface must already have a primary IP address defined and be enabled, as shown in the second example. Delete a VRRP group. INTERFACE mode no vrrp-group vrid Examples of Configuring and Verifying VRRP The following examples how to configure VRRP.
You can use the version both command in INTERFACE mode to migrate from VRRPv2 to VRRPv3. When you set the VRRP version to both, the switch sends only VRRPv3 advertisements but can receive VRRPv2 or VRRPv3 packets. To migrate an IPv4 VRRP group from VRRPv2 to VRRPv3: 1. Set the switches with the lowest priority to “both”. 2. Set the switch with the highest priority to version to 3. 3. Set all the switches from both to version 3.
belonging to either subnet 50.1.1.0/24 or subnet 60.1.1.0/24, but not from both subnets (though Dell Networking OS allows the same). • If the virtual IP address and the interface’s primary/secondary IP address are the same, the priority on that VRRP group MUST be set to 255. The interface then becomes the OWNER router of the VRRP group and the interface’s physical MAC address is changed to that of the owner VRRP group’s MAC address.
The following example shows the same VRRP group (VRID 111) configured on multiple interfaces on different subnets. Dellshow vrrp -----------------GigabitEthernet 1/1, VRID: 111, Net: 10.10.10.1 State: Master, Priority: 255, Master: 10.10.10.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 1768, Gratuitous ARP sent: 5 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.10.1 10.10.10.2 10.10.10.3 10.10.10.
Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 2343, Gratuitous ARP sent: 5 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.10.1 10.10.10.2 10.10.10.3 10.10.10.10 Authentication: (none) -----------------GigabitEthernet 1/2, VRID: 111, Net: 10.10.2.1 State: Master, Priority: 125, Master: 10.10.2.
Disabling Preempt The preempt command is enabled by default. The command forces the system to change the MASTER router if another router with a higher priority comes online. Prevent the BACKUP router with the higher priority from becoming the MASTER router by disabling preempt. NOTE: You must configure all virtual routers in the VRRP group the same: you must configure all with preempt enabled or configure all with preempt disabled.
If you are configured for VRRP version 2, the timer values must be in multiples of whole seconds. For example, timer value of 3 seconds or 300 centisecs are valid and equivalent. However, a timer value of 50 centisecs is invalid because it not is not multiple of 1 second. If are using VRRP version 3, you must configure the timer values in multiples of 25 centisecs. To change the advertisement interval in seconds or centisecs, use the following command. A centisecs is 1/100 of a second.
default value of 10 (also known as cost). If the tracked interface’s state goes up, the VRRP group’s priority increases by 10. The lowered priority of the VRRP group may trigger an election. As the Master/Backup VRRP routers are selected based on the VRRP group’s priority, tracking features ensure that the best VRRP router is the Master for that group. The sum of all the costs of all the tracked interfaces must be less than the configured priority on the VRRP group.
• show track (Optional) Display the configuration and the UP or DOWN state of tracked interfaces and objects in VRRP groups, including the time since the last change in an object’s state. EXEC mode or EXEC Privilege mode • show vrrp (Optional) Display the configuration of tracked objects in VRRP groups on a specified interface.
GigabitEthernet 7/30, IPv6 VRID: 1, Version: 3, Net: fe80::201:e8ff:fe01:95cc VRF: 0 default-vrf State: Master, Priority: 100, Master: fe80::201:e8ff:fe01:95cc (local) Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 310 Virtual MAC address: 00:00:5e:00:02:01 Virtual IP address: 2007::1 fe80::1 Tracking states for 2 resource Ids: 2 - Up IPv6 route, 2040::/64, priority-cost 20, 00:02:11 3 - Up IPv6 route, 2050:
This time is the gap between an interface coming up and being operational, and VRRP enabling. The seconds range is from 0 to 900. • The default is 0. Set the delay time for VRRP initialization on all the interfaces in the system configured for VRRP. INTERFACE mode vrrp delay reload seconds This time is the gap between system boot up completion and VRRP enabling. The seconds range is from 0 to 900. The default is 0. Sample Configurations Before you set up VRRP, review the following sample configurations.
Figure 137. VRRP for IPv4 Topology Examples of Configuring VRRP for IPv4 and IPv6 The following example shows configuring VRRP for IPv4 Router 2. R2(conf)#int gi 2/31 R2(conf-if-gi-2/31)#ip address 10.1.1.1/24 R2(conf-if-gi-2/31)#vrrp-group 99 R2(conf-if-gi-2/31-vrid-99)#priority 200 R2(conf-if-gi-2/31-vrid-99)#virtual 10.1.1.3 R2(conf-if-gi-2/31-vrid-99)#no shut R2(conf-if-gi-2/31)#show conf ! interface GigabitEthernet 2/31 ip address 10.1.1.
priority 200 virtual-address 10.1.1.3 no shutdown R2(conf-if-gi-2/31)#end R2#show vrrp -----------------GigabitEthernet 2/31, VRID: 99, Net: 10.1.1.1 State: Master, Priority: 200, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 817, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:63 Virtual IP address: 10.1.1.3 Authentication: (none) R2# Router 3 R3(conf)#int gi 3/21 R3(conf-if-gi-3/21)#ip address 10.1.1.
Figure 138. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address. The following example shows configuring VRRP for IPv6 Router 2 and Router 3. Configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
Although R2 and R3 have the same default, priority (100), R2 is elected master in the VRRPv3 group because the GigE 0/0 interface has a higher IPv6 address than the GigE 1/0 interface on R3.
VRRP in a VRF Configuration The following example shows how to enable VRRP operation in a VRF virtualized network for the following scenarios. • Multiple VRFs on physical interfaces running VRRP. • Multiple VRFs on VLAN interfaces running VRRP. To view a VRRP in a VRF configuration, use the show commands. VRRP in a VRF: Non-VLAN Scenario The following example shows how to enable VRRP in a non-VLAN.
Figure 139. VRRP in a VRF: Non-VLAN Example Example of Configuring VRRP in a VRF on Switch-1 (Non-VLAN) Switch-1 S1(conf)#ip vrf default-vrf 0 ! S1(conf)#ip vrf VRF-1 1 ! S1(conf)#ip vrf VRF-2 2 ! S1(conf)#ip vrf VRF-3 3 ! S1(conf)#interface GigabitEthernet 12/1 S1(conf-if-gi-12/1)#ip vrf forwarding VRF-1 S1(conf-if-gi-12/1)#ip address 10.10.1.5/24 S1(conf-if-gi-12/1)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 1 will be 177.
! S1(conf)#interface GigabitEthernet 12/3 S1(conf-if-gi-12/3)#ip vrf forwarding VRF-3 S1(conf-if-gi-12/3)#ip address 20.1.1.5/24 S1(conf-if-gi-12/3)#vrrp-group 15 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S1(conf-if-gi-12/3-vrid-105)#priority 255 S1(conf-if-gi-12/3-vrid-105)#virtual-address 20.1.1.
VRRP in VRF: Switch-1 VLAN Configuration VRRP in VRF: Switch-2 VLAN Configuration Switch-1 S1(conf)#ip vrf VRF-1 1 ! S1(conf)#ip vrf VRF-2 2 ! S1(conf)#ip vrf VRF-3 3 ! S1(conf)#interface GigabitEthernet 12/4 S1(conf-if-gi-12/4)#no ip address S1(conf-if-gi-12/4)#switchport S1(conf-if-gi-12/4)#no shutdown ! S1(conf-if-gi-12/4)#interface vlan 100 S1(conf-if-vl-100)#ip vrf forwarding VRF-1 S1(conf-if-vl-100)#ip address 10.10.1.
S2(conf-if-vl-100-vrid-101)#priority 255 S2(conf-if-vl-100-vrid-101)#virtual-address 10.10.1.2 S2(conf-if-vl-100)#no shutdown ! S2(conf-if-gi-12/4)#interface vlan 200 S2(conf-if-vl-200)#ip vrf forwarding VRF-2 S2(conf-if-vl-200)#ip address 10.10.1.2/24 S2(conf-if-vl-200)#tagged gigabitethernet 12/4 S2(conf-if-vl-200)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 2 will be 178. S2(conf-if-vl-200-vrid-101)#priority 255 S2(conf-if-vl-200-vrid-101)#virtual-address 10.10.1.
S-Series Debugging and Diagnostics 63 This chapter describes debugging and diagnostics for the S4820T platform. Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, Level 0 diagnostics verify the identification registers of the components on the board.
Running Offline Diagnostics To run offline diagnostics, use the following commands. For more information, refer to the examples following the steps. 1. Place the unit in the offline state. EXEC Privilege mode offline stack-unit id You cannot enter this command on a MASTER or Standby stack unit. NOTE: The system reboots when the offline diagnostics complete. This is an automatic process.
Please make sure that stacking is not configured for Diagnostics execution. Also reboot/online command is necessary for normal operation after the offline command is issued. Proceed with Offline [confirm yes/no]:yes Dell#Mar 12 10:32:18: %STKUNIT0-M:CP %CHMGR-2-STACKUNIT_DOWN: Stack unit 0 down - stack unit offline The following example shows the show system brief command.
Warning - the stack unit will be pulled out of the stack for diagnostic execution Proceed with Diags [confirm yes/no]: yes Warning - diagnostic execution will cause multiple link flaps on the peer side - advisable to shut directly connected ports Proceed with Diags [confirm yes/no]: yes Dell#00:03:13: %S25P:2 %DIAGAGT-6-DA_DIAG_STARTED: Starting diags on stack unit 2 00:03:13 : Approximate time to complete these Diags ...
diagS4820DumpPsuStatus[1753]: ERROR: Psu0: Reporting fault in Current, Voltage and Fan condition diagS4820DumpPsuStatus[1757]: ERROR: Psu0: Output voltage is NOT in regulation range Test 2.000 - Fan Psu Status test .................................... FAIL Test 2.001 - Fan Psu Status test .................................... PASS Test 2 - Fan Psu Status Test ....................................... FAIL Test 3.000 - Fan board presence Test ................................ PASS Test 3.
Table 78. Line Card Restart Causes and Reasons Causes Displayed Reasons Remote power cycle of the chassis push button reset reload soft reset reboot after a crash soft reset Hardware Watchdog Timer The hardware watchdog command automatically reboots an Dell Networking OS switch/router with a single RPM that is unresponsive. This is a last resort mechanism intended to prevent a manual power cycle. Using the Show Hardware Commands The show hardware command tree is supported on the S4820T only.
• show hardware stack-unit {0-11} buffer unit {0-1} port {1-64 | all} bufferinfo View the forwarding plane statistics containing the packet buffer statistics per COS per port. EXEC Privilege mode • show hardware stack-unit {0-11} buffer unit {0-1} port {1-64} queue {0-14 | all} buffer-info View input and output statistics on the party bus, which carries inter-process communication traffic between CPUs.
show hardware stack-unit {0-11} unit {0-1} table-dump {table name} Enabling Environmental Monitoring The S4820T components use environmental monitoring hardware to detect transmit power readings, receive power readings, and temperature updates. To receive periodic power updates, you must enable the following command. • Enable environmental monitoring.
2. Check air flow through the system. Ensure that the air ducts are clean and that all fans are working correctly. 3. After the software has determined that the temperature levels are within normal limits, you can repower the card safely. To bring back the line card online, use the power-on command in EXEC mode. In addition, to control airflow for adequate system cooling, Dell Networking requires that you install blanks in all slots without a line card.
OID String OID Name Description .1.3.6.1.4.1.6027.3.16.1.1.4 fpPacketBufferTable View the modular packet buffers details per stack unit and the mode of allocation. .1.3.6.1.4.1.6027.3.16.1.1.5 fpStatsPerPortTable View the forwarding plane statistics containing the packet buffer usage per port per stack unit. .1.3.6.1.4.1.6027.3.16.1.1.6 fpStatsPerCOSTable View the forwarding plane statistics containing the packet buffer statistics per COS per port.
• Dynamic buffer — this pool is shared memory that is allocated as needed, up to a configured limit. Using dynamic buffers provides the benefit of statistical buffer sharing. An interface requests dynamic buffers when its dedicated buffer pool is exhausted. The buffer manager grants the request based on three conditions: – The number of used and available dynamic buffers. – The maximum number of cells that an interface can occupy. – Available packet pointers (2k per interface).
• Reduce the dedicated buffer on all queues/interfaces. • Increase the dynamic buffer on all interfaces. • Increase the cell pointers on a queue that you are expecting will receive the largest number of packets. To define, change, and apply buffers, use the following commands. • Define a buffer profile for the FP queues. CONFIGURATION mode • buffer-profile fp fsqueue Define a buffer profile for the CSF queues.
%S50N:0 %DIFFSERV-2-DSA_DEVICE_BUFFER_UNAVAILABLE: Unable to allocate dedicated buffers for stack-unit 0, port pipe 0, egress port 25 due to unavailability of cells. Dell Networking OS Behavior: When you remove a buffer-profile using the no buffer-profile [fp | csf] command from CONFIGURATION mode, the buffer-profile name still appears in the output of the show buffer-profile [detail | summary] command.
6 7 3.00 3.00 256 256 The following example shows viewing the default buffer profile on a linecard. Dell#sho buffer-profile detail fp-uplink stack-unit 0 port-set 0 Linecard 0 Port-set 0 Buffer-profile fsqueue-hig Dynamic Buffer 1256.00 (Kilobytes) Queue# Dedicated Buffer Buffer Packets (Kilobytes) 0 3.00 256 1 3.00 256 2 3.00 256 3 3.00 256 4 3.00 256 5 3.00 256 6 3.00 256 7 3.
Sample Buffer Profile Configuration The two general types of network environments are sustained data transfers and voice/data. Dell Networking recommends a single-queue approach for data transfers.
Displaying Drop Counters To display drop counters, use the following commands. • Identify which stack unit, port pipe, and port is experiencing internal drops. • show hardware stack-unit 0–11 drops [unit 0 [port 0–63]] Display drop counters.
--- Egress FORWARD PROCESSOR Drops --IPv4 L3UC Aged & Drops : 0 TTL Threshold Drops : 0 INVALID VLAN CNTR Drops : 0 L2MC Drops : 0 PKT Drops of ANY Conditions : 0 Hg MacUnderflow : 0 TX Err PKT Counter : 0 Dataplane Statistics The show hardware stack-unit cpu data-plane statistics command provides insight into the packet types coming to the CPU.
Example of Viewing Party Bus Statistics Dell#sh hardware stack-unit 2 cpu party-bus statistics Input Statistics: 27550 packets, 2559298 bytes 0 dropped, 0 errors Output Statistics: 1649566 packets, 1935316203 bytes 0 errors Display Stack Port Statistics The show hardware stack-unit stack-port command displays input and output statistics for a stack-port interface.
GTPKT.ge0 GTBCA.ge0 GTBYT.ge0 RUC.cpu0 TDBGC6.cpu0 : : : : : 973 1 71,531 972 1,584 +972 +1 +71,467 +971 +1,449= Enabling Application Core Dumps Application core dumps are disabled by default. A core dump file can be very large. Due to memory requirements the file can only be sent directly to an FTP server; it is not stored on the local flash. To enable full application core dumps, use the following command. • Enable RPM core dumps and specify the Shutdown mode.
flash: 3104256 bytes total (2959872 bytes free) Dell# Example of a Mini Core Text File VALID MAGIC -----------------PANIC STRING ----------------panic string is : ---------------STACK TRACE START--------------0035d60c : 00274f8c : 0024e2b0 : 0024dee8 : 0024d9c4 : 002522b0 : 0026a8d0 : 0026a00c : ----------------STACK TRACE END-----------------------------------FREE MEM
Standards Compliance 64 This chapter describes standards compliance for Dell Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell Networking Operating System (OS), Dell Networking OS also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website.
MTU 9,252 bytes RFC and I-D Compliance Dell Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell Networking OS first supports the standard. General Internet Protocols The following table lists the Dell Networking OS support per platform for general internet protocols. Table 81. General Internet Protocols RFC# Full Name S-Series 768 User Datagram Protocol 7.6.
General IPv4 Protocols The following table lists the Dell Networking OS support per platform for general IPv4 protocols. Table 82. General IPv4 Protocols RFC# Full Name S-Series 791 Internet Protocol 7.6.1 792 Internet Control Message Protocol 7.6.1 826 An Ethernet Address Resolution Protocol 7.6.1 1027 Using ARP to Implement Transparent Subnet Gateways 7.6.1 1035 DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION (client) 7.6.
General IPv6 Protocols The following table lists the Dell Networking OS support per platform for general IPv6 protocols. Table 83. General IPv6 Protocols RFC# Full Name S-Series 1886 DNS Extensions to support IP version 6 7.8.1 1981 (Partial) Path MTU Discovery for IP version 6 7.8.1 2460 Internet Protocol, Version 6 (IPv6) Specification 7.8.1 2462 (Partial) IPv6 Stateless Address Autoconfiguration 7.8.1 2464 Transmission of IPv6 Packets over Ethernet Networks 7.8.
RFC# Full Name S-Series/Z-Series 2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing 2796 BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP) 2842 Capabilities Advertisement with BGP-4 7.8.1 2858 Multiprotocol Extensions for BGP-4 7.8.1 2918 Route Refresh Capability for BGP-4 7.8.1 3065 Autonomous System Confederations for BGP 7.8.1 4360 BGP Extended Communities Attribute 7.8.1 4893 BGP Support for Four-octet AS Number Space 7.8.
Intermediate System to Intermediate System (IS-IS) The following table lists the Dell Networking OS support per platform for IS-IS protocol. Table 86.
Multicast The following table lists the Dell Networking OS support per platform for Multicast protocol. Table 88. Multicast RFC# Full Name S-Series 1112 Host Extensions for IP Multicasting 7.8.1 2236 Internet Group Management Protocol, 7.8.1 Version 2 2710 Multicast Listener Discovery (MLD) for IPv6 3376 Internet Group Management Protocol, 7.8.
RFC# Full Name S4810 S4820T Z-Series Management of TCP/IPbased internets 1157 A Simple Network Management Protocol (SNMP) 7.6.1 1212 Concise MIB Definitions 7.6.1 1215 A Convention for Defining 7.6.1 Traps for use with the SNMP 1493 Definitions of Managed 7.6.1 Objects for Bridges [except for the dot1dTpLearnedEntryDisc ards object] 1724 RIP Version 2 MIB Extension 1850 OSPF Version 2 7.6.1 Management Information Base 1901 Introduction to Community-based SNMPv2 7.6.
RFC# Full Name S4810 S4820T Z-Series Digital Hierarchy (SONET/ SDH) Interface Type 2570 Introduction and Applicability Statements for Internet Standard Management Framework 7.6.1 2571 An Architecture for 7.6.1 Describing Simple Network Management Protocol (SNMP) Management Frameworks 2572 Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) 2574 User-based Security 7.6.
RFC# Full Name S4810 S4820T Z-Series 9.5.(0.0) 9.5.(0.0) radiusAuthClientMalforme dAccessResponses radiusAuthClientUnknown Types radiusAuthClientPacketsD ropped 2698 A Two Rate Three Color Marker 9.5.(0.0) 3635 Definitions of Managed Objects for the Ethernetlike Interface Types 7.6.1 2674 Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions 7.6.1 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol 7.6.
RFC# Full Name S4810 S4820T Z-Series Network Management Protocol (SNMP) 3418 Management Information 7.6.1 Base (MIB) for the Simple Network Management Protocol (SNMP) 3434 Remote Monitoring MIB Extensions for High Capacity Alarms, HighCapacity Alarm Table (64 bits) 7.6.1 3580 IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines 7.6.
RFC# Full Name draft-ietf-isiswgmib- 16 Management Information Base for Intermediate System to Intermediate System (IS-IS): S4810 S4820T Z-Series 9.2(0.0) 9.2(0.0) 9.2(0.0) isisSysObject (top level scalar objects) isisISAdjTable isisISAdjAreaAddrTable isisISAdjIPAddrTable isisISAdjProtSuppTable draft-ietf-netmodinterfaces-cfg-03 Defines a YANG data model for the configuration of network interfaces. Used in the Programmatic Interface RESTAPI feature. IEEE 802.1AB Management Information 7.7.
RFC# Full Name S4810 sFlow.org sFlow Version 5 7.7.1 sFlow.org sFlow Version 5 MIB 7.7.1 FORCE10-BGP4V2-MIB Force10 BGP MIB (draftietf-idr-bgp4-mibv2-05) 7.8.1 f10–bmp-mib Force10 Bare Metal Provisioning MIB 9.2(0.0) FORCE10-FIB-MIB Force10 CIDR Multipath Routes MIB (The IP Forwarding Table provides information that you can use to determine the egress port of an IP packet and troubleshoot an IP reachability issue.
RFC# Full Name S4810 FORCE10-SMI Force10 Structure of 7.6.1 Management Information FORCE10-SYSTEM- Force10 System COMPONENT-MIB Component MIB (enables the user to view CAM usage information) 7.6.1 FORCE10-TC-MIB Force10 Textual Convention 7.6.1 FORCE10-TRAPALARM-MIB Force10 Trap Alarm MIB 7.6.1 S4820T Z-Series MIB Location You can find Force10 MIBs under the Force10 MIBs subhead on the Documentation page of iSupport: https://www.force10networks.com/CSPortal20/KnowledgeBase/Documentation.