Dell Configuration Guide for the S6000–ON System 9.10(0.
Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2016 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws.
Contents 1 About this Guide.....................................................................................................................................................31 Audience..................................................................................................................................................................... 31 Conventions.................................................................................................................................................
Creating a Custom Privilege Level.................................................................................................................. 53 Removing a Command from EXEC Mode.................................................................................................... 54 Moving a Command from EXEC Privilege Mode to EXEC Mode............................................................. 54 Allowing Access to CONFIGURATION Mode Commands...........................................................
Port-Authentication Process..................................................................................................................................79 EAP over RADIUS................................................................................................................................................80 Configuring 802.1X...................................................................................................................................................
Implementation Information.......................................................................................................................... 112 Configuration Task List for Prefix Lists..........................................................................................................112 ACL Resequencing..................................................................................................................................................115 Resequencing an ACL or Prefix List.........
AS4 Number Representation......................................................................................................................... 160 AS Number Migration.......................................................................................................................................162 BGP4 Management Information Base (MIB)...............................................................................................164 Important Points to Remember......................................
9 Content Addressable Memory (CAM)..............................................................................................................206 CAM Allocation.......................................................................................................................................................206 Test CAM Usage..................................................................................................................................................... 208 View CAM Profiles..........
Using PFC to Manage Converged Ethernet Traffic......................................................................................... 237 Operations on Untagged Packets.......................................................................................................................237 Generation of PFC for a Priority for Untagged Packets.................................................................................238 Configure Enhanced Transmission Selection........................................
Option 82........................................................................................................................................................... 274 DHCP Snooping................................................................................................................................................275 Drop DHCP Packets on Snooped VLANs Only.......................................................................................... 278 Dynamic ARP Inspection..........................
Optimizing the Boot Time................................................................................................................................... 304 Booting Process When Optimized Boot Time Mechanism is Enabled.................................................304 Guidelines for Configuring Optimized Booting Mechanism.................................................................. 305 Interoperation of Applications with Fast Boot and System States..................................................
IGMP Version 2................................................................................................................................................. 324 IGMP Version 3................................................................................................................................................. 326 Configure IGMP......................................................................................................................................................
Important Points to Remember.................................................................................................................... 350 Configuring EIS................................................................................................................................................. 350 Management Interfaces........................................................................................................................................ 351 Configuring Management Interfaces...
Set Auto-Negotiation Options.......................................................................................................................378 View Advanced Interface Information............................................................................................................... 379 Configuring the Interface Sampling Size.....................................................................................................379 Dynamic Counters..................................................
Protocol Overview.................................................................................................................................................400 Extended Address Space.................................................................................................................................401 Stateless Autoconfiguration........................................................................................................................... 401 IPv6 Headers........................
IS-IS Protocol Overview....................................................................................................................................... 430 IS-IS Addressing..................................................................................................................................................... 430 Multi-Topology IS-IS.............................................................................................................................................
MAC Learning Limit............................................................................................................................................... 469 Setting the MAC Learning Limit.....................................................................................................................470 mac learning-limit Dynamic.......................................................................................................................... 470 mac learning-limit mac-address-sticky.....
Limitations of the NLB Feature........................................................................................................................... 504 Microsoft Clustering..............................................................................................................................................504 Enable and Disable VLAN Flooding ...................................................................................................................504 Configuring a Switch for NLB .......
Modifying the Interface Parameters...................................................................................................................535 Configuring an EdgePort......................................................................................................................................536 Flush MAC Addresses after a Topology Change..............................................................................................537 MSTP Sample Configurations...............................
Applying cost for OSPFv3............................................................................................................................... 589 Assigning IPv6 Addresses on an Interface.................................................................................................. 589 Assigning Area ID on an Interface................................................................................................................ 589 Assigning OSPFv3 Process ID and Router ID Globally.............
Configuring PIM-SSM with IGMPv2............................................................................................................. 620 36 Port Monitoring.................................................................................................................................................621 Important Points to Remember.......................................................................................................................... 621 Port Monitoring..............................
Honoring dot1p Priorities on Ingress Traffic.............................................................................................. 658 Configuring Port-Based Rate Policing.........................................................................................................659 Configuring Port-Based Rate Shaping.........................................................................................................659 Policy-Based QoS Configurations.................................................
Configuring RMON Collection Statistics.....................................................................................................704 Configuring the RMON Collection History.................................................................................................704 42 Rapid Spanning Tree Protocol (RSTP).......................................................................................................... 706 Protocol Overview...............................................................
Configuring the SSH Client Cipher List........................................................................................................738 Secure Shell Authentication........................................................................................................................... 738 Troubleshooting SSH....................................................................................................................................... 741 Telnet..............................................
Displaying Show sFlow Global....................................................................................................................... 775 Displaying Show sFlow on an Interface.......................................................................................................776 Displaying Show sFlow on a Stack-unit.......................................................................................................776 Configuring Specify Collectors..........................................
Deriving Interface Indices.................................................................................................................................... 800 Monitor Port-Channels......................................................................................................................................... 801 Troubleshooting SNMP Operation.....................................................................................................................802 48 Storm Control...................
Configure the Network Time Protocol........................................................................................................832 Enabling NTP.....................................................................................................................................................832 Configuring NTP Broadcasts......................................................................................................................... 833 Disabling NTP on an Interface.......................
56 Virtual Link Trunking (VLT)............................................................................................................................. 859 Overview.................................................................................................................................................................. 859 VLT on Core Switches.....................................................................................................................................860 Enhanced VLT........
Overview.................................................................................................................................................................. 905 Components of VXLAN network........................................................................................................................ 906 Components of VXLAN network.................................................................................................................. 906 Functional Overview of VXLAN Gateway...
Offline Diagnostics................................................................................................................................................ 959 Important Points to Remember.................................................................................................................... 959 Running Offline Diagnostics.......................................................................................................................... 959 Trace Logs...............................
1 About this Guide This guide describes the protocols and features the Dell Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. For complete information about all the CLI commands, see the Dell Command Line Reference Guide for your system. The S6000–ON platform is available with Dell Networking OS version 9.7(0.0) and beyond. Though this guide contains information about protocols, it is not intended to be a complete reference.
2 Configuration Fundamentals The Dell Networking Operating System (OS) command line interface (CLI) is a text-based interface you can use to configure interfaces and protocols. The CLI is largely the same for each platform except for some commands and command outputs. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
The Dell Networking OS CLI is divided into three major mode levels: • EXEC mode is the default mode and has a privilege level of 1, which is the most restricted level. Only a limited selection of commands is available, notably the show commands, which allow you to view system information. • EXEC Privilege mode has commands to view configurations, clear counters, manage configuration files, run diagnostics, and enable or disable debug operations. The privilege level is 15, which is unrestricted.
PRIORITY-GROUP PROTOCOL GVRP QOS POLICY RSTP ROUTE-MAP ROUTER BGP BGP ADDRESS-FAMILY ROUTER ISIS ISIS ADDRESS-FAMILY ROUTER OSPF ROUTER OSPFV3 ROUTER RIP SPANNING TREE SUPPORTASSIST TRACE-LIST VLT DOMAIN VRRP UPLINK STATE GROUP uBoot Navigating CLI Modes The Dell Networking OS prompt changes to indicate the CLI mode. The following table lists the CLI mode, its prompt, and information about how to access and exit the CLI mode.
CLI Command Mode Prompt Access Command Loopback Interface Dell(conf-if-lo-0)# interface (INTERFACE modes) Management Ethernet Interface Dell(conf-if-ma-1/1)# interface (INTERFACE modes) Null Interface Dell(conf-if-nu-0)# interface (INTERFACE modes) Port-channel Interface Dell(conf-if-po-1)# interface (INTERFACE modes) Tunnel Interface Dell(conf-if-tu-1)# interface (INTERFACE modes) VLAN Interface Dell(conf-if-vl-1)# interface (INTERFACE modes) STANDARD ACCESS-LIST Dell(config-std-nacl)
CLI Command Mode Prompt Access Command DHCP Dell(config-dhcp)# ip dhcp server DHCP POOL Dell(config-dhcp-pool-name)# pool (DHCP Mode) ECMP Dell(conf-ecmp-group-ecmpgroup-id)# ecmp-group EIS Dell(conf-mgmt-eis)# management egress-interfaceselection FRRP Dell(conf-frrp-ring-id)# protocol frrp LLDP Dell(conf-lldp)# or Dell(conf-if —interface-lldp)# protocol lldp (CONFIGURATION or INTERFACE Modes) LLDP MANAGEMENT INTERFACE Dell(conf-lldp-mgmtIf)# management-interface (LLDP Mode) LINE De
3 4 5 6 Member Member Member Member not not not not present present present present -- Power Supplies -Unit Bay Status Type FanStatus FanSpeed(rpm) -----------------------------------------------------------1 1 up AC absent 0 1 2 absent absent 0 -- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed ----------------------------------------------------------------1 1 up up 0 up 0 1 2 up up 0 up 0 1 3 up up 0 up 0 Speed in RPM Undoing Commands When you enter a command, the command line is added to the
• Enter [space]? after a keyword lists all of the keywords that can follow the specified keyword. Dell(conf)#clock ? summer-time Configure summer (daylight savings) time timezone Configure time zone Dell(conf)#clock Entering and Editing Commands Notes for entering commands. • The CLI is not case-sensitive. • You can enter partial CLI keywords. – Enter the minimum number of letters to uniquely identify a command.
Command History The Dell Networking OS maintains a history of previously-entered commands for each mode. For example: • When you are in EXEC mode, the UP and DOWN arrow keys display the previously-entered EXEC mode commands. • When you are in CONFIGURATION mode, the UP or DOWN arrows keys recall the previously-entered CONFIGURATION mode commands.
NOTE: You can filter a single command output multiple times. The save option must be the last option entered. For example: Dell# command | grep regular-expression | except regular-expression | grep otherregular-expression | find regular-expression | save. Multiple Users in Configuration Mode Dell Networking OS notifies all users when there are multiple users logged in to CONFIGURATION mode.
3 Getting Started This chapter describes how you start configuring your system. When you power up the chassis, the system performs a power-on self test (POST) and system then loads the Dell Networking Operating System. Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption. When the boot process completes, the system status LEDs remain online (green) and the console monitor displays the EXEC mode prompt.
Console Access The device has one RJ-45/RS-232 console port, an out-of-band (OOB) Ethernet port, and a micro USB-B console port. Serial Console The RJ-45/RS-232 console port is labeled on the upper right-hand side, as you face the I/O side of the chassis. Figure 1. RJ-45 Console Port 1. 2. RS-232 console port. USB port. Accessing the Console Port To access the console port, follow these steps: For the console port pinout, refer to Accessing the RJ-45 Console Port with a DB-9 Adapter.
Pin Assignments You can connect to the console using a RJ-45 to RJ-45 rollover cable and a RJ-45 to DB-9 female DTE adapter to a terminal server (for example, a PC). The pin assignments between the console and a DTE terminal server are as follows: Table 2.
• You can manage all Dell Networking products in-band via the front-end data ports through interfaces assigned an IP address as well. Accessing the System Remotely Configuring the system for remote access is a three-step process, as described in the following topics: 1. Configure an IP address for the management port. Configure the Management Port IP Address 2. Configure a management route with a default gateway. Configure a Management Route 3. Configure a username and password.
username username password [encryption-type] password – encryption-type: specifies how you are inputting the password, is 0 by default, and is not required. * 0 is for inputting the password in clear text. * 7 is for inputting a password that is already encrypted using a Type 7 hash. Obtaining the encrypted password from the configuration of another Dell Networking system. Configuring the Enable Password Access EXEC Privilege mode using the enable command. EXEC Privilege mode is unrestricted by default.
Table 3.
configuration using the write command, the mount command is saved to the startup configuration. As a result, each time the device re-boots, the NFS file system is mounted during start up. Table 5.
Save the Running-Configuration The running-configuration contains the current system configuration. Dell Networking recommends coping your runningconfiguration to the startup-configuration. The commands in this section follow the same format as those commands in the Copy Files to and from the System section but use the filenames startup-configuration and running-configuration. These commands assume that current directory is the internal flash, which is the system default.
Example of the dir Command The output of the dir command also shows the read/write privileges, size (in bytes), and date of modification for each file.
To change the default directory, use the following command. • Change the default directory. EXEC Privilege mode cd directory View Command History The command-history trace feature captures all commands entered by all users of the system with a time stamp and writes these messages to a dedicated trace log buffer. The system generates a trace message for each executed command. No password information is saved to the file. To view the command-history trace, use the show command-history command.
To enable an HTTP client to look up the VRF table corresponding to either management VRF or any nondefault VRF, use the ip http vrf command in CONFIGURATION mode. • Configure an HTTP client with a VRF that is used to connect to the HTTP server.
MD5 Dell# verify md5 flash://FTOS-SE-9.5.0.0.bin 275ceb73a4f3118e1d6bcf7d75753459 MD5 hash VERIFIED for FTOS-SE-9.5.0.0.bin SHA256 Dell# verify sha256 flash://FTOS-SE-9.5.0.0.bin e6328c06faf814e6899ceead219afbf9360e986d692988023b749e6b2093e933 SHA256 hash VERIFIED for FTOS-SE-9.5.0.0.
4 Management This chapter describes the different protocols or services used to manage the Dell Networking system.
• restricting access to an EXEC mode command • moving commands from EXEC Privilege to EXEC mode • restricting access A user can access all commands at his privilege level and below. Removing a Command from EXEC Mode To remove a command from the list of available commands in EXEC mode for a specific privilege level, use the privilege exec command from CONFIGURATION mode.
• Remove a command from the list of available commands in EXEC mode. CONFIGURATION mode • privilege exec level level {command ||...|| command} Move a command from EXEC Privilege to EXEC mode. CONFIGURATION mode • privilege exec level level {command ||...|| command} Allow access to CONFIGURATION mode. CONFIGURATION mode • privilege exec level level configure Allow access to INTERFACE, LINE, ROUTE-MAP, and/or ROUTER mode. Specify all the keywords in the command.
Dell(config-line-vty)#exit Dell(conf)# Applying a Privilege Level to a Username To set the user privilege level, use the following command. • Configure a privilege level for a user. CONFIGURATION mode username username privilege level Applying a Privilege Level to a Terminal Line To set a privilege level for a terminal line, use the following command. • Configure a privilege level for a user.
Audit and Security Logs This section describes how to configure, display, and clear audit and security logs. The following is the configuration task list for audit and security logs: • Enabling Audit and Security Logs • Displaying Audit and Security Logs • Clearing Audit Logs Enabling Audit and Security Logs You enable audit and security logs to monitor configuration changes or determine if these changes affect the operation of the system in the network.
Displaying Audit and Security Logs To display audit logs, use the show logging auditlog command in Exec mode. To view these logs, you must first enable the logging extended command. Only the RBAC system administrator user role can view the audit logs. Only the RBAC security administrator and system administrator user role can view the security logs. If extended logging is disabled, you can only view system events, regardless of RBAC user role. To view security logs, use the show logging command.
Setting Up a Secure Connection to a Syslog Server You can use reverse tunneling with the port forwarding to securely connect to a syslog server. Figure 2. Setting Up a Secure Connection to a Syslog Server Pre-requisites To configure a secure connection from the switch to the syslog server: 1. On the switch, enable the SSH server Dell(conf)#ip ssh server enable 2.
If you do not, the system displays an error when you attempt to enable role-based only AAA authorization. Dell(conf)# logging localhost tcp port Dell(conf)#logging 127.0.0.1 tcp 5140 Log Messages in the Internal Buffer All error messages, except those beginning with %BOOTUP (Message), are log in the internal buffer.
Configuring a UNIX System as a Syslog Server To configure a UNIX System as a syslog server, use the following command. • Configure a UNIX system as a syslog server by adding the following lines to /etc/syslog.conf on the UNIX system and assigning write permissions to the file. – Add line on a 4.1 BSD UNIX system. local7.debugging /var/log/ftos.log – Add line on a 5.7 SunOS UNIX system. local7.debugging /var/adm/ftos.
The following example enables login activity tracking and configures the system to store the login activity details for 12 days. Dell(config)#login statistics enable Dell(config)#login statistics time-period 12 Display Login Statistics To view the login statistics, use the show login statistics command. Example of the show login statistics Command The show login statistics command displays the successful and failed login details of the current user in the last 30 days or the custom defined time period.
Example of the show login statistics user user-id command The show login statistics user user-id command displays the successful and failed login details of a specific user in the last 30 days or the custom defined time period. Dell# show login statistics user admin -----------------------------------------------------------------User: admin Last login time: 12:52:01 UTC Tue Mar 22 2016 Last login location: Line vty0 ( 10.16.127.
CONFIGURATION mode login concurrent-session limit number-of-sessions Example of Configuring Concurrent Session Limit The following example limits the permitted number of concurrent login sessions to 4. Dell(config)#login concurrent-session limit 4 Enabling the System to Clear Existing Sessions To enable the system to clear existing login sessions, follow this procedure: • Use the following command.
Changing System Logging Settings You can change the default settings of the system logging by changing the severity level and the storage location. The default is to log all messages up to debug level, that is, all system messages. By changing the severity level in the logging commands, you control the number of system messages logged. To specify the system logging settings, use the following commands. • Specify the minimum severity level for logging to the logging buffer.
Monitor logging: level Debugging Buffer logging: level Debugging, 40 Messages Logged, Size (40960 bytes) Trap logging: level Informational %IRC-6-IRC_COMMUP: Link to peer RPM is up %RAM-6-RAM_TASK: RPM1 is transitioning to Primary RPM.
– sys9 (system use) – sys10 (system use) – sys11 (system use) – sys12 (system use) – sys13 (system use) – sys14 (system use) – syslog (for syslog messages) – user (for user programs) – uucp (UNIX to UNIX copy protocol) Example of the show running-config logging Command To view nondefault settings, use the show running-config logging command in EXEC mode.
• Add timestamp to syslog messages. CONFIGURATION mode service timestamps [log | debug] [datetime [localtime] [msec] [show-timezone] | uptime] Specify the following optional parameters: – You can add the keyword localtime to include the localtime, msec, and show-timezone. If you do not add the keyword localtime, the time is UTC. – uptime: To view time since last boot. If you do not specify a parameter, Dell Networking OS configures uptime.
ftp-server username nairobi password 0 zanzibar Dell# Configuring FTP Server Parameters After you enable the FTP server on the system, you can configure different parameters. To specify the system logging settings, use the following commands. • Specify the directory for users using FTP to reach the system. CONFIGURATION mode ftp-server topdir dir • The default is the internal flash directory. Specify a user name for all FTP users and configure either a plain text or encrypted password.
Terminal Lines You can access the system remotely and restrict access to the system by creating user profiles. Terminal lines on the system provide different means of accessing the system. The console line (console) connects you through the console port in the route processor modules (RPMs). The virtual terminal lines (VTYs) connect you through Telnet to the system. The auxiliary line (aux) connects secondary devices such as modems.
seq 15 permit ipv6 any any ! Dell(conf)# Dell(conf)#line vty 0 0 Dell(config-line-vty)#access-class testv6deny ipv6 Dell(config-line-vty)#access-class testvpermit ipv4 Dell(config-line-vty)#show c line vty 0 exec-timeout 0 0 access-class testpermit ipv4 access-class testv6deny ipv6 ! Configuring Login Authentication for Terminal Lines You can use any combination of up to six authentication methods to authenticate a user on a terminal line. A combination of authentication methods is called a method list.
line vty 2 password myvtypassword login authentication myvtymethodlist Dell(config-line-vty)# Setting Timeout for EXEC Privilege Mode EXEC timeout is a basic security feature that returns Dell Networking OS to EXEC mode after a period of inactivity on the terminal lines. To set timeout, use the following commands. • Set the number of minutes and seconds. The default is 10 minutes on the console and 30 minutes on VTY. Disable EXEC time out by setting the timeout period to 0.
Exit character is '^]'. FreeBSD/i386 (freebsd2.force10networks.com) (ttyp1) login: admin Dell# Lock CONFIGURATION Mode Dell Networking OS allows multiple users to make configurations at the same time. You can lock CONFIGURATION mode so that only one user can be in CONFIGURATION mode at any time (Message 2). You can set two types of lockst: auto and manual. • Set auto-lock using the configuration mode exclusive auto command from CONFIGURATION mode.
• reload conditional nvram-cfg-change Reload the system into the Dell diagnostics mode. EXEC Privilege mode • reload dell-diag Reload the system into the ONIE mode. EXEC Privilege mode reload onie [install | uninstall | rescue] Use the install parameter to reload the system and enter the Install mode to install a networking OS. Use the uninstall parameter to reload the system and enter the Uninstall mode to uninstall a networking OS.
* After restoration the unit(s) will be powercycled immediately. * * Proceed with caution ! * *********************************************************************** Proceed with factory settings? Confirm [yes/no]:yes -- Restore status -Unit Nvram Config -----------------------1 Success Power-cycling the unit(s). .... Restoring Factory Default Environment Variables The Boot line determines the location of the image that is used to boot up the chassis after restoring factory default settings.
BOOT_USER # To boot from flash partition B: BOOT_USER # boot change primary boot device : flash file name : systemb BOOT_USER # To boot from network: BOOT_USER # boot change primary boot device : tftp file name : FTOS-SI-9-5-0-169.bin Server IP address : 10.16.127.35 BOOT_USER # 4. Assign an IP address and netmask to the Management Ethernet interface. BOOT_USER # interface management ethernet ip address ip_address_with_mask For example, 10.16.150.106/16. 5.
5 802.1X 802.1X is a port-based Network Access Control (PNAC) that provides an authentication mechanism to devices wishing to attach to a LAN or WLAN. A device connected to a port that is enabled with 802.1X is disallowed from sending or receiving packets on the network until its identity is verified (through a username and password, for example). 802.
The following figures show how the EAP frames are encapsulated in Ethernet and RADIUS frames. Figure 3. EAP Frames Encapsulated in Ethernet and RADUIS Figure 4. EAP Frames Encapsulated in Ethernet and RADUIS The authentication process involves three devices: • The device attempting to access the network is the supplicant. The supplicant is not allowed to communicate on the network until the authenticator authorizes the port. It can only communicate with the authenticator in response to 802.1X requests.
• Ports are in an unauthorized state by default. In this state, non-802.1X traffic cannot be forwarded in or out of the port. • The authenticator changes the port state to authorized if the server can authenticate the supplicant. In this state, network traffic can be forwarded normally. NOTE: The Dell Networking switches place 802.1X-enabled ports in the unauthorized state by default. Topics: • Port-Authentication Process • Configuring 802.1X • Important Points to Remember • Enabling 802.
Success frame. If the identity information is invalid, the server sends an Access-Reject frame. If the port state remains unauthorized, the authenticator forwards an EAP Failure frame. Figure 5. EAP Port-Authentication EAP over RADIUS 802.1X uses RADIUS to shuttle EAP packets between the authenticator and the authentication server, as defined in RFC 3579. EAP messages are encapsulated in RADIUS packets as a type of attribute in Type, Length, Value (TLV) format. The Type value for EAP messages is 79.
RADIUS Attributes for 802.1X Support Dell Networking systems include the following RADIUS attributes in all 802.1X-triggered Access-Request messages: Attribute 31 Calling-station-id: relays the supplicant MAC address to the authentication server. Attribute 41 NAS-Port-Type: NAS-port physical port type. 15 indicates Ethernet. Attribute 61 NAS-Port: the physical port number by which the authenticator is connected to the supplicant.
Enabling 802.1X Enable 802.1X globally. Figure 7. 802.1X Enabled 1 Enable 802.1X globally. CONFIGURATION mode dot1x authentication 2 Enter INTERFACE mode on an interface or a range of interfaces. INTERFACE mode interface [range] 3 Enable 802.1X on the supplicant interface only. INTERFACE mode dot1x authentication Examples of Verifying that 802.1X is Enabled Globally and on an Interface Verify that 802.
In the following example, the bold lines show that 802.1X is enabled. Dell#show running-config | find dot1x dot1x authentication ! [output omitted] ! interface TenGigabitEthernet 2/1/1 no ip address dot1x authentication no shutdown ! Dell# To view 802.1X configuration information for an interface, use the show dot1x interface command. In the following example, the bold lines show that 802.1X is enabled on all ports unauthorized by default. Dell#show dot1x interface TenGigabitEthernet 2/1/1 802.
Dot1x Profile test Profile MACs 00:00:00:00:01:11 Configuring MAC addresses for a do1x Profile To configure a list of MAC addresses for a dot1x profile, use the mac command. You can configure 1 to 6 MAC addresses. • Configure a list of MAC addresses for a dot1x profile. DOT1X PROFILE CONFIG (conf-dot1x-profile) mac mac-address mac-address — Enter the keyword mac and type up to the 48– bit MAC addresses using the nn:nn:nn:nn:nn:nn format. A maximum of 6 MAC addresses are allowed.
Auth-Fail VLAN id: Auth-Fail Max-Attempts:3 Critical VLAN: Critical VLAN id: Mac-Auth-Bypass Only: Static-MAB: Static-MAB Profile: Tx Period: Quiet Period: ReAuth Max: Supplicant Timeout: Server Timeout: Re-Auth Interval: Max-EAP-Req: Auth Type: Auth PAE State: Backend State: 200 Enable 300 Disable Enable Sample 90 seconds 120 seconds 10 30 seconds 30 seconds 7200 seconds 10 SINGLE_HOST Authenticated Idle Configuring Critical VLAN By default, critical-VLAN is not configured.
Auth PAE State: Backend State: Authenticated Idle Configuring Request Identity Re-Transmissions When the authenticator sends a Request Identity frame and the supplicant does not respond, the authenticator waits for 30 seconds and then re-transmits the frame. The amount of time that the authenticator waits before re-transmitting and the maximum number of times that the authenticator re-transmits can be configured.
• re-transmits an EAP Request Identity frame The bold lines show the new re-transmit interval, new quiet period, and new maximum re-transmissions. Dell(conf-if-range-Te-2/1/1)#dot1x tx-period 90 Dell(conf-if-range-Te-2/1/1)#dot1x max-eap-req 10 Dell(conf-if-range-Te-2/1/1)#dot1x quiet-period 120 Dell#show dot1x interface TenGigabitEthernet 2/1/1 802.
ReAuth Max: Supplicant Timeout: Server Timeout: Re-Auth Interval: Max-EAP-Req: Auth Type: Auth PAE State: Backend State: Auth PAE State: Backend State: 2 30 seconds 30 seconds 3600 seconds 10 SINGLE_HOST Initialize Initialize Initialize Initialize Re-Authenticating a Port You can configure the authenticator for periodic re-authentication. After the supplicant has been authenticated, and the port has been authorized, you can configure the authenticator to reauthenticate the supplicant periodically.
Configuring Timeouts If the supplicant or the authentication server is unresponsive, the authenticator terminates the authentication process after 30 seconds by default. You can configure the amount of time the authenticator waits for a response. To terminate the authentication process, use the following commands: • Terminate the authentication process due to an unresponsive supplicant. INTERFACE mode dot1x supplicant-timeout seconds The range is from 1 to 300. • The default is 30.
Configuring Dynamic VLAN Assignment with Port Authentication Dell Networking OS supports dynamic VLAN assignment when using 802.1X. The basis for VLAN assignment is RADIUS attribute 81, Tunnel-Private-Group-ID. Dynamic VLAN assignment uses the standard dot1x procedure: 1. The host sends a dot1x packet to the Dell Networking system 2. The system forwards a RADIUS REQEST packet containing the host MAC address and ingress port number 3.
5 Verify that the port has been authorized and placed in the desired VLAN (refer to the illustration in Dynamic VLAN Assignment with Port Authentication). Guest and Authentication-Fail VLANs Typically, the authenticator (the Dell system) denies the supplicant access to the network until the supplicant is authenticated.
Example of Configuring Maximum Authentication Attempts Dell(conf-if-Te-1/1/1)#dot1x guest-vlan 200 Dell(conf-if-Te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 switchport dot1x authentication dot1x guest-vlan 200 no shutdown Dell(conf-if-Te-1/1/1)# Dell(conf-if-Te-1/1/1)#dot1x auth-fail-vlan 100 max-attempts 5 Dell(conf-if-Te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 switchport dot1x authentication dot1x guest-vlan 200 dot1x auth-fail-vlan 100 max-attempts 5 no shutdown Dell(conf-if
6 Access Control Lists (ACLs) This chapter describes access control lists (ACLs), prefix lists, and route-maps. At their simplest, access control lists (ACLs), prefix lists, and route-maps permit or deny traffic based on MAC and/or IP addresses. This chapter describes implementing IP ACLs, IP prefix lists and route-maps. For MAC ACLS, refer to Layer 2.
Topics: • IP Access Control Lists (ACLs) • Important Points to Remember • IP Fragment Handling • Configure a Standard IP ACL • Configure an Extended IP ACL • Configure Layer 2 and Layer 3 ACLs • Assign an IP ACL to an Interface • Applying an IP ACL • Configure Ingress ACLs • Configure Egress ACLs • IP Prefix Lists • ACL Resequencing • Route Maps • Flow-Based Monitoring Support for ACLs IP Access Control Lists (ACLs) In Dell Networking switch/routers, you can create two different
• CAM Optimization User Configurable CAM Allocation Allocate space for IPV6 ACLs by using the cam-acl command in CONFIGURATION mode. The CAM space is allotted in filter processor (FP) blocks. The total space allocated must equal 13 FP blocks. (There are 16 FP blocks, but System Flow requires three blocks that cannot be reallocated.) Enter the ipv6acl allocation as a factor of 2 (2, 4, 6, 8, 10). All other profile allocations can use either even or odd numbered ranges.
• L2 Egress Access list NOTE: IP ACLs are supported over VLANs in Dell Networking OS version 6.2.1.1 and higher. Assigning ACLs to VLANs When you apply an ACL to a VLAN using single port-pipe, a copy of the ACL entries gets installed in the ACL CAM on the portpipe. The entry looks for the incoming VLAN in the packet. When you apply an ACL on individual ports of a VLAN, separate copies of the ACL entries are installed for each port belonging to a port-pipe.
Important Points to Remember • For route-maps with more than one match clause: – Two or more match clauses within the same route-map sequence have the same match commands (though the values are different), matching a packet against these clauses is a logical OR operation. – Two or more match clauses within the same route-map sequence have different match commands, matching a packet against these clauses is a logical AND operation.
map is applied to a command, such as redistribute, traffic passes through all instances of that route map until a match is found. The following is an example with two instances of a route map. The following example shows matching instances of a route-map.
Dell(config-route-map)#match tag 2000 Dell(config-route-map)#match tag 3000 Example of the match Command to Match All Specified Values In the next example, there is a match only if a route has both of the specified characteristics. In this example, there a match only if the route has a tag value of 1000 and a metric value of 2000. Also, if there are different instances of the same route-map, then it’s sufficient if a permit match happens in any instance of that route-map.
• match ipv6 address prefix-list-name Match next-hop routes specified in a prefix list (IPv4). CONFIG-ROUTE-MAP mode • match ip next-hop {access-list-name | prefix-list prefix-list-name} Match next-hop routes specified in a prefix list (IPv6). CONFIG-ROUTE-MAP mode • match ipv6 next-hop {access-list-name | prefix-list prefix-list-name} Match source routes specified in a prefix list (IPv4).
CONFIG-ROUTE-MAP mode • set local-preference value Specify a value for redistributed routes. CONFIG-ROUTE-MAP mode • set metric {+ | - | metric-value} Specify an OSPF or ISIS type for redistributed routes. CONFIG-ROUTE-MAP mode • set metric-type {external | internal | type-1 | type-2} Assign an IP address as the route’s next hop. CONFIG-ROUTE-MAP mode • set next-hop ip-address Assign an IPv6 address as the route’s next hop.
Example of Calling a Route Map to Redistribute Specified Routes router ospf 34 default-information originate metric-type 1 redistribute static metric 20 metric-type 2 tag 0 route-map staticospf ! route-map staticospf permit 10 match interface TenGigabitEthernet 1/1/1 match metric 255 set level backbone Configure a Route Map for Route Tagging One method for identifying routes from different routing protocols is to assign a tag to routes from that protocol.
• For IP ACL, Dell Networking OS always applies implicit deny. You do not have to configure it. • For IP ACL, Dell Networking OS applies implicit permit for second and subsequent fragment just prior to the implicit deny. • If you configure an explicit deny, the second and subsequent fragments do not hit the implicit permit rule for fragments. • Loopback interfaces do not support ACLs using the IP fragment option.
Example of Permitting Only First Fragments and Non-Fragmented Packets from a Specified Host In the following example, the TCP packets that are first fragments or non-fragmented from host 10.1.1.1 with TCP destination port equal to 24 are permitted. Additionally, all TCP non-first fragments from host 10.1.1.1 are permitted. All other IP packets that are non-first fragments are denied. Dell(conf)#ip access-list extended ABC Dell(conf-ext-nacl)#permit tcp host 10.1.1.
seq 40 deny 10.8.0.0 /16 seq 45 deny 10.9.0.0 /16 seq 50 deny 10.10.0.0 /16 Dell# The following example shows how the seq command orders the filters according to the sequence number assigned. In the example, filter 25 was configured before filter 15, but the show config command displays the filters in the correct order. Dell(config-std-nacl)#seq 25 deny ip host 10.5.0.0 any log Dell(config-std-nacl)#seq 15 permit tcp 10.3.0.
seq 50 permit tcp 10.8.0.0 /16 10.50.188.118 /31 eq 49 seq 55 permit udp 10.15.1.0 /24 10.50.188.118 /31 range 1812 1813 To delete a filter, enter the show config command in IP ACCESS LIST mode and locate the sequence number of the filter you want to delete. Then use the no seq sequence-number command in IP ACCESS LIST mode.
CONFIG-EXT-NACL mode seq sequence-number {deny | permit} tcp {source mask | any | host ip-address} [count [byte]] [order] [fragments] Example of the seq Command When you create the filters with a specific sequence number, you can create the filters in any order and the filters are placed in the correct order. NOTE: When assigning sequence numbers to filters, you may have to insert a new filter. To prevent reconfiguring multiple filters, assign sequence numbers in multiples of five or another number.
Configure Layer 2 and Layer 3 ACLs Both Layer 2 and Layer 3 ACLs may be configured on an interface in Layer 2 mode. If both L2 and L3 ACLs are applied to an interface, the following rules apply: • When Dell Networking OS routes the packets, only the L3 ACL governs them because they are not filtered against an L2 ACL. • When Dell Networking OS switches the packets, first the L3 ACL filters them, then the L2 ACL filters them.
CONFIGURATION mode interface interface slot/port 2 Configure an IP address for the interface, placing it in Layer-3 mode. INTERFACE mode ip address ip-address 3 Apply an IP ACL to traffic entering or exiting an interface. INTERFACE mode ip access-group access-list-name {in} [implicit-permit] [vlan vlan-range | vrf vrf-range] NOTE: The number of entries allowed per ACL is hardware-dependent. For detailed specification about entries allowed per ACL, refer to your line card documentation.
Example of Applying ACL Rules to Ingress Traffic and Viewing ACL Configuration To specify ingress, use the in keyword. Begin applying rules to the ACL with the ip access-list extended abcd command. To view the access-list, use the show command.
Dell#configure terminal Dell(conf)#interface te 1/2/1 Dell(conf-if-te-1/2/1)#ip vrf forwarding blue Dell(conf-if-te-1/2/1)#show config ! interface TenGigabitEthernet 1/2/1 ip vrf forwarding blue no ip address shutdown Dell(conf-if-te-1/2/1)# Dell(conf-if-te-1/2/1)# Dell(conf-if-te-1/2/1)#end Dell# Applying Egress Layer 3 ACLs (Control-Plane) By default, packets originated from the system are not filtered by egress ACLs.
• • To deny routes with a mask less than /24, enter deny x.x.x.x/x le 24. To permit routes with a mask greater than /20, enter permit x.x.x.x/x ge 20. The following rules apply to prefix lists: • • • A prefix list without any permit or deny filters allows all routes. An “implicit deny” is assumed (that is, the route is dropped) for all route prefixes that do not match a permit or deny filter in a configured prefix list. After a route matches a filter, the filter’s action is applied.
The following example shows how the seq command orders the filters according to the sequence number assigned. In the example, filter 20 was configured before filter 15 and 12, but the show config command displays the filters in the correct order. Dell(conf-nprefixl)#seq 20 permit 0.0.0.0/0 le 32 Dell(conf-nprefixl)#seq 12 deny 134.23.0.0 /16 Dell(conf-nprefixl)#seq 15 deny 120.23.14.0 /8 le 16 Dell(conf-nprefixl)#show config ! ip prefix-list juba seq 12 deny 134.23.0.0/16 seq 15 deny 120.0.0.
Viewing Prefix Lists To view all configured prefix lists, use the following commands. • Show detailed information about configured prefix lists. EXEC Privilege mode • show ip prefix-list detail [prefix-name] Show a table of summarized information about configured Prefix lists. EXEC Privilege mode show ip prefix-list summary [prefix-name] Examples of the show ip prefix-list Command The following example shows the show ip prefix-list detail command.
If you enter the name of a non-existent prefix list, all routes are forwarded. CONFIG-ROUTER-RIP mode distribute-list prefix-list-name out [interface | connected | static | ospf] Example of Viewing Configured Prefix Lists (ROUTER RIP mode) To view the configuration, use the show config command in ROUTER RIP mode, or the show running-config rip command in EXEC mode. Dell(conf-router_rip)#show config ! router rip distribute-list prefix juba out network 10.0.0.
You can resequence IPv4 and IPv6 ACLs, prefixes, and MAC ACLs. No CAM writes happen as a result of resequencing, so there is no packet loss; the behavior is similar Hot-lock ACLs. NOTE: ACL resequencing does not affect the rules, remarks, or order in which they are applied. Resequencing merely renumbers the rules so that you can place new rules within the list as needed. Table 7. ACL Resequencing Rules Resquencing Rules Before Resequencing: seq 5 permit any host 1.1.1.1 seq 6 permit any host 1.1.1.
remark 4 this remark corresponds to permit any host 1.1.1.1 seq 4 permit ip any host 1.1.1.1 remark 6 this remark has no corresponding rule remark 8 this remark corresponds to permit ip any host 1.1.1.2 seq 8 permit ip any host 1.1.1.2 seq 10 permit ip any host 1.1.1.3 seq 12 permit ip any host 1.1.1.4 Remarks that do not have a corresponding rule are incremented as a rule. These two mechanisms allow remarks to retain their original position in the list.
The port mirroring application maintains and performs all the monitoring operations on the chassis. ACL information is sent to the ACL manager, which in turn notifies the ACL agent to add entries in the CAM area. Duplicate entries in the ACL are not saved. When a packet arrives at a port that is being monitored, the packet is validated against the configured ACL rules. If the packet matches an ACL rule, the system examines the corresponding flow processor to perform the action specified for that port.
The show config command has been modified to display monitoring configuration in a particular session. Example Output of the show Command (conf-mon-sess-11)#show config ! monitor session 11 flow-based enable source TenGigabitEthernet 1/1/1 destination TenGigabitEthernet 1/1/1 direction both The show ip | mac | ipv6 accounting commands have been enhanced to display whether monitoring is enabled for traffic that matches with the rules of the specific ACL.
Dell(conf)#interface TenGigabitEthernet 1/1/1 Dell(conf-if-te-1/1/1)#ip access-group testflow in Dell(conf-if-te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 ip address 10.11.1.254/24 ip access-group testflow in shutdown Dell(conf-if-te-1/1/1)#exit Dell(conf)#do show ip accounting access-list testflow ! Extended Ingress IP access list testflow on TenGigabitEthernet 1/1/1 Total cam count 4 seq 5 permit icmp any any monitor count bytes (0 packets 0 bytes) seq 10 permit ip 102.1.1.
7 Bidirectional Forwarding Detection (BFD) BFD is a protocol that is used to rapidly detect communication failures between two adjacent systems. It is a simple and lightweight replacement for existing routing protocol link state detection mechanisms. It also provides a failure detection solution for links on which no routing protocol is used. BFD is a simple hello mechanism. Two neighboring systems running BFD establish a session using a three-way handshake.
BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets. The following illustration shows the complete encapsulation of a BFD control packet inside an IPv4 packet. Figure 9. BFD in IPv4 Packet Format Field Description Diagnostic Code The reason that the last session failed. State The current local session state. Refer to BFD Sessions. Flag A bit that indicates packet function.
Field Description Detection Multiplier The number of packets that must be missed in order to declare a session down. Length The entire length of the BFD packet. My Discriminator A random number generated by the local system to identify the session. Your Discriminator A random number generated by the remote system to identify the session. Discriminator values are necessary to identify the session to which a control packet belongs because there can be many sessions running on a single interface.
Demand mode If one system requests Demand mode, the other system stops sending periodic control packets; it only sends a response to status inquiries from the Demand mode initiator. Either system (but not both) can request Demand mode at any time. NOTE: Dell Networking OS supports Asynchronous mode only. A session can have four states: Administratively Down, Down, Init, and Up. State Description Administratively Down The local system does not participate in a particular session.
state change or change in a session parameter, the passive system sends a final response indicating the state change. After this, periodic control packets are exchanged. Figure 10.
Session State Changes The following illustration shows how the session state on a system changes based on the status notification it receives from the remote system. For example, if a session on a system is down and it receives a Down status notification from the remote system, the session state on the local system changes to Init. Figure 11.
• Configure BFD for OSPFv3 • Configure BFD for IS-IS • Configure BFD for BGP • Configure BFD for VRRP • Configuring Protocol Liveness • Troubleshooting BFD Configure BFD for Physical Ports Configuring BFD for physical ports is supported on the C-Series and E-Series platforms only. BFD on physical ports is useful when you do not enable the routing protocol.
Establishing a Session on Physical Ports To establish a session, enable BFD at the interface level on both ends of the link, as shown in the following illustration. The configuration parameters do not need to match. Figure 12. Establishing a BFD Session on Physical Ports 1 Enter interface mode. CONFIGURATION mode interface 2 Assign an IP address to the interface if one is not already assigned.
State: Up Configured parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Neighbor parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Actual parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Role: Active Delete session on Down: False Client Registered: CLI Uptime: 00:03:57 Statistics: Number of packets received from neighbor: 1775 Number of packets sent to neighbor: 1775 Number of state changes: 1 Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 4 Log messa
To disable and re-enable BFD on an interface, use the following commands. • Disable BFD on an interface. INTERFACE mode • no bfd enable Enable BFD on an interface. INTERFACE mode bfd enable If you disable BFD on a local interface, this message displays: R1(conf-if-te-4/24/1)#01:00:52: %RPM0-P:RP2 %BFDMGR-1-BFD_STATE_CHANGE: Changed session state to Ad Dn for neighbor 2.2.2.
To establish a BFD session, use the following command. • Establish BFD sessions for all neighbors that are the next hop of a static route. CONFIGURATION mode ip route bfd Example of the show bfd neighbors Command to Verify Static Routes To verify that sessions have been created for static routes, use the show bfd neighbors command. R1(conf)#ip route 2.2.3.0/24 2.2.2.
Configure BFD for OSPF When using BFD with OSPF, the OSPF protocol registers with the BFD manager. BFD sessions are established with all neighboring interfaces participating in OSPF. If a neighboring interface fails, the BFD agent notifies the BFD manager, which in turn notifies the OSPF protocol that a link state change has occurred. Configuring BFD for OSPF is a two-step process: 1. Enable BFD globally. 2. Establish sessions with OSPF neighbors.
Establishing Sessions with OSPF Neighbors BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state. Figure 14. Establishing Sessions with OSPF Neighbors To establish BFD with all OSPF neighbors or with OSPF neighbors on a single interface, use the following commands. • Establish sessions with all OSPF neighbors.
The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.2 * 2.2.3.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Te 2/1/1 Up 100 100 3 O 2.2.3.2 Te 2/2/1 Up 100 100 3 O Changing OSPF Session Parameters Configure BFD sessions with default intervals and a default role.
Configuring BFD for OSPFv3 is a two-step process: 1. Enable BFD globally. 2. Establish sessions with OSPFv3 neighbors. Related Configuration Tasks • Changing OSPFv3 Session Parameters • Disabling BFD for OSPFv3 Establishing Sessions with OSPFv3 Neighbors You can establish BFD sessions with all OSPFv3 neighbors at once or with all neighbors out of a specific interface. Sessions are only established when the OSPFv3 adjacency is in the Full state.
Disabling BFD for OSPFv3 If you disable BFD globally, all sessions are torn down and sessions on the remote system are placed in a Down state. If you disable BFD on an interface, sessions on the interface are torn down and sessions on the remote system are placed in a Down state. Disabling BFD does not trigger a change in BFD clients; a final Admin Down packet is sent before the session is terminated. To disable BFD sessions, use the following commands. • Disable BFD sessions with all OSPFv3 neighbors.
Establishing Sessions with IS-IS Neighbors BFD sessions can be established for all IS-IS neighbors at once or sessions can be established for all neighbors out of a specific interface. Figure 15. Establishing Sessions with IS-IS Neighbors To establish BFD with all IS-IS neighbors or with IS-IS neighbors on a single interface, use the following commands. • Establish sessions with all IS-IS neighbors. ROUTER-ISIS mode • bfd all-neighbors Establish sessions with IS-IS neighbors on a single interface.
C I O R - CLI ISIS OSPF Static Route (RTM) LocalAddr * 2.2.2.2 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Te 2/1/1 Up 100 100 3 I Changing IS-IS Session Parameters BFD sessions are configured with default intervals and a default role. The parameters that you can configure are: Desired TX Interval, Required Min RX Interval, Detection Multiplier, and system role. These parameters are configured for all IS-IS sessions or all IS-IS sessions out of an interface.
Prerequisites Before configuring BFD for BGP, you must first configure the following settings: 1. Configure BGP on the routers that you want to interconnect, as described in Border Gateway Protocol IPv4 (BGPv4). 2. Enable fast fall-over for BGP neighbors to reduce convergence time (the neighbor fall-over command), as described in BGP Fast Fall-Over. Establishing Sessions with BGP Neighbors Before configuring BFD for BGP, you must first configure BGP on the routers that you want to interconnect.
BFD for BGP is supported only on directly-connected BGP neighbors and only in BGP IPv4 networks. Up to 128 simultaneous BFD sessions are supported As long as each BFD for BGP neighbor receives a BFD control packet within the configured BFD interval for failure detection, the BFD session remains up and BGP maintains its adjacencies.
ROUTER BGP mode • neighbor {ip-address | peer-group-name} bfd disable Remove the disabled state of a BFD for BGP session with a specified neighbor. ROUTER BGP mode no neighbor {ip-address | peer-group-name} bfd disable Use BFD in a BGP Peer Group You can establish a BFD session for the members of a peer group (the neighbor peer-group-name bfd command in ROUTER BGP configuration mode).
Examples of Verifying BGP Information The following example shows verifying a BGP configuration. R2# show running-config bgp ! router bgp 2 neighbor 1.1.1.2 remote-as 1 neighbor 1.1.1.2 no shutdown neighbor 2.2.2.2 remote-as 1 neighbor 2.2.2.2 no shutdown neighbor 3.3.3.2 remote-as 1 neighbor 3.3.3.2 no shutdown bfd all-neighbors The following example shows viewing all BFD neighbors.
Remote MAC Addr: 00:01:e8:8a:da:7b Int: TenGigabitEthernet 6/2/1 State: Up Configured parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Neighbor parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Actual parameters: TX: 100ms, RX: 100ms, Multiplier: 3 Role: Active Delete session on Down: True Client Registered: BGP Uptime: 00:02:22 Statistics: Number of packets received from neighbor: 1428 Number of packets sent to neighbor: 1428 Number of state changes: 1 Number of messages from IFA about port state change: 0 Nu
2.2.2.2 3.3.3.2 1 1 273 282 273 281 0 0 0 0 (0) 0 04:32:26 00:38:12 0 0 The following example shows viewing BFD information for a specified neighbor. The bold lines show the message displayed when you enable a BFD session with different configurations: • • • Message displays when you enable a BFD session with a BGP neighbor that inherits the global BFD session settings configured with the global bfd all-neighbors command.
Peer active in peer-group outbound optimization ... Configure BFD for VRRP When using BFD with VRRP, the VRRP protocol registers with the BFD manager on the route processor module (RPM). BFD sessions are established with all neighboring interfaces participating in VRRP. If a neighboring interface fails, the BFD agent on the line card notifies the BFD manager, which in turn notifies the VRRP protocol that a link state change occurred. Configuring BFD for VRRP is a three-step process: 1. Enable BFD globally.
Establishing VRRP Sessions on VRRP Neighbors The master router does not care about the state of the backup router, so it does not participate in any VRRP BFD sessions. VRRP BFD sessions on the backup router cannot change to the UP state. Configure the master router to establish an individual VRRP session the backup router. To establish a session with a particular VRRP neighbor, use the following command. • Establish a session with a particular VRRP neighbor.
• vrrp bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Change parameters for a particular VRRP session. INTERFACE mode vrrp bfd neighbor ip-address interval milliseconds min_rx milliseconds multiplier value role [active | passive] To view session parameters, use the show bfd neighbors detail command, as shown in the example in Verifying BFD Sessions with BGP Neighbors Using the show bfd neighbors command example in Displaying BFD for BGP Information.
debug bfd packet Examples of Output from the debug bfd Commands The following example shows a three-way handshake using the debug bfd detail command. R1(conf-if-te-4/24/1)#00:54:38: %RPM0-P:RP2 %BFDMGR-1-BFD_STATE_CHANGE: Changed session state to Down for neighbor 2.2.2.2 on interface Te 4/24/1 (diag: 0) 00:54:38 : Sent packet for session with neighbor 2.2.2.
8 Border Gateway Protocol IPv4 (BGPv4) This chapter provides a general description of BGPv4 as it is supported in the Dell Networking Operating System (OS). BGP protocol standards are listed in the Standards Compliance chapter. BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS). The primary function of the BGP is to exchange network reachability information with other BGP systems.
because they provide connections from one network to another. The ISP is considered to be “selling transit service” to the customer network, so thus the term Transit AS. When BGP operates inside an AS (AS1 or AS2, as seen in the following illustration), it is referred to as Internal BGP (IBGP Internal Border Gateway Protocol). When BGP operates between ASs (AS1 and AS2), it is called External BGP (EBGP External Border Gateway Protocol).
four routers connected in a full mesh have three peers each, six routers have five peers each, and eight routers in full mesh have seven peers each. Figure 19. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. Sessions and Peers When two routers communicate using the BGP protocol, a BGP session is started. The two end-points of that session are Peers. A Peer is also called a Neighbor.
Establish a Session Information exchange between peers is driven by events and timers. The focus in BGP is on the traffic routing policies. In order to make decisions in its operations with other BGP peers, a BGP process uses a simple finite state machine that consists of six states: Idle, Connect, Active, OpenSent, OpenConfirm, and Established. For each peer-to-peer session, a BGP implementation tracks which of these six states the session is in.
To illustrate how these rules affect routing, refer to the following illustration and the following steps. Routers B, C, D, E, and G are members of the same AS (AS100). These routers are also in the same Route Reflection Cluster, where Router D is the Route Reflector. Router E and H are client peers of Router D; Routers B and C and nonclient peers of Router D. Figure 20. BGP Router Rules 1. Router B receives an advertisement from Router A through eBGP.
Best Path Selection Criteria Paths for active routes are grouped in ascending order according to their neighboring external AS number (BGP best path selection is deterministic by default, which means the bgp non-deterministic-med command is NOT applied). The best path in each group is selected based on specific criteria. Only one “best path” is selected at a time. If any of the criteria results in more than one path, BGP moves on to the next option in the list.
Best Path Selection Details 1. Prefer the path with the largest WEIGHT attribute. 2. Prefer the path with the largest LOCAL_PREF attribute. 3. Prefer the path that was locally Originated via a network command, redistribute command or aggregateaddress command. a 4. Routes originated with the Originated via a network or redistribute commands are preferred over routes originated with the aggregate-address command.
Weight The weight attribute is local to the router and is not advertised to neighboring routers. If the router learns about more than one route to the same destination, the route with the highest weight is preferred. The route with the highest weight is installed in the IP routing table. Local Preference Local preference (LOCAL_PREF) represents the degree of preference within the entire AS. The higher the number, the greater the preference for the route.
One AS assigns the MED a value and the other AS uses that value to decide the preferred path. For this example, assume the MED is the only attribute applied. In the following illustration, AS100 and AS200 connect in two places. Each connection is a BGP session. AS200 sets the MED for its T1 exit point to 100 and the MED for its OC3 exit point to 50. This sets up a path preference through the OC3 link. The MEDs are advertised to AS100 routers so they know which is the preferred path.
Network *> 7.0.0.0/29 *> 7.0.0.0/30 *> 9.2.0.0/16 Next Hop 10.114.8.33 10.114.8.33 10.114.8.33 Metric 0 0 10 LocPrf 0 0 0 Weight 18508 18508 18508 Path ? ? 701 i AS Path The AS path is the list of all ASs that all the prefixes listed in the update have passed through. The local AS number is added by the BGP speaker when advertising to a eBGP neighbor. NOTE: Any update that contains the AS path number 0 is valid. The AS path is shown in the following example.
MBGP uses either an IPv4 address configured on the interface (which is used to establish the IPv6 session) or a stable IPv4 address that is available in the box as the next-hop address. As a result, while advertising an IPv6 network, exchange of IPv4 routes does not lead to martian next-hop message logs. NOTE: It is possible to configure BGP peers that exchange both unicast and multicast network layer reachability information (NLRI), but you cannot connect multiprotocol BGP with BGP.
Command Settings BGP Local Routing Information Base MED Advertised to Peer MED Advertised to Peer WITH route-map metric-type WITHOUT route-map internal metric-type internal redistribute isis metric 100 MED: IGP cost 100 MED: 100 MED: 100 Ignore Router-ID in Best-Path Calculation You can avoid unnecessary BGP best-path transitions between external paths under certain conditions.
• • All AS numbers between 0 and 65535 are represented as a decimal number, when entered in the CLI and when displayed in the show commands outputs. AS Numbers larger than 65535 is represented using ASDOT notation as .. For example: AS 65546 is represented as 1.10. ASDOT representation combines the ASPLAIN and ASDOT+ representations.
Dell(conf-router_bgp)#do sho ip bgp BGP table version is 28093, local router ID is 172.30.1.57 AS4 SUPPORT DISABLED Dell(conf-router_bgp)#no bgp four-octet-as-support Dell(conf-router_bgp)#sho conf ! router bgp 100 neighbor 172.30.1.250 local-as 65057 Dell(conf-router_bgp)#do show ip bgp BGP table version is 28093, local router ID is 172.30.1.
behavior to happen by allowing Router B to appear as if it still belongs to Router B’s old network (AS 200) as far as communicating with Router C is concerned. Figure 24. Before and After AS Number Migration with Local-AS Enabled When you complete your migration, and you have reconfigured your network with the new information, disable this feature. If you use the “no prepend” option, the Local-AS does not prepend to the updates received from the eBGP peer.
BGP4 Management Information Base (MIB) The FORCE10-BGP4-V2-MIB enhances support for BGP management information base (MIB) with many new simple network management protocol (SNMP) objects and notifications (traps) defined in draft-ietf-idr-bgp4-mibv2-05. To see these enhancements, download the MIB from the Dell website. NOTE: For the Force10-BGP4-V2-MIB and other MIB documentation, refer to the Dell iSupport web page.
• Multiple instances of the same NLRI in the BGP RIB are not supported and are set to zero in the SNMP query response. • The f10BgpM2NlriIndex and f10BgpM2AdjRibsOutIndex fields are not used. • Carrying MPLS labels in BGP is not supported. The f10BgpM2NlriOpaqueType and f10BgpM2NlriOpaquePointer fields are set to zero. • 4-byte ASN is supported. The f10BgpM2AsPath4byteEntry table contains 4-byte ASN-related parameters based on the configuration.
Item Default suppress = 2000 max-suppress-time = 60 minutes external distance = 20 Distance internal distance = 200 local distance = 200 keepalive = 60 seconds Timers holdtime = 180 seconds Add-path Disabled Enabling BGP By default, BGP is not enabled on the system. Dell Networking OS supports one autonomous system (AS) and assigns the AS number (ASN). To establish BGP sessions and route traffic, configure at least one BGP neighbor or peer.
Disable 4-Byte support and return to the default 2-Byte format by using the no bgp four-octet-as-support command. You cannot disable 4-Byte support if you currently have a 4-Byte ASN configured. Disabling 4-Byte AS numbers also disables ASDOT and ASDOT+ number representation. All AS numbers are displayed in ASPLAIN format. b Enable IPv4 multicast or IPv6 mode. CONFIG-ROUTER-BGP mode address-family [ipv4 | ipv6} vrf Use this command to enter BGP for IPv6 mode (CONF-ROUTER_BGPv6_AF).
1 network entrie(s) using 132 bytes of memory 1 paths using 72 bytes of memory BGP-RIB over all using 73 bytes of memory 1 BGP path attribute entrie(s) using 72 bytes of memory 1 BGP AS-PATH entrie(s) using 47 bytes of memory 5 neighbor(s) using 23520 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 10.10.21.1 10.10.32.3 100.10.92.9 192.168.10.1 192.168.12.
For address family: IPv4 Unicast BGP table version 0, neighbor version 0 0 accepted prefixes consume 0 bytes Prefix advertised 0, rejected 0, withdrawn 0 Connections established 0; dropped 0 Last reset never No active TCP connection Dell# The following example shows verifying the BGP configuration using the show running-config bgp command.. Dell#show running-config bgp ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.
bgp asnotation asplain NOTE: ASPLAIN is the default method Dell Networking OS uses and does not appear in the configuration display. • Enable ASDOT AS Number representation. CONFIG-ROUTER-BGP mode • bgp asnotation asdot Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ Examples of the bgp asnotation Commands The following example shows the bgp asnotation asplain command output.
Create a peer group by assigning it a name, then adding members to the peer group. After you create a peer group, you can configure route policies for it. For information about configuring route policies for a peer group, refer to Filtering BGP Routes. NOTE: Sample Configurations for enabling peer groups are found at the end of this chapter. 1 Create a peer group by assigning a name to it. CONFIG-ROUTERBGP mode neighbor peer-group-name peer-group 2 Enable the peer group.
• neighbor route-map out • neighbor route-reflector-client • neighbor send-community A neighbor may keep its configuration after it was added to a peer group if the neighbor’s configuration is more specific than the peer group’s and if the neighbor’s configuration does not affect outgoing updates. NOTE: When you configure a new set of BGP policies for a peer group, always reset the peer group by entering the clear ip bgp peer-group peer-group-name command in EXEC Privilege mode.
10.68.164.1 10.68.165.1 10.68.166.1 10.68.167.1 10.68.168.1 10.68.169.1 10.68.170.1 10.68.171.1 10.68.172.1 10.68.173.1 10.68.174.1 10.68.175.1 10.68.176.1 10.68.177.1 10.68.178.1 10.68.179.1 10.68.180.1 10.68.181.1 10.68.182.1 10.68.183.1 10.68.184.1 10.68.185.1 Dell> Configuring BGP Fast Fall-Over By default, a BGP session is governed by the hold time. BGP routers typically carry large routing tables, so frequent session resets are not desirable.
Capabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) fall-over enabled Update source set to Loopback 0 Peer active in peer-group outbound optimization For address family: IPv4 Unicast BGP table version 52, neighbor version 52 4 accepted prefixes consume 16 bytes Prefix advertised 0, denied 0, withdrawn 0 Connections established 6; dr
When a BGP neighbor connection with authentication configured is rejected by a passive peer-group, Dell Networking OS does not allow another passive peer-group on the same subnet to connect with the BGP neighbor. To work around this, change the BGP configuration or change the order of the peer group configuration. You can constrain the number of passive sessions accepted by the neighbor. The limit keyword allows you to set the total number of sessions the neighbor will accept, between 2 and 265.
To disable this feature, use the no neighbor local-as command in CONFIGURATION ROUTER BGP mode. R2(conf-router_bgp)#show conf ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.
neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.1 update-source Loopback 0 neighbor 192.168.10.1 no shutdown neighbor 192.168.12.2 remote-as 65123 neighbor 192.168.12.2 allowas-in 9 neighbor 192.168.12.2 update-source Loopback 0 neighbor 192.168.12.2 no shutdown R2(conf-router_bgp)#R2(conf-router_bgp)# Enabling Graceful Restart Use this feature to lessen the negative effects of a BGP restart.
bgp graceful-restart [role receiver-only] Enabling Neighbor Graceful Restart BGP graceful restart is active only when the neighbor becomes established. Otherwise, it is disabled. Graceful-restart applies to all neighbors with established adjacency. With the graceful restart feature, Dell Networking OS enables the receiving/restarting mode by default. In Receiver-Only mode, graceful restart saves the advertised routes of peers that support this capability when they restart.
This is the filter that is used to match the AS-path. The entries can be any format, letters, numbers, or regular expressions. You can enter this command multiple times if multiple filters are desired. For accepted expressions, refer to Regular Expressions as Filters. 3 Return to CONFIGURATION mode. AS-PATH ACL mode exit 4 Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5 Use a configured AS-PATH ACL for route filtering and manipulation.
Regular Expression Definition ^ (caret) Matches the beginning of the input string. Alternatively, when used as the first character within brackets [^ ], this matches any number except the ones specified within the brackets. $ (dollar) Matches the end of the input string. . (period) Matches any single character, including white space. * (asterisk) Matches 0 or more sequences of the immediately previous character or pattern.
Dell(conf)#ex Dell#show ip as-path-access-lists ip as-path access-list Eagle deny 32$ Dell# Redistributing Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the BGP process. With the redistribute command, you can include ISIS, OSPF, static, or directly connected routes in the BGP process. To add routes from other routing instances or protocols, use any of the following commands in ROUTER BGP mode.
The range is from 2 to 64. 2 Allow the specified neighbor/peer group to send/ receive multiple path advertisements. CONFIG-ROUTER-BGP mode neighbor add-path NOTE: The path-count parameter controls the number of paths that are advertised, not the number of paths that are received. Configuring IP Community Lists Within Dell Networking OS, you have multiple methods of manipulating routing attributes. One attribute you can manipulate is the COMMUNITY attribute.
deny deny deny deny deny deny deny deny deny deny deny deny deny deny deny deny Dell# 703:20 704:20 705:20 14551:20 701:112 702:112 703:112 704:112 705:112 14551:112 701:667 702:667 703:667 704:666 705:666 14551:666 Configuring an IP Extended Community List To configure an IP extended community list, use these commands. 1 Create a extended community list and enter the EXTCOMMUNITY-LIST mode.
deny 14551:666 Dell# Filtering Routes with Community Lists To use an IP community list or IP extended community list to filter routes, you must apply a match community filter to a route map and then apply that route map to a BGP neighbor or peer group. 1 Enter the ROUTE-MAP mode and assign a name to a route map. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2 Configure a match filter for all routes meeting the criteria in the IP community or IP extended community list.
CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2 Configure a set filter to delete all COMMUNITY numbers in the IP community list. CONFIG-ROUTE-MAP mode set comm-list community-list-name delete OR set community {community-number | local-as | no-advertise | no-export | none} Configure a community list by denying or permitting specific community numbers or types of community.
*>i 6.10.0.0/15 *>i 6.14.0.0/15 *>i 6.133.0.0/21 *>i 6.151.0.0/16 --More-- 195.171.0.16 205.171.0.16 205.171.0.16 205.171.0.16 100 100 100 100 0 0 0 0 209 209 209 209 7170 7170 7170 7170 1455 1455 1455 1455 i i i i Changing MED Attributes By default, Dell Networking OS uses the MULTI_EXIT_DISC or MED attribute when comparing EBGP paths from the same AS. To change how the MED attribute is used, enter any or all of the following commands.
4 Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5 Apply the route map to the neighbor or peer group’s incoming or outgoing routes. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-map map-name {in | out} To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. To view a route map configuration, use the show route-map command in EXEC Privilege mode.
– weight: the range is from 0 to 65535. To view BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode or the show runningconfig bgp command in EXEC Privilege mode. Enabling Multipath By default, the software allows one path to a destination. You can enable multipath to allow up to 64 parallel paths to a destination. NOTE: Dell Networking recommends not using multipath and add path simultaneously in a route reflector. To allow more than one path, use the following command.
• le: maximum prefix length to me matched. For information about configuring prefix lists, refer to Access Control Lists (ACLs). 3 Return to CONFIGURATION mode. CONFIG-PREFIX LIST mode exit 4 Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5 Filter routes based on the criteria in the configured prefix list.
5 Filter routes based on the criteria in the configured route map. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-map map-name {in | out} Configure the following parameters: • ip-address or peer-group-name: enter the neighbor’s IP address or the peer group’s name. • map-name: enter the name of a configured route map. • in: apply the route map to inbound routes. • out: apply the route map to outbound routes.
Configuring BGP Route Reflectors BGP route reflectors are intended for ASs with a large mesh; they reduce the amount of BGP control traffic. NOTE: Dell Networking recommends not using multipath and add path simultaneously in a route reflector. With route reflection configured properly, IBGP routers are not fully meshed within a cluster but all receive routing information.
*> 9.141.128.0/24 10.114.8.33 Dell# 0 18508 701 7018 2686 ? Configuring BGP Confederations Another way to organize routers within an AS and reduce the mesh for IBGP peers is to configure BGP confederations. As with route reflectors, BGP confederations are recommended only for IBGP peering involving many IBGP peering sessions per router. Basically, when you configure BGP confederations, you break the AS into smaller sub-AS, and to those outside your network, the confederations appear as one AS.
To configure route flap dampening parameters, set dampening parameters using a route map, clear information on route dampening and return suppressed routes to active state, view statistics on route flapping, or change the path selection from the default mode (deterministic) to non-deterministic, use the following commands. • Enable route dampening.
bgp non-deterministic-med NOTE: When you change the best path selection method, path selection for existing paths remains unchanged until you reset it by entering the clear ip bgp command in EXEC Privilege mode. Examples of Configuring a Route and Viewing the Number of Dampened Routes To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode or the show running-config bgp command in EXEC Privilege mode.
neighbors {ip-address | peer-group-name} timers keepalive holdtime – keepalive: the range is from 1 to 65535. Time interval, in seconds, between keepalive messages sent to the neighbor routers. The default is 60 seconds. • – holdtime: the range is from 3 to 65536. Time interval, in seconds, between the last keepalive message and declaring the router dead. The default is 180 seconds. Configure timer values for all neighbors.
neighbor {ip-address | peer-group-name} soft-reconfiguration inbound BGP stores all the updates received by the neighbor but does not reset the peer-session. Entering this command starts the storage of updates, which is required to do inbound soft reconfiguration. Outbound BGP soft reconfiguration does not require inbound soft reconfiguration to be enabled. Example of Soft-Reconfigration of a BGP Neighbor The example enables inbound soft reconfiguration for the neighbor 10.108.1.1.
The default is IPv4 Unicast routes. When you configure a peer to support IPv4 multicast, Dell Networking OS takes the following actions: • Send a capacity advertisement to the peer in the BGP Open message specifying IPv4 multicast as a supported AFI/SAFI (Subsequent Address Family Identifier). • If the corresponding capability is received in the peer’s Open message, BGP marks the peer as supporting the AFI/SAFI.
• View information about BGP notifications received from or sent to neighbors. EXEC Privilege mode • debug ip bgp [ip-address | peer-group peer-group-name] notifications [in | out] View information about BGP updates and filter by prefix name. EXEC Privilege mode • debug ip bgp [ip-address | peer-group peer-group-name] updates [in | out] [prefix-list name] Enable soft-reconfiguration debug.
Prefixes accepted 1 (consume 4 bytes), 0 withdrawn by peer Prefixes advertised 0, rejected 0, 0 withdrawn from peer Connections established 3; dropped 2 Last reset 00:00:12, due to Missing well known attribute Notification History 'UPDATE error/Missing well-known attr' Sent : 1 Recv: 0 'Connection Reset' Sent : 1 Recv: 0 Last notification (len 21) sent 00:26:02 ago ffffffff ffffffff ffffffff ffffffff 00160303 03010000 Last notification (len 21) received 00:26:20 ago ffffffff ffffffff ffffffff ffffffff 00150
PDU[2] : len 19, captured 00:34:51 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[3] : len 19, captured 00:34:50 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[4] : len 19, captured 00:34:20 ago ffffffff ffffffff ffffffff ffffffff 00130400 [. . .] The following example shows how to view space requirements for storing all the PDUs. With full internet feed (205K) captured, approximately 11.8MB is required to store all of the PDUs. Dell(conf-router_bgp)#do show capture bgp-pdu neighbor 172.30.1.
Example of Enabling BGP (Router 1) R1# conf R1(conf)#int loop 0 R1(conf-if-lo-0)#ip address 192.168.128.1/24 R1(conf-if-lo-0)#no shutdown R1(conf-if-lo-0)#show config ! interface Loopback 0 ip address 192.168.128.1/24 no shutdown R1(conf-if-lo-0)#int te 1/21/1 R1(conf-if-te-1/21/1)#ip address 10.0.1.21/24 R1(conf-if-te-1/21/1)#no shutdown R1(conf-if-te-1/21/1)#show config ! interface TengigabitEthernet 1/21/1 ip address 10.0.1.
R1(conf-router_bgp)#show config ! router bgp 99 network 192.168.128.0/24 neighbor 192.168.128.2 remote-as 99 neighbor 192.168.128.2 update-source Loopback 0 neighbor 192.168.128.2 no shutdown neighbor 192.168.128.3 remote-as 100 neighbor 192.168.128.3 update-source Loopback 0 neighbor 192 168 128 3 no shutdown Example of Enabling BGP (Router 2) R2# conf R2(conf)#int loop 0 R2(conf-if-lo-0)#ip address 192.168.128.
R3(conf-if-lo-0)#int te 3/21/1 R3(conf-if-te-3/21/1)#ip address 10.0.2.3/24 R3(conf-if-te-3/21/1)#no shutdown R3(conf-if-te-3/21/1)#show config ! interface TengigabitEthernet 3/21/1 ip address 10.0.2.3/24 no shutdown R3(conf-if-te-3/21/1)# R3(conf-if-te-3/21/1)#router bgp 100 R3(conf-router_bgp)#show config ! router bgp 100 R3(conf-router_bgp)#network 192.168.128.0/24 R3(conf-router_bgp)#neighbor 192.168.128.1 remote 99 R3(conf-router_bgp)#neighbor 192.168.128.1 no shut R3(conf-router_bgp)#neighbor 192.168.
BGP table version 1, neighbor version 1 Prefixes accepted 1 (consume 4 bytes), withdrawn 0 by peer Prefixes advertised 1, denied 0, withdrawn 0 from peer Connections established 2; dropped 1 Last reset 00:00:57, due to user reset Notification History 'Connection Reset' Sent : 1 Recv: 0 Last notification (len 21) sent 00:00:57 ago ffffffff ffffffff ffffffff ffffffff 00150306 00000000 Local host: 192.168.128.1, Local port: 179 Foreign host: 192.168.128.2, Foreign port: 65464 BGP neighbor is 192.168.128.
R3(conf-router_bgp)# neighbor AAA peer-group R3(conf-router_bgp)# neighbor AAA no shutdown R3(conf-router_bgp)# neighbor CCC peer-group R3(conf-router_bgp)# neighbor CCC no shutdown R3(conf-router_bgp)# neighbor 192.168.128.2 peer-group BBB R3(conf-router_bgp)# neighbor 192.168.128.2 no shutdown R3(conf-router_bgp)# neighbor 192.168.128.1 peer-group BBB R3(conf-router_bgp)# neighbor 192.168.128.1 no shutdown R3(conf-router_bgp)# R3(conf-router_bgp)#end R3#show ip bgp summary BGP router identifier 192.168.
9 Content Addressable Memory (CAM) CAM is a type of memory that stores information in the form of a lookup table. On Dell Networking systems, CAM stores Layer 2 (L2) and Layer 3 (L3) forwarding information, access-lists (ACLs), flows, and routing policies. CAM Allocation CAM Allocation for Ingress To allocate the space for regions such has L2 ingress ACL, IPV4 ingress ACL, IPV6 ingress ACL, IPV4 QoS, L2 QoS, PBR, VRF ACL, and so forth, use the cam-acl command in CONFIGURATION mode.
NOTE: When you reconfigure CAM allocation, use the nlbclusteracl number command to change the number of NLB ARP entries. The range is from 0 to 2. The default value is 0. At the default value of 0, eight NLB ARP entries are available for use. This platform supports upto 512 CAM entries. Select 1 to configure 256 entries. Select 2 to configure 1024 entries.
NOTE: If you do not enter the allocation values for the CAM regions, the value is 0. 3 Execute write memory and verify that the new settings are written to the CAM on the next boot. EXEC Privilege mode show cam-acl 4 Reload the system. EXEC Privilege mode reload Test CAM Usage To determine whether sufficient CAM space is available to enable a service-policy, use the test-cam-usage command.
cam-profile default microcode default Dell# View CAM-ACL Settings The show cam-acl command shows the cam-acl setting that will be loaded after the next reload.
L2PT IpMacAcl VmanQos VmanDualQos EcfmAcl FcoeAcl iscsiOptAcl ipv4pbr vrfv4Acl Openflow fedgovacl : : : : : : : : : : : 0 0 0 0 0 0 0 0 0 0 0 -- Stack unit 0 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDualQos : 0 EcfmAcl : 0 FcoeAcl : 0 iscsiOptAcl : 0 ipv4pbr : 0 vrfv4Acl : 0 Openflow : 0 fedgovacl : 0 -- Stack unit 7 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv
| | | | | | Codes: * - cam usage Dell# OUT-L3 ACL | OUT-V6 ACL | OUT-L2 ACL | is above 90%. 158 158 206 | | | 5 | 0 | 7 | 153 158 199 CAM Optimization When you enable the CAM optimization, if a Policy Map containing classification rules (ACL and/or DSCP/ ip-precedence rules) is applied to more than one physical interface on the same port-pipe, only a single copy of the policy is written (only one FP entry is used). When you disable this command, the system behaves as described in this chapter.
Syslog Warning Upon 90 Percent Utilization of CAM CAM utilization includes both the L3_DEFIP and L3_DEFIP_PAIR_128 table entries to calculate the utilization. Syslog Warning for Discrepancies Between Configured Extended Prefixes An error message is displayed if the number of extended prefix entries is different from the configured value during bootup.
show hardware forwarding-table mode Dell#show hardware forwarding-table mode Mode L2 MAC Entries L3 Host Entries L3 Route Entries : : : : Current Settings Default 160K 144K 16K Next Boot Settings scaled-l3-routes 32K 16K 128K Dell# Content Addressable Memory (CAM) 213
10 Control Plane Policing (CoPP) Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level.
The following illustration shows an example of the difference between having CoPP implemented and not having CoPP implemented. Figure 26. Control Plane Policing Figure 27.
Configure Control Plane Policing The system can process a maximum of 4200 packets per second (PPS). Protocols that share a single queue may experience flaps if one of the protocols receives a high rate of control traffic even though per protocol CoPP is applied. This happens because queue-based rate limiting is applied first. For example, border gateway protocol (BGP) and internet control message protocol (ICMP) share same queue (Q6); Q6 has 400 PPS of bandwidth by default.
CONFIGURATION mode class-map match-any name cpu-qos match {ip | mac | ipv6} access-group name 6 Create a QoS input policy map to match to the class-map and qos-policy for each desired protocol. CONFIGURATION mode policy-map-input name cpu-qos class-map name qos-policy name 7 Enter Control Plane mode. CONFIGURATION mode control-plane-cpuqos 8 Assign the protocol based the service policy on the control plane.
Dell(conf-class-map-cpuqos)#match ip access-group bgp Dell(conf-class-map-cpuqos)#exit Dell(conf)#class-map match-any class_lacp cpu-qos Dell(conf-class-map-cpuqos)#match mac access-group lacp Dell(conf-class-map-cpuqos)#exit Dell(conf)#class-map match-any class-ipv6-icmp cpu-qos Dell(conf-class-map-cpuqos)#match ipv6 access-group ipv6-icmp Dell(conf-class-map-cpuqos)#exit The following example shows matching the QoS class map to the QoS policy.
Dell(conf)#qos-policy-input cpuq_2 Dell(conf-qos-policy-in)#rate-police 5000 80 peak 600 50 Dell(conf-qos-policy-in)#exit The following example shows assigning the QoS policy to the queues. Dell(conf)#policy-map-input cpuq_rate_policy cpu-qos Dell(conf-qos-policy-in)#service-queue 5 qos-policy cpuq_1 Dell(conf-qos-policy-in)#service-queue 6 qos-policy cpuq_2 Dell(conf-qos-policy-in)#service-queue 7 qos-policy cpuq_1 The following example shows creating the control plane service policy.
Example of Viewing Queue Mapping for MAC Protocols Dell#show mac protocol-queue-mapping Protocol Destination Mac EtherType Queue EgPort Rate (kbps) -------- -------------------------- ----- ------ ----------ARP any 0x0806 Q5/Q6 CP _ FRRP 01:01:e8:00:00:10/11 any Q7 CP _ LACP 01:80:c2:00:00:02 0x8809 Q7 CP _ LLDP any 0x88cc Q7 CP _ GVRP 01:80:c2:00:00:21 any Q7 CP _ STP 01:80:c2:00:00:00 any Q7 CP _ ISIS 01:80:c2:00:00:14/15 any Q7 CP _ 09:00:2b:00:00:04/05 any Q7 CP Dell# To view the queue mapping for IPv6
11 Data Center Bridging (DCB) Data center bridging (DCB) refers to a set of enhancements to Ethernet local area networks used in data center environments, particularly with clustering and storage area networks.
DCB results in reduced operational cost, simplified management, and easy scalability by avoiding the need to deploy separate application-specific networks. For example, instead of deploying an Ethernet network for LAN traffic, include additional storage area networks (SANs) to ensure lossless Fibre Channel traffic, and a separate InfiniBand network for high-performance inter-processor computing within server clusters, only one DCB-enabled network is required in a data center.
The following illustration shows how PFC handles traffic congestion by pausing the transmission of incoming traffic with dot1p priority 4. Figure 28. Illustration of Traffic Congestion The system supports loading two DCB_Config files: • • FCoE converged traffic with priority 3. iSCSI storage traffic with priority 4. In the Dell Networking OS, PFC is implemented as follows: • • • • • • • • • • • • PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface.
its required bandwidth. For example, you can prioritize low-latency storage or server cluster traffic in a traffic class to receive more bandwidth and restrict best-effort LAN traffic assigned to a different traffic class. NOTE: Use the following command to enable etsacl: cam-acl l2acl 2 ipv4acl 2 ipv6acl 0 ipv4qos 0 l2qos 0 l2pt 0 ipmacacl 0 vman-qos 0 fcoeacl 2 etsacl 3. After executing this command, you must save the configuration and then reload the system.
• Configuration of a peer device over a DCB link. DCBx requires the link layer discovery protocol (LLDP) to provide the path to exchange DCB parameters with peer devices. Exchanged parameters are sent in organizationally specific TLVs in LLDP data units. The following LLDP TLVs are supported for DCB parameter exchange: PFC parameters PFC Configuration TLV and Application Priority Configuration TLV. ETS parameters ETS Configuration TLV and ETS Recommendation TLV.
To enable DCB with PFC buffers on a switch, enter the following commands, save the configuration, and reboot the system to allow the changes to take effect. 1 Enable DCB. CONFIGURATION mode dcb enable 2 Set PFC buffering on the DCB stack unit. CONFIGURATION mode Dell(conf)#dcb enable pfc-queues NOTE: To save the pfc buffering configuration changes, save the configuration and reboot the system.
• To change the ETS bandwidth allocation configured for a priority group in a DCB map, do not modify the existing DCB map configuration. Instead, first create a new DCB map with the desired PFC and ETS settings, and apply the new map to the interfaces to override the previous DCB map settings. Then, delete the original dot1p priority-priority group mapping.
Committed and peak bandwidth is in megabits per second. The range is from 0 to 40000. Committed and peak burst size is in kilobytes. Default is 50. The range is from 0 to 10000. The pfc on command enables priority-based flow control. 3 Specify the dot1p priority-to-priority group mapping for each priority. priority-pgid dot1p0_group_num dot1p1_group_num ...dot1p7_group_num Priority group range is from 0 to 7. All priorities that map to the same queue must be in the same priority group.
interface type slot/port/subport 2 Configure the port queues that will still function as no-drop queues for lossless traffic. INTERFACE mode pfc no-drop queues queue-range For the dot1p-queue assignments, refer to the dot1p Priority-Queue Assignment table. The maximum number of lossless queues globally supported on the switch is two. The range is from 0 to 7. Separate the queue values with a comma; specify a priority range with a dash; for example, pfc no-drop queues 1,7 or pfc no-drop queues 2-7.
Configuring PFC in a DCB Map A switch supports the use of a DCB map in which you configure priority-based flow control (PFC) setting. To configure PFC parameters, you must apply a DCB map on an interface. PFC Configuration Notes PFC provides flow control based on the 802.1p priorities in a converged Ethernet traffic that is received on an interface and is enabled by default when you enable DCB.
• Dell Networking OS allows you to change the default dot1p priority-queue assignments only if the change satisfies the following requirements in DCB maps already applied to the interfaces: • All 802.1p priorities mapped to the same queue must be in the same priority group. • A maximum of two PFC-enabled, lossless queues are supported on an interface. Otherwise, the reconfiguration of a default dot1p-queue assignment is rejected.
Configuring PFC without a DCB Map In a network topology that uses the default ETS bandwidth allocation (assigns equal bandwidth to each priority), you can also enable PFC for specific dot1p-priorities on individual interfaces without using a DCB map. This type of DCB configuration is useful on interfaces that require PFC for lossless traffic, but do not transmit converged Ethernet traffic. Table 15.
Refer the following configuration for queue to dot1p mapping: Dell(conf)#do show qos dot1p-queue-mapping Dot1p Priority : 0 1 2 3 4 5 6 7 -> On ingress interfaces[Port A and C] we used the PFC on priority level. Queue : 0 0 0 1 2 3 3 3 -> On Egress interface[Port B] we used no-drop queues. Lossless traffic egresses out the no-drop queues. Ingress 802.1p traffic from PFC-enabled peers is automatically mapped to the no-drop egress queues.
Priority-Based Flow Control Using Dynamic Buffer Method In a data center network, priority-based flow control (PFC) manages large bursts of one traffic type in multiprotocol links so that it does not affect other traffic types and no frames are lost due to congestion. When PFC detects congestion on a queue for a specified priority, it sends a pause frame for the 802.1p priority traffic to the transmitting device.
Behavior of Tagged Packets The below is example for enabling PFC for priority 2 for tagged packets. Priority (Packet Dot1p) 2 will be mapped to PG6 on PRIO2PG setting. All other Priorities for which PFC is not enabled are mapped to default PG – PG7. Classification rules on ingress (Ingress FP CAM region) matches incoming packet-dot1p and assigns an internal priority (to select queue as per Table 1 and Table 2).
b Apply PFC Priority configuration. Configure priorities on which PFC is enabled. Dell(conf-if-te-1/1/1)#pfc priority 1,2 SNMP Support for PFC and Buffer Statistics Tracking Buffer Statistics Tracking (BST) feature provides a mechanism to aid in Resource Monitoring and Tuning of Buffer Allocation. The Max Use Count mode provides the maximum value of the counters accumulated over a period of time.
these mappings are identical. This section discusses the Dell Networking OS configurations needed for above PFC generation and honoring mechanism to work for the untagged packets. PRIORITY to PG mapping (PRIO2PG) is on the ingress for each port. By default, all priorities are mapped to PG7. A priority for which PFC has to be generated is assigned to a PG other than PG7 (say PG6) and buffer watermark is set on PG6 so as to generate PFC.
The packets that come in with packet-dot1p 2 alone will use Q1 (as per dot1p to Queue classification – Table 2) on the egress port. • When Peer sends a PFC message for Priority 2, based on above PRIO2COS table (TABLE 2), Queue 1 is halted. • Queue 1 starts buffering the packets with Dot1p 2. This causes PG6 buffer counter to increase on the ingress, since P-dot1p 2 is mapped to PG6. • As the PG6 watermark threshold is reached, PFC will be generated for dot1p 2.
The range for priority group is from 0 to 7. Set the bandwidth in percentage. The percentage range is from 1 to 100% in units of 1%. Committed and peak bandwidth is in megabits per second. The range is from 0 to 40000. Committed and peak burst size is in kilobytes. Default is 50. The range is from 0 to 10000. 3 Configure the 802.1p priorities for the traffic on which you want to apply an ETS output policy. PRIORITY-GROUP mode priority-list value The range is from 0 to 7. The default is none.
• ETS configurations received from TLVs from a peer are validated. • If there is a hardware limitation or TLV error: – DCBx operation on an ETS port goes down. – New ETS configurations are ignored and existing ETS configurations are reset to the default ETS settings. • ETS operates with legacy DCBx versions as follows: – In the CEE version, the priority group/traffic class group (TCG) ID 15 represents a non-ETS priority group.
Configuring ETS in a DCB Map A switch supports the use of a DCB map in which you configure enhanced transmission selection (ETS) setting. To configure ETS parameters, you must apply a DCB map on an interface. ETS Configuration Notes ETS provides a way to optimize bandwidth allocation to outbound 802.1p classes of converged Ethernet traffic. Different traffic types have different service needs. Using ETS, you can create groups within an 802.
The following prerequisites and restrictions apply when you configure ETS bandwidth allocation or strict-priority queuing in a DCB map: • When allocating bandwidth or configuring strict-priority queuing for dot1p priorities in a priority group on a DCBx CIN interface, take into account the CIN bandwidth allocation (see Configuring Bandwidth Allocation for DCBx CIN) and dot1pqueue mapping.
Therefore, in this example, scheduling traffic to priority group 1 (mapped to one strict-priority queue) takes precedence over scheduling traffic to priority group 3 (mapped to two strict-priority queues).
DCBx Port Roles To enable the auto-configuration of DCBx-enabled ports and propagate DCB configurations learned from peer DCBx devices internally to other switch ports, use the following DCBx port roles. Auto-upstream The port advertises its own configuration to DCBx peers and is willing to receive peer configuration. The port also propagates its configuration to other ports on the switch. The first auto-upstream that is capable of receiving a peer configuration is elected as the configuration source.
to peer devices but do not accept or propagate internal or external configurations. Unlike other userconfigured ports, the configuration of DCBx ports in Manual mode is saved in the running configuration. On a DCBx port in a manual role, all PFC, application priority, ETS recommend, and ETS configuration TLVs are enabled.
– The port has performed a DCBx exchange with a DCBx peer. – The switch is capable of supporting the received DCB configuration values through either a symmetric or asymmetric parameter exchange. A newly elected configuration source propagates configuration changes received from a peer to the other auto-configuration ports. Ports receiving auto-configuration information from the configuration source ignore their current settings and use the configuration source information.
DCBx Example The following figure shows how to use DCBx. The external 40GbE 40GbE ports on the base module (ports 33 and 37) of two switches are used for uplinks configured as DCBx auto-upstream ports. The device is connected to third-party, top-of-rack (ToR) switches through 40GbE uplinks. The ToR switches are part of a Fibre Channel storage network. The internal ports (ports 1-32) connected to the 10GbE backplane are configured as auto-downstream ports. Figure 31.
CONFIGURATION mode interface type slot/port/subport 2 Enter LLDP Configuration mode to enable DCBx operation. INTERFACE mode [no] protocol lldp 3 Configure the DCBx version used on the interface, where: auto configures the port to operate using the DCBx version received from a peer. PROTOCOL LLDP mode [no] DCBx version {auto | cee | cin | ieee-v2.5} • cee: configures the port to use CEE (Intel 1.01). • cin: configures the port to use Cisco-Intel-Nuova (DCBx 1.0). • ieee-v2.
NOTE: To disable TLV transmission, use the no form of the command; for example, no advertise DCBx-appln-tlv iscsi. For information about how to use iSCSI, refer to iSCSI Optimization To verify the DCBx configuration on a port, use the show interface DCBx detail command. Configuring DCBx Globally on the Switch To globally configure the DCBx operation on a switch, follow these steps. 1 Enter Global Configuration mode. EXEC PRIVILEGE mode configure 2 Enter LLDP Configuration mode to enable DCBx operation.
NOTE: To disable TLV transmission, use the no form of the command; for example, no advertise DCBx-appln-tlv iscsi. 6 Configure the FCoE priority advertised for the FCoE protocol in Application Priority TLVs. PROTOCOL LLDP mode [no] fcoe priority-bits priority-bitmap The priority-bitmap range is from 1 to FF. The default is 0x8. 7 Configure the iSCSI priority advertised for the iSCSI protocol in Application Priority TLVs.
Verifying the DCB Configuration To display DCB configurations, use the following show commands. Table 20. Displaying DCB Configurations Command Output show qos dot1p-queue mapping Displays the current 802.1p priority-queue mapping. show dcb [stack-unit unit-number] Displays the data center bridging status, number of PFCenabled ports, and number of PFC-enabled queues. On the master switch in a stack, you can specify a stack-unit number. The range is from 0 to 5.
The following example shows the output of the show qos dcb-map test command. Dell#show qos dcb-map test ----------------------State :Complete PfcMode:ON -------------------PG:0 TSA:ETS BW:50 PFC:OFF Priorities:0 1 2 5 6 7 PG:1 TSA:ETS BW:50 Priorities:3 4 PFC:ON The following example shows the show interfaces pfc summary command.
Table 21. show interface pfc summary Command Description Fields Description Interface Interface type with stack-unit and port number. Admin mode is on; Admin is enabled PFC Admin mode is on or off with a list of the configured PFC priorities . When PFC admin mode is on, PFC advertisements are enabled to be sent and received from peers; received PFC configuration takes effect. The admin operational status for a DCBx exchange of PFC configuration is enabled or disabled.
Fields Description PFC TLV Statistics: Output TLV pkts Number of PFC TLVs transmitted. PFC TLV Statistics: Error pkts Number of PFC error packets received. PFC TLV Statistics: Pause Tx pkts Number of PFC pause frames transmitted. PFC TLV Statistics: Pause Rx pkts Number of PFC pause frames received The following example shows the show interface pfc statistics command.
ETS DCBX Oper status is Down Reason: Port Shutdown State Machine Type is Asymmetric Conf TLV Tx Status is enabled Reco TLV Tx Status is enabled The following example shows the show interface ets detail command.
Table 22. show interface ets detail Command Description Field Description Interface Interface type with stack-unit and port number. Maximum Supported TC Group Maximum number of priority groups supported. Number of Traffic Classes Number of 802.1p priorities currently configured. Admin mode ETS mode: on or off. Admin Parameters ETS configuration on local port, including priority groups, assigned dot1p priorities, and bandwidth allocation.
Local is enabled, Priority list is 4-5 Link Delay 45556 pause quantum 0 Pause Tx pkts, 0 Pause Rx pkts The following example shows the show stack-unit all stack-ports all ets details command.
The following example shows the show interface DCBx detail command (legacy CEE).
Field Description Peer Operating version DCBx version that the peer uses to exchange DCB parameters. Local DCBx TLVs Transmitted Transmission status (enabled or disabled) of advertised DCB TLVs (see TLV code at the top of the show command output). Local DCBx Status: DCBx Operational Version DCBx version advertised in Control TLVs. Local DCBx Status: DCBx Max Version Supported Highest DCBx version supported in Control TLVs.
Configuring the Dynamic Buffer Method Priority-based flow control using dynamic buffer spaces is supported on the switch. To configure the dynamic buffer capability, perform the following steps: 1 Enable the DCB application. By default, DCB is enabled and link-level flow control is disabled on all interfaces. CONFIGURATION mode dcb enable 2 Configure the shared PFC buffer size and the total buffer size. A maximum of 4 lossless queues are supported.
Sample DCB Configuration The following shows examples of using PFC and ETS to manage your data center traffic. In the following example: • Incoming SAN traffic is configured for priority-based flow control. • Outbound LAN, IPC, and SAN traffic is mapped into three ETS priority groups and configured for enhanced traffic selection (bandwidth allocation and scheduling). • One lossless queue is used. Figure 32.
dot1p Value in the Incoming Frame Priority Group Assignment 0 LAN 1 LAN 2 LAN 3 SAN 4 IPC 5 LAN 6 LAN 7 LAN The following describes the priority group-bandwidth assignment. Priority Group Bandwidth Assignment IPC 5% SAN 50% LAN 45% PFC and ETS Configuration Command Examples The following examples show PFC and ETS configuration commands to manage your data center traffic. 1. Enabling DCB Dell(conf)#dcb enable 2.
12 Dynamic Host Configuration Protocol (DHCP) DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on configuration policies determined by network administrators.
The following table lists common DHCP options. Option Number and Description Subnet Mask Option 1 Specifies the client’s subnet mask. Router Option 3 Specifies the router IP addresses that may serve as the client’s default gateway. Domain Name Server Option 6 Domain Name Option 15 Specifies the domain name servers (DNSs) that are available to the client. Specifies the domain name that clients should use when resolving hostnames via DNS.
Option Number and Description User Port Stacking Option 230 Set the stacking option variable to provide DHCP server stack-port detail when the DHCP offer is set. End Option 255 Signals the last option in the DHCP packet. Assign an IP Address using DHCP The following section describes DHCP and the client in a network. When a client joins a network: 1. The client initially broadcasts a DHCPDISCOVER message on the subnet to discover available DHCP servers.
DHCPNAK A server sends this message to the client if it is not able to fulfill a DHCPREQUEST; for example, if the requested address is already in use. In this case, the client starts the configuration process over by sending a DHCPDISCOVER. Figure 34. Client and Server Messaging Implementation Information The following describes DHCP implementation. • Dell Networking implements DHCP based on RFC 2131 and RFC 3046.
Table 24. DHCP Server Responsibilities DHCP Server Responsibilities Description Address Storage and Management DHCP servers are the owners of the addresses used by DHCP clients.The server stores the addresses and manages their use, keeping track of which addresses have been allocated and which are still available. Configuration Parameter Storage and Management DHCP servers also store and maintain other parameters that are sent to clients when requested.
Configuration Tasks To configure DHCP, an administrator must first set up a DHCP server and provide it with configuration parameters and policy information including IP address ranges, lease length specifications, and configuration data that DHCP hosts need. Configuring the Dell system to be a DHCP server is a three-step process: 1. Configuring the Server for Automatic Address Allocation 2.
Configure a Method of Hostname Resolution Dell systems are capable of providing DHCP clients with parameters for two methods of hostname resolution—using DNS or NetBIOS WINS. Using DNS for Address Resolution A domain is a group of networks. DHCP clients query DNS IP servers when they need to correlate host names to IP addresses. 1 Create a domain. DHCP domain-name name 2 Specify in order of preference the DNS servers that are available to a DHCP client.
DHCP host address 3 Specify the client hardware address. DHCP hardware-address hardware-address type • hardware-address: the client MAC address. • type: the protocol of the hardware platform. The default protocol is Ethernet. Debugging the DHCP Server To debug the DHCP server, use the following command. • Display debug information for DHCP server.
and apply the Dell Networking OS image and startup configuration stored in the local flash, enter the stop bmp command from the console.
Dynamically assigned IP addresses can be released without removing the DHCP client operation on the interface on a switch configured as a DHCP client. 3 Manually acquire a new IP address from the DHCP server by releasing a dynamically acquired IP address while retaining the DHCP client configuration on the interface. EXEC Privilege mode release dhcp interface type slot/port[/subport] 4 Acquire a new IP address with renewed lease time from a DHCP server.
DHCP Client Operation with Other Features The DHCP client operates with other Dell Networking OS features, as the following describes. Stacking The DHCP client daemon runs only on the master unit and handles all DHCP packet transactions. It periodically synchronizes the lease file with the standby unit. When a stack failover occurs, the new master requires the same DHCP server-assigned IP address on DHCP client interfaces.
Configure the System for User Port Stacking (Option 230) Set the stacking-option variable to provide stack-port detail on the DHCP server when you set the DHCP offer. A stack can be formed when the units are connected. Option 230 is the option for user port stacking. Use it to create up to eight stack groups. Define the configuration parameters on the DHCP server for each chassis based on the chassis MAC address.
• For routers between the relay agent and the DHCP server, enter the trust-downstream option. Manually reset the remote ID for Option 82. CONFIGURATION mode ip dhcp relay information-option remote-id DHCP Snooping DHCP snooping protects networks from spoofing. In the context of DHCP snooping, ports are either trusted or not trusted. By default, all ports are not trusted. Trusted ports are ports through which attackers cannot connect.
Enabling IPv6 DHCP Snooping To enable IPv6 DHCP snooping, use the following commands. 1 Enable IPv6 DHCP snooping globally. CONFIGURATION mode ipv6 dhcp snooping 2 Specify ports connected to IPv6 DHCP servers as trusted. INTERFACE mode ipv6 dhcp snooping trust 3 Enable IPv6 DHCP snooping on a VLAN or range of VLANs. CONFIGURATION mode ipv6 dhcp snooping vlan vlan-id Adding a Static Entry in the Binding Table To add a static entry in the binding table, use the following command.
clear ipv6 dhcp snooping binding Dell# clear ipv6 dhcp snooping? binding Clear the snooping binding database Displaying the Contents of the Binding Table To display the contents of the binding table, use the following command. • Display the contents of the binding table. EXEC Privilege mode show ip dhcp snooping Example of the show ip dhcp snooping Command View the DHCP snooping statistics with the show ip dhcp snooping command.
Debugging the IPv6 DHCP To debug the IPv6 DHCP, use the following command. • Display debug information for IPV6 DHCP. EXEC Privilege mode debug ipv6 dhcp IPv6 DHCP Snooping MAC-Address Verification Configure to enable verify source mac-address in the DHCP packet against the mac address stored in the snooping binding table. • Enable IPV6 DHCP snooping .
A spoofed ARP message is one in which the MAC address in the sender hardware address field and the IP address in the sender protocol field are strategically chosen by the attacker. For example, in an MITM attack, the attacker sends a client an ARP message containing the attacker’s MAC address and the gateway’s IP address. The client then thinks that the attacker is the gateway, and sends all internet-bound packets to it.
Internet Dell# 10.1.1.254 - 00:00:4d:69:e8:f2 Te 1/5/1 Vl 10 CP To see how many valid and invalid ARP packets have been processed, use the show arp inspection statistics command.
port and the system drops the packet. If the IP address is fake, the address is not on the list of permissible addresses for the port and the packet is dropped. Similarly, if the IP address does not belong to the permissible VLAN, the packet is dropped. To enable IP source address validation, use the following command.
INTERFACE mode ip dhcp source-address-validation ipmac • Enable IP+MAC SAV with VLAN option. INTERFACE mode ip dhcp source-address-validation ipmac vlan vlan-id Dell Networking OS creates an ACL entry for each IP+MAC address pair and optionally with its VLAN ID in the binding table and applies it to the interface. To display the IP+MAC ACL for an interface for the entire system, use the show ip dhcp snooping source-addressvalidation [interface] command in EXEC Privilege mode.
13 Equal Cost Multi-Path (ECMP) This chapter describes configuring ECMP. This chapter describes configuring ECMP. ECMP for Flow-Based Affinity ECMP for flow-based affinity includes link bundle monitoring. Configuring the Hash Algorithm TeraScale has one algorithm that is used for link aggregation groups (LAGs), ECMP, and NH-ECMP, and ExaScale can use three different algorithms for each of these features. To adjust the ExaScale behavior to match TeraScale, use the following command.
Configuring the Hash Algorithm Seed Deterministic ECMP sorts ECMPs in order even though RTM provides them in a random order. However, the hash algorithm uses as a seed the lower 12 bits of the chassis MAC, which yields a different hash result for every chassis. This behavior means that for a given flow, even though the prefixes are sorted, two unrelated chassis can select different hops.
Te 1/1/1 Te 1/1/1 Up Up 36 52 Managing ECMP Group Paths To avoid path degeneration, configure the maximum number of paths for an ECMP route that the L3 CAM can hold. When you do not configure the maximum number of routes, the CAM can hold a maximum ECMP per route. To configure the maximum number of paths, use the following command. NOTE: For the new settings to take effect, save the new ECMP settings to the startup-config (write-mem) then reload the system.
link-bundle-distribution trigger-threshold {percent} The range is from 1 to 90%. • The default is 60%. Display details for an ECMP group bundle. EXEC mode show link-bundle-distribution ecmp-group ecmp-group-id The range is from 1 to 64. Viewing an ECMP Group NOTE: An ecmp-group index is generated automatically for each unique ecmp-group when you configure multipath routes to the same network. The system can generate a maximum of 512 unique ecmp-groups.
Support for ECMP in host table ECMP support in the L3 host table is available on the system. IPv6 /128 prefix route entries and IPv4 /32 prefix entries which are moved to host table can have ECMP. For other platforms, only the IPv6 /128 prefix route entries is stored in the L3 host table without ECMP support. The software supports a command to program IPv6 /128 route prefixes in the host table. The output of show IPv6 cam command has been enhanced to include the ECMP field in the Neighbor table of Ipv6 CAM.
14 FIP Snooping The Fibre Channel over Ethernet (FCoE) Transit feature is supported on Ethernet interfaces. When you enable the switch for FCoE transit, the switch functions as a FIP snooping bridge. NOTE: FIP snooping is not supported on Fibre Channel interfaces or in a switch stack.
FIP enables FCoE devices to discover one another, initialize and maintain virtual links over an Ethernet network, and access storage devices in a storage area network (SAN). FIP satisfies the Fibre Channel requirement for point-to-point connections by creating a unique virtual link for each connection between an FCoE end-device and an FCF via a transit switch. FIP provides functionality for discovering and logging into an FCF.
FIP Snooping on Ethernet Bridges In a converged Ethernet network, intermediate Ethernet bridges can snoop on FIP packets during the login process on an FCF. Then, using ACLs, a transit bridge can permit only authorized FCoE traffic to be transmitted between an FCoE end-device and an FCF. An Ethernet bridge that provides these functions is called a FIP snooping bridge (FSB). On a FIP snooping bridge, ACLs are created dynamically as FIP login frames are processed.
The following illustration shows a switch used as a FIP snooping bridge in a converged Ethernet network. The top-of-rack (ToR) switch operates as an FCF for FCoE traffic. The switch operates as a lossless FIP snooping bridge to transparently forward FCoE frames between the ENode servers and the FCF switch. Figure 36. FIP Snooping on a Dell Networking Switch The following sections describe how to configure the FIP snooping feature on a switch: • Allocate CAM resources for FCoE.
Using FIP Snooping There are four steps to configure FCoE transit. 1. Enable the FCoE transit feature on a switch. 2. Enable FIP snooping globally on all Virtual Local Area Networks (VLANs) or individual VLANs on a FIP snooping bridge. 3. Configure the FC-Map value applied globally by the switch on all VLANs or an individual VLAN. 4. Configure FCF mode for a FIP snooping bridge-to-FCF link. For a sample FIP snooping configuration, refer to FIP Snooping Configuration Example.
• You must apply the CAM-ACL space for the FCoE region before enabling the FIP-Snooping feature. If you do not apply CAM-ACL space, the following error message is displayed: Dell(conf)#feature fip-snooping % Error: Cannot enable fip snooping. CAM Region not allocated for Fcoe. Dell(conf)# NOTE: Manually add the CAM-ACL space to the FCoE region as it is not applied by default.
• A maximum of eight VLANS are supported for FIP snooping on the switch. When enabled globally, FIP snooping processes FIP packets in traffic only from the first eight incoming VLANs. When enabled on a per-VLAN basis, FIP snooping is supported on up to eight VLANs. Configure the FC-MAP Value You can configure the FC-MAP value to be applied globally by the switch on all or individual FCoE VLANs to authorize FCoE traffic.
Impact Description change occurs, the corresponding port-based ACLs are deleted. If a port is enabled for FIP snooping in ENode or FCF mode, the ENode/FCF MAC-based ACLs are deleted. FIP Snooping Restrictions The following restrictions apply when you configure FIP snooping. • The maximum number of FCoE VLANs supported on the switch is eight. • The maximum number of FIP snooping sessions supported per ENode server is 32.
Displaying FIP Snooping Information Use the following show commands to display information on FIP snooping. Table 28. Displaying FIP Snooping Information Command Output show fip-snooping sessions [interface vlan vlan-id] Displays information on FIP-snooped sessions on all VLANs or a specified VLAN, including the ENode interface and MAC address, the FCF interface and MAC address, VLAN ID, FCoE MAC address and FCoE session ID number (FC-ID), worldwide node name (WWNN) and the worldwide port name (WWPN).
Table 29. show fip-snooping sessions Command Description Field Description ENode MAC MAC address of the ENode . ENode Interface Slot/port number of the interface connected to the ENode. FCF MAC MAC address of the FCF. FCF Interface Slot/port number of the interface to which the FCF is connected. VLAN VLAN ID number used by the session. FCoE MAC MAC address of the FCoE session assigned by the FCF. FC-ID Fibre Channel ID assigned by the FCF. Port WWPN Worldwide port name of the CNA port.
Table 31. show fip-snooping fcf Command Description Field Description FCF MAC MAC address of the FCF. FCF Interface Slot/port number of the interface to which the FCF is connected. VLAN VLAN ID number used by the session. FC-MAP FC-Map value advertised by the FCF. ENode Interface Slot/port number of the interface connected to the ENode. FKA_ADV_PERIOD Period of time (in milliseconds) during which FIP keep-alive advertisements are transmitted.
The following example shows the show fip-snooping statistics port-channel command.
Field Description Number of FLOGI Rejects Number of FIP FLOGI reject frames received on the interface. Number of FDISC Accepts Number of FIP FDISC accept frames received on the interface. Number of FDISC Rejects Number of FIP FDISC reject frames received on the interface. Number of FLOGO Accepts Number of FIP FLOGO accept frames received on the interface. Number of FLOGO Rejects Number of FIP FLOGO reject frames received on the interface.
FCoE Transit Configuration Example The following illustration shows a switch used as a FIP snooping bridge for FCoE traffic between an ENode (server blade) and an FCF (ToR switch). The ToR switch operates as an FCF and FCoE gateway. Figure 37. Configuration Example: FIP Snooping on a Switch In this example, DCBx and PFC are enabled on the FIP snooping bridge and on the FCF ToR switch.
Example of Configuring the ENode Server-Facing Port Dell(conf)# interface tengigabitethernet 1/1/1 Dell(conf-if-te-1/1/1)# portmode hybrid Dell(conf-if-te-1/1/1)# switchport Dell(conf-if-te-1/1/1)# protocol lldp Dell(conf-if-te-1/1/1-lldp)# dcbx port-role auto-downstream NOTE: A port is enabled by default for bridge-ENode links.
15 Flex Hash and Optimized Boot-Up This chapter describes the Flex Hash and fast-boot enhancements. Topics: • Flex Hash Capability Overview • Configuring the Flex Hash Mechanism • Configuring Fast Boot and LACP Fast Switchover • Optimizing the Boot Time • Interoperation of Applications with Fast Boot and System States • RDMA Over Converged Ethernet (RoCE) Overview • Preserving 802.
When load balancing RRoCE packets using flex hash is enabled, the show ip flow command is disabled. Similarly, when the show ip flow command is in use (ingress port-based load balancing is disabled), the hashing of RRoCE packets is disabled. Flex hash APIs do not mask out unwanted byte values after extraction of the data from the Layer 4 headers for the offset value.
information (such as routes, adjacency settings) is learned and installed before the traffic resumes. In a typical network scenario, a traffic disconnection of 150 seconds or more usually occurs. When you employ the optimized booting functionality, the traffic outage duration is reduced drastically.
configure 96 ports to be 10-Gigabit Ethernet interfaces and 8 ports as 40-Gigabit Ethernet interfaces. You must configure the switch to operate with an uplink speed of 40 Gigabit Ethernet per second. Interoperation of Applications with Fast Boot and System States This functionality is supported on the platform.
BGP Graceful Restart When the system contains one or more BGP peerings configured for BGP graceful restart, fast boot performs the following actions: • A closure of the TCP sessions is performed on all sockets corresponding to BGP sessions on which Graceful Restart has been negotiated. This behavior is to force the peer to perform the helper role so that any routes advertised by the restarting system are retained and the peering session will not go down due to BGP Hold timeout.
Changes to BGP Multipath When the system becomes active after a fast-boot restart, a change has been made to the BGP multipath and ECMP behavior. The system delays the computation and installation of additional paths to a destination into the BGP routing information base (RIB) and forwarding table for a certain period of time.
For normal IP or data traffic that is not RRoCE-enabled, the packets comprise TCP and UDP packets and they can be marked with DSCP code points. Multicast is not supported in that network. RRoCE packets are received and transmitted on specific interfaces called lite-subinterfaces. These interfaces are similar to the normal Layer 3 physical interfaces except for the extra provisioning that they offer to enable the VLAN ID for encapsulation.
16 Force10 Resilient Ring Protocol (FRRP) FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses. FRRP is similar to what can be achieved with the spanning tree protocol (STP), though even with optimizations, STP can take up to 50 seconds to converge (depending on the size of network and node of failure) and may require 4 to 5 seconds to reconverge.
The Control VLAN is used to perform the health checks on the ring. The Control VLAN can always pass through all ports in the ring, including the secondary port of the Master node. Ring Status The ring failure notification and the ring status checks provide two ways to ensure the ring remains up and active in the event of a switch or port failure. Ring Checking At specified intervals, the Master node sends a ring health frame (RHF) through the ring.
Member VLAN Spanning Two Rings Connected by One Switch A member VLAN can span two rings interconnected by a common switch, in a figure-eight style topology. A switch can act as a Master node for one FRRP group and a Transit for another FRRP group, or it can be a Transit node for both rings. In the following example, FRRP 101 is a ring with its own Control VLAN, and FRRP 202 has its own Control VLAN running on another ring. A Member VLAN that spans both rings is added as a Member VLAN to both FRRP groups.
• The Master node transmits ring status check frames at specified intervals. • You can run multiple physical rings on the same switch. • One Master node per ring — all other nodes are Transit. • Each node has two member interfaces — primary and secondary. • There is no limit to the number of nodes on a ring. • Master node ring port states — blocking, pre-forwarding, forwarding, and disabled. • Transit node ring port states — blocking, pre-forwarding, forwarding, and disabled.
Concept Explanation Ring Health-Check The Master node generates two types of RHFs. RHFs never loop the ring because they terminate at the Frame (RHF) Master node’s secondary port. • Hello RHF (HRHF) — These frames are processed only on the Master node’s Secondary port. The Transit nodes pass the HRHF through without processing it. An HRHF is sent at every Hello interval. • Topology Change RHF (TCRHF) — These frames contains ring status, keepalive, and the control and member VLAN hash.
Ring ID: the range is from 1 to 255. Configuring the Control VLAN Control and member VLANS are configured normally for Layer 2. Their status as control or member is determined at the FRRP group commands. For more information about configuring VLANS in Layer 2 mode, refer to Layer 2. Be sure to follow these guidelines: • All VLANS must be in Layer 2 mode. • You can only add ring nodes to the VLAN. • A control VLAN can belong to one FRRP group only. • Tag control VLAN ports.
no disable Configuring and Adding the Member VLANs Control and member VLANS are configured normally for Layer 2. Their status as Control or Member is determined at the FRRP group commands. For more information about configuring VLANS in Layer 2 mode, refer to the Layer 2 chapter. Be sure to follow these guidelines: • All VLANS must be in Layer 2 mode. • Tag control VLAN ports. Member VLAN ports, except the Primary/Secondary interface, can be tagged or untagged.
Setting the FRRP Timers To set the FRRP timers, use the following command. NOTE: Set the Dead-Interval time 3 times the Hello-Interval. • Enter the desired intervals for Hello-Interval or Dead-Interval times. CONFIG-FRRP mode. timer {hello-interval|dead-interval} milliseconds – Hello-Interval: the range is from 50 to 2000, in increments of 50 (default is 500). – Dead-Interval: the range is from 50 to 6000, in increments of 50 (default is 1500).
Ring ID: the range is from 1 to 255. Troubleshooting FRRP To troubleshoot FRRP, use the following information. Configuration Checks • Each Control Ring must use a unique VLAN ID. • Only two interfaces on a switch can be Members of the same control VLAN. • There can be only one Master node for any FRRP group. • You can configure FRRP on Layer 2 interfaces only. • Spanning Tree (if you enable it globally) must be disabled on both Primary and Secondary interfaces when you enable FRRP.
tagged TenGigabitEthernet 1/14/1,11/1 no shutdown ! interface Vlan 201 no ip address tagged TenGigabitEthernet 1/14/1,11/1 no shutdown ! protocol frrp 101 interface primary TenGigabitEthernet 1/14/1 secondary TenGigabitEthernet 1/11/1 control-vlan 101 member-vlan 201 mode transit no disable Example of R3 TRANSIT interface TenGigabitEthernet 1/14/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 1/21/1 no ip address switchport no shutdown ! interface Vlan 101 no ip address tagged TenGiga
17 GARP VLAN Registration Protocol (GVRP) The generic attribute registration protocol (GARP) VLAN registration protocol (GVRP), defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches. GVRP-compliant switches use GARP to register and de-register attribute values, such as VLAN IDs, with each other.
Configure GVRP To begin, enable GVRP. To facilitate GVRP communications, enable GVRP globally on each switch. Then, GVRP configuration is per interface on a switch-by-switch basis. Enable GVRP on each port that connects to a switch where you want GVRP information exchanged. In the following example, GVRP is configured on VLAN trunk ports. Figure 39. Global GVRP Configuration Example Basic GVRP configuration is a two-step process: 1. Enabling GVRP Globally 2.
• Enable GVRP for the entire switch. CONFIGURATION mode gvrp enable Example of Configuring GVRP Dell(conf)#protocol gvrp Dell(config-gvrp)#no disable Dell(config-gvrp)#show config ! protocol gvrp no disable Dell(config-gvrp)# To inspect the global configuration, use the show gvrp brief command. Enabling GVRP on a Layer 2 Interface To enable GVRP on a Layer 2 interface, use the following command. • Enable GVRP on a Layer 2 interface.
interface TenGigabitEthernet 1/21/1 no ip address switchport gvrp enable gvrp registration fixed 34-35 gvrp registration forbidden 45-46 no shutdown Dell(conf-if-te-1/21/1)# Configure a GARP Timer Set GARP timers to the same values on all devices that are exchanging information using GVRP. There are three GARP timer settings. • Join — A GARP device reliably transmits Join messages to other devices by sending each Join message two times.
18 Internet Group Management Protocol (IGMP) Internet group management protocol (IGMP) is a Layer 3 multicast protocol that hosts use to join or leave a multicast group. Multicast is premised on identifying many hosts by a single destination IP address; hosts represented by the same IP address are a multicast group. Multicast routing protocols (such as protocol-independent multicast [PIM]) use the information in IGMP messages to discover which groups are active and to populate the multicast routing table.
time. A host joins and leaves a multicast group by sending an IGMP message to its IGMP Querier. The querier is the router that surveys a subnet for multicast receivers and processes survey responses to populate the multicast routing table. IGMP messages are encapsulated in IP packets, as shown in the following illustration. Figure 40.
period and sends another query. If it still receives no response, the querier removes the group from the list associated with forwarding port and stops forwarding traffic for that group to the subnet. IGMP Version 3 Conceptually, IGMP version 3 behaves the same as version 2. However, there are differences. • Version 3 adds the ability to filter by multicast source, which helps multicast routing protocols avoid forwarding traffic to subnets where there are no interested receivers.
Joining and Filtering Groups and Sources The following illustration shows how multicast routers maintain the group and source information from unsolicited reports. 1. The first unsolicited report from the host indicates that it wants to receive traffic for group 224.1.1.1. 2. The host’s second report indicates that it is only interested in traffic from group 224.1.1.1, source 10.11.1.1. Include messages prevents traffic from all other sources in the group from reaching the subnet.
Leaving and Staying in Groups The following illustration shows how multicast routers track and refresh state changes in response to group-and-specific and general queries. 1. Host 1 sends a message indicating it is leaving group 224.1.1.1 and that the included filter for 10.11.1.1 and 10.11.1.2 are no longer necessary. 2.
Related Configuration Tasks • Viewing IGMP Enabled Interfaces • Selecting an IGMP Version • Viewing IGMP Groups • Adjusting Timers • Preventing a Host from Joining a Group • Enabling IGMP Immediate-Leave • IGMP Snooping • Fast Convergence after MSTP Topology Changes • Designating a Multicast Router Interface Viewing IGMP Enabled Interfaces Interfaces that are enabled with PIM-SM are automatically enabled with IGMP. To view IGMP-enabled interfaces, use the following command.
IGMP IGMP IGMP IGMP IGMP IGMP IGMP IGMP query interval is 60 seconds querier timeout is 125 seconds max query response time is 10 seconds last member query response interval is 1000 ms immediate-leave is disabled activity: 0 joins, 0 leaves, 0 channel joins, 0 channel leaves querying router is 1.1.1.1 (this system) version is 3 Viewing IGMP Groups To view both learned and statically configured IGMP groups, use the following command. • View both learned and statically configured IGMP groups.
• Adjust the maximum response time. INTERFACE mode • ip igmp query-max-resp-time Adjust the last member query interval. INTERFACE mode ip igmp last-member-query-interval Enabling IGMP Immediate-Leave If the querier does not receive a response to a group-specific or group-and-source query, it sends another (querier robustness value). Then, after no response, it removes the group from the outgoing interface for the subnet.
• ip igmp snooping enable View the configuration. CONFIGURATION mode • show running-config Disable snooping on a VLAN.
no ip igmp snooping flood Specifying a Port as Connected to a Multicast Router To statically specify or view a port in a VLAN, use the following commands. • Statically specify a port in a VLAN as connected to a multicast router. INTERFACE VLAN mode • ip igmp snooping mrouter View the ports that are connected to multicast routers. EXEC Privilege mode. show ip igmp snooping mrouter Configuring the Switch as Querier To configure the switch as a querier, use the following command.
Fast Convergence after MSTP Topology Changes When a port transitions to the Forwarding state as a result of an STP or MSTP topology change, Dell Networking OS sends a general query out of all ports except the multicast router ports. The host sends a response to the general query and the forwarding database is updated without having to wait for the query interval to expire.
Table 33.
NOTE: Egress Interface Selection (EIS) works only with IPv4 routing. When the feature is enabled using the management egress-interface-selection command, the following events are performed: • The CLI prompt changes to the EIS mode. • In this mode, you can run the application and no application commands • Applications can be configured or unconfigured as management applications using the application or no application command.
• If the management port IP address is removed, the corresponding connected route is removed from both the EIS routing table and default routing table. • If a management route is deleted, then the route is removed from both the EIS routing table and default routing table.
• Management application packet counter is incremented if EIS route lookup succeeds and packet is sent out of the management port. • If route lookup in the EIS routing table fails or if the management port is down, then packets are dropped. The management application drop counter is incremented. • Whenever IP address is assigned to the management port, it is stored in a global variable in the IP stack, which is used for comparison with the source IP address of the packet.
Traffic type / Application type Switch initiated traffic Switch-destined traffic Transit Traffic destination uses the front-end default route only. No change in the existing behavior. port selected based on route lookup in EIS port to management table.
Default Behavior: Route lookup is done in the default routing table and appropriate egress port is selected. Table 35.
Table 36.
ip igmp snooping mrouter interface Internet Group Management Protocol (IGMP) 342
19 Interfaces This chapter describes interface types, both physical and logical, and how to configure them with Dell Networking Operating System (OS). The system supports 10 Gigabit Ethernet and 40 Gigabit Ethernet interfaces. NOTE: Only Dell-qualified optics are supported on these interfaces. Non-Dell 40G optics are set to error-disabled state.
• Loopback Interfaces • Null Interfaces • Port Channel Interfaces • Bulk Configuration • Defining Interface Range Macros • Monitoring and Maintaining Interfaces • Splitting 40G Ports without Reload • Splitting QSFP Ports to SFP+ Ports • Converting a QSFP or QSFP+ Port to an SFP or SFP+ Port • Configuring wavelength for 10–Gigabit SFP+ optics • Link Dampening • Link Bundle Monitoring • Using Ethernet Pause Frames for Flow Control • Configure the MTU Size on an Interface • Port-Pi
NOTE: To end output from the system, such as the output from the show interfaces command, enter CTRL+C and Dell Networking OS returns to the command prompt. NOTE: The CLI output may be incorrectly displayed as 0 (zero) for the Rx/Tx power values. To obtain the correct power information, perform a simple network management protocol (SNMP) query. Examples of the show Commands The following example shows the configuration and status information for one interface.
interface TenGigabitEthernet 2/7/1 no ip address shutdown ! interface TenGigabitEthernet 2/8/1 no ip address shutdown ! interface TenGigabitEthernet 2/9/1 no ip address shutdown Resetting an Interface to its Factory Default State You can reset the configurations applied on an interface to its factory default state. To reset the configuration, perform the following steps: 1 View the configurations applied on an interface.
• 2 For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Enable the interface. INTERFACE mode no shutdown To confirm that the interface is enabled, use the show config command in INTERFACE mode. To leave INTERFACE mode, use the exit command or end command. You cannot delete a physical interface. Physical Interfaces The Management Ethernet interface is a single RJ-45 Fast Ethernet port on a switch.
show interface transceiver QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP 0 0 0 0 0 0 0 0 0 0 0 0 Serial ID Base Fields Id Ext Id Connector Transceiver Code Encoding Length(SFM) Km Length(OM3) 2m Length(OM2) 1m Length(OM1) 1m Length(Copper) 1m Vendor Rev = = = = = = = = = = = 0x0d 0x00 0x0c 0x04 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x05 0x00 0x32 0x00 0x00 0x00 0 Overview of Layer Modes On all systems running Dell Networking OS, you can place physical interfaces, port channels, and VLANs in
no shutdown Dell(conf-if)# Configuring Layer 2 (Interface) Mode To configure an interface in Layer 2 mode, use the following commands. • Enable the interface. INTERFACE mode • no shutdown Place the interface in Layer 2 (switching) mode. INTERFACE mode switchport To view the interfaces in Layer 2 mode, use the show interfaces switchport command in EXEC mode. Configuring Layer 3 (Network) Mode When you assign an IP address to a physical interface, you place it in Layer 3 mode.
• Enable the interface. INTERFACE mode • no shutdown Configure a primary IP address and mask on the interface. INTERFACE mode ip address ip-address mask [secondary] The ip-address must be in dotted-decimal format (A.B.C.D) and the mask must be in slash format (/xx). Add the keyword secondary if the IP address is the interface’s backup IP address. Example of the show ip interface Command You can only configure one primary IP address per interface.
To enable and configure EIS, use the following commands: 1 Enter EIS mode. CONFIGURATION mode management egress-interface-selection 2 Configure which applications uses EIS.
– across a platform must be in the same subnet. – must not match the virtual IP address and must not be in the same subnet as the virtual IP. If there are 2 RPMs on the system, each Management interface must be configured with a different IP address. Unless the management route command is configured, you can only access the Management interface from the local LAN. To access the Management interface from another LAN, the management route command must be configured to point to the Management interface.
Configuring a Management Interface on an Ethernet Port You can manage the system through any port using remote access such as Telnet. To configure an IP address for the port, use the following commands. There is no separate management routing table, so configure all routes in the IP routing table (the ip route command). • Configure an IP address. INTERFACE mode • ip address ip-address mask Enable the interface. INTERFACE mode • no shutdown The interface is the management interface.
Dell Networking OS supports Inter-VLAN routing (Layer 3 routing in VLANs). You can add IP addresses to VLANs and use them in routing protocols in the same manner that physical interfaces are used. For more information about configuring different routing protocols, refer to the chapters on the specific protocol. A consideration for including VLANs in routing protocols is that you must configure the no shutdown command. (For routing traffic to flow, you must enable the VLAN.
Null Interfaces The Null interface is another virtual interface. There is only one Null interface. It is always up, but no traffic is transmitted through this interface. To enter INTERFACE mode of the Null interface, use the following command. • Enter INTERFACE mode of the Null interface. CONFIGURATION mode interface null 0 The only configurable command in INTERFACE mode of the Null interface is the ip unreachable command.
As soon as you configure a port channel, Dell Networking OS treats it like a physical interface. For example, IEEE 802.1Q tagging is maintained while the physical interface is in the port channel. Member ports of a LAG are added and programmed into the hardware in a predictable order based on the port ID, instead of in the order in which the ports come up. With this implementation, load balancing yields predictable results across device reloads.
Creating a Port Channel You can create up to 4096 port channels with up to 16 port members per group on the platform. To configure a port channel, use the following commands. 1 Create a port channel. CONFIGURATION mode interface port-channel id-number 2 Ensure that the port channel is active. INTERFACE PORT-CHANNEL mode no shutdown After you enable the port channel, you can place it in Layer 2 or Layer 3 mode.
Examples of the show interfaces port-channel Commands To view the port channel’s status and channel members in a tabular format, use the show interfaces port-channel brief command in EXEC Privilege mode, as shown in the following example.
Reassigning an Interface to a New Port Channel An interface can be a member of only one port channel. If the interface is a member of a port channel, remove it from the first port channel and then add it to the second port channel. Each time you add or remove a channel member from a port channel, Dell Networking OS recalculates the hash algorithm for the port channel. To reassign an interface to a new port channel, use the following commands. 1 Remove the interface from the first port channel.
Example of Configuring the Minimum Oper Up Links in a Port Channel Dell#config t Dell(conf)#int po 1 Dell(conf-if-po-1)#minimum-links 5 Dell(conf-if-po-1)# Adding or Removing a Port Channel from a VLAN As with other interfaces, you can add Layer 2 port channel interfaces to VLANs. To add a port channel to a VLAN, place the port channel in Layer 2 mode (by using the switchport command). To add or remove a VLAN port channel and to view VLAN port channel members, use the following commands.
Dell#show interfaces switchport te 1/1/1 Codes: U x G i - Untagged, T - Tagged Dot1x untagged, X - Dot1x tagged GVRP tagged, M - Trunk, H - VSN tagged Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged Name: TenGigabitEthernet 1/1/1 802.1QTagged: True Vlan membership: Q Vlans T 2-5,100,4010 Dell# Assigning an IP Address to a Port Channel You can assign an IP address to a port channel and use port channels in Layer 3 routing protocols.
Changing the Hash Algorithm The load-balance command selects the hash criteria applied to port channels. If you do not obtain even distribution with the load-balance command, you can use the hash-algorithm command to select the hash scheme for LAG, ECMP and NH-ECMP. You can rotate or shift the 12–bit Lag Hash until the desired hash is achieved. The nh-ecmp option allows you to change the hash value for recursive ECMP routes independently of non-recursive ECMP routes.
• xor8 — Upper 8 bits of CRC16-BISYNC and lower 8 bits of xor8 • xor16 — uses 16 bit XOR. Bulk Configuration Bulk configuration allows you to determine if interfaces are present for physical interfaces or configured for logical interfaces. Interface Range An interface range is a set of interfaces to which other commands may be applied and may be created if there is at least one valid interface within the range.
Create a Single-Range The following is an example of a single range. Example of the interface range Command (Single Range) Dell(config)# interface range tengigabitethernet 1/1/1 - 1/2/3 Dell(config-if-range-te-1/1/1-1/2/3)# no shutdown Dell(config-if-range-te-1/1/1-1/2/3)# Create a Multiple-Range The following is an example of multiple range.
Add Ranges The following example shows how to use commas to add VLAN and port-channel interfaces to the range. Example of Adding VLAN and Port-Channel Interface Ranges Dell(config-if-range-te-1/1/1-1/2/1)# interface range Vlan 2 – 100 , Port 1 – 25 Dell(config-if-range-te-1/1/1-1/2/1-vl-2-100-po-1-25)# no shutdown Defining Interface Range Macros You can define an interface-range macro to automatically select a range of interfaces for configuration.
– For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Example of the monitor interface Command The information displays in a continuous run, refreshing every 2 seconds by default. To manage the output, use the following keys.
NOTE: TDR is an intrusive test. Do not run TDR on a link that is up and passing traffic. To test and display TDR results, use the following commands. 1 To test for cable faults on the TenGigabitEthernet cable. EXEC Privilege mode tdr-cable-test tengigabitethernet slot/port/subport Between two ports, do not start the test on both ends of the cable. Enable the interface before starting the test. Enable the port to run the test or the test prints an error message. 2 Displays TDR test results.
has been fanned-out >>>>> Dell(conf)#00:02:27: %S6000-ON:1 %IFAGT-5-INSERT_OPTICS_QSFP: Optics QSFP inserted in slot 1 port 24/2 00:02:27: %S6000-ON:1 %IFAGT-5-INSERT_OPTICS_QSFP: Optics QSFP inserted in slot 1 port 24/3 i00:02:27: %S6000-ON:1 %IFAGT-5-INSERT_OPTICS_QSFP: Optics QSFP inserted in slot 1 port 24/4 Dell(conf)#stack-unit 1 port 24 portmode quad Port 24 quad mode enabled NOTE: Save and reload, after the setting takes effect.
NOTE: You can split the 40G ports to 10G ports and vice —versa without reloading the device. To split a single 40G port into four 10G ports, use the following command. • Split a single 40G port into four 10G ports. CONFIGURATION mode stack-unit stack-unit-number port number portmode quad – number: enter the port number of the 40G port to be split. NOTE: To revert the port mode to 40G, use the no stack-unit stack-unit-number port port-number portmode quad command.
Important Points to Remember • Starting from Dell OS 9.7(0.0), as part of dynamic fan-out support, only 96 ports can be split into 10G mode. Remaining eight ports stay in 40G. For more information, see Fanning out 40G Ports Dynamically. • Before using the QSA to convert a 40 Gigabit Ethernet port to a 10 Gigabit SFP or SFP+ port, enable 40 G to 4*10 fan-out mode on the device.
SFP+ 2/1 Serial ID Base Fields SFP+ 2/1 Id SFP+ 2/1 Ext Id SFP+ 2/1 Connector ………………………. = 0x0d = 0x00 = 0x23 Dell#show interfaces tengigabitethernet 1/3/1 transceiver SFP+ 3/1 Serial ID Base Fields SFP+ 3/1 Id = 0x0d SFP+ 3/1 Ext Id = 0x00 SFP+ 3/1 Connector = 0x23 ……………………….
Link dampening: • reduces processing on the CPUs by reducing excessive interface flapping. • improves network stability by penalizing misbehaving interfaces and redirecting traffic. • improves convergence times and stability throughout the network by isolating failures so that disturbances are not propagated. Important Points to Remember • Link dampening is not supported on VLAN interfaces. • Link dampening is disabled when the interface is configured for port monitoring.
• Clear dampening counters. clear dampening Example of the clear dampening Command Dell# clear dampening interface Te 1/1/1 Dell#show interfaces dampening tengigabitethernet 1/1/1 Interface Supp Flaps Penalty Half-Life Reuse Suppress State Te 1/1/1 Up 0 0 1 2 3 Dell# Max-Sup 4 Link Dampening Support for XML View the output of the following show commands in XML by adding | display xml to the end of the command.
show running-config ecmp-group • Enable link bundle monitoring on port channel interfaces. link-bundle-monitor enable • Configure threshold level for link bundle monitoring. link-bundle-distribution trigger-threshold Dell(conf-if-po-10)#link-bundle-monitor enable Dell(conf)#link-bundle-distribution trigger-threshold • View the link bundle monitoring status.
Enabling Pause Frames Enable Ethernet pause frames flow control on all ports on a chassis or a line card. If not, the system may exhibit unpredictable behavior. NOTE: Changes in the flow-control values may not be reflected automatically in the show interface output. As a workaround, apply the new settings, execute shut then no shut on the interface, and then check the running-config of the port. NOTE: If you disable rx flow control, Dell Networking recommends rebooting the system.
Layer 2 Overhead Difference Between Link MTU and IP MTU Tagged Packet with VLAN-Stack Header 26 bytes Link MTU and IP MTU considerations for port channels and VLANs are as follows. Port Channels: • All members must have the same link MTU value and the same IP MTU value. • The port channel link MTU and IP MTU must be less than or equal to the link MTU and IP MTU values configured on the channel members.
Setting the Speed and Duplex Mode of Ethernet Interfaces To discover whether the remote and local interface requires manual speed synchronization, and to manually synchronize them if necessary, use the following command sequence. 1 Determine the local interface status. Refer to the following example. EXEC Privilege mode show interfaces [interface | stack—unit stack-unit-number] status 2 Determine the remote interface status.
Te 1/2/3 Te 1/2/4 Fo 1/3 Fo 1/4 Fo 1/5 [output omitted] Up Up Down Down Down Auto 10000 40000 40000 Auto Mbit Mbit Mbit Mbit Mbit Full Full Auto Auto Auto 2-5 2-5 ---- In the previous example, several ports display “Auto” in the Speed field. In the following example, the speed of port 1/1/1 is set to 100Mb and then its auto-negotiation is disabled.
show config View Advanced Interface Information The following options have been implemented for the show [ip | running-config] interfaces commands for (only) stack-unit interfaces. When you use the configured keyword, only interfaces that have non-default configurations are displayed. Dummy stackunit interfaces (created with the stack-unit command) are treated like any other physical interface.
Example of the rate-interval Command The bold lines shows the default value of 299 seconds, the change-rate interval of 100, and the new rate interval set to 100.
• Ingress VLAN • Next Hop 2 • Next Hop 1 • Egress ACLs • ILM • IP FLOW • IP ACL • IP FIB • L2 ACL • L2 FIB Clearing Interface Counters The counters in the show interfaces command are reset by the clear counters command. This command does not clear the counters any SNMP program captures. To clear the counters, use the following the command. • Clear the counters used in the show interface commands for all VRRP groups, VLANs, and physical interfaces or selected ones.
Two existing exec mode CLIs are enhanced to display and store the running configuration in the compressed mode. show running-config compressed and write memory compressed The compressed configuration will group all the similar looking configuration thereby reducing the size of the configuration. For this release, the compression will be done only for interface related configuration (VLAN & physical interfaces) The following table describes how the standard and the compressed configuration differ: Table 40.
! ! interface TenGigabitEthernet 1/10/1 interface group Vlan 3 – 5 no ip address tagged te 1/1/1 shutdown no ip address ! shutdown interface TenGigabitEthernet 1/34/1 ! ip address 2.1.1.1/16 interface Vlan 1000 shutdown ip address 1.1.1.1/16 ! no shutdown interface Vlan 2 ! no ip address no shutdown Compressed config size – 27 lines.
ip address 1.1.1.1/16 no shutdown Uncompressed config size – 52 lines write memory compressed The write memory compressed CLI will write the operating configuration to the startup-config file in the compressed mode. In stacking scenario, it will also take care of syncing it to all the standby and member units.
20 IPv4 Routing The Dell Networking Operating System (OS) supports various IP addressing features. This chapter describes the basics of domain name service (DNS), address resolution protocol (ARP), and routing principles and their implementation in the Dell Networking OS.
• Configurations Using UDP Helper • UDP Helper with Broadcast-All Addresses • UDP Helper with Subnet Broadcast Addresses • UDP Helper with Configured Broadcast Addresses • UDP Helper with No Configured Broadcast Addresses • Troubleshooting UDP Helper IP Addresses Dell Networking OS supports IP version 4 (as described in RFC 791), classful routing, and variable length subnet masks (VLSM). With VLSM, you can configure one network with different masks.
2 • For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. • For the Management interface on the stack-unit, enter the keyword ManagementEthernet then the slot/port information. • For a port channel interface, enter the keywords port-channel then a number. • For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. Enable the interface. INTERFACE mode no shutdown 3 Configure a primary IP address and mask on the interface.
Example of the show ip route static Command To view the configured routes, use the show ip route static command. Dell#show ip route static Destination Gateway ----------------S 2.1.2.0/24 Direct, Nu 0 S 6.1.2.0/24 via 6.1.20.2, S 6.1.2.2/32 via 6.1.20.2, S 6.1.2.3/32 via 6.1.20.2, S 6.1.2.4/32 via 6.1.20.2, S 6.1.2.5/32 via 6.1.20.2, S 6.1.2.6/32 via 6.1.20.2, S 6.1.2.7/32 via 6.1.20.2, S 6.1.2.8/32 via 6.1.20.2, S 6.1.2.9/32 via 6.1.20.2, S 6.1.2.10/32 via 6.1.20.2, S 6.1.2.11/32 via 6.1.20.2, S 6.1.2.
Using the Configured Source IP Address in ICMP Messages ICMP error or unreachable messages are now sent with the configured IP address of the source interface instead of the frontend port IP address as the source IP address. Enable the generation of ICMP unreachable messages through the ip unreachable command in Interface mode. When a ping or traceroute packet from an endpoint or a device arrives at the null 0 interface configured with a static route, it is discarded.
Enabling Directed Broadcast By default, Dell Networking OS drops directed broadcast packets destined for an interface. This default setting provides some protection against denial of service (DoS) attacks. To enable Dell Networking OS to receive directed broadcasts, use the following command. • Enable directed broadcast. INTERFACE mode ip directed-broadcast To view the configuration, use the show config command in INTERFACE mode.
tomm-3 gxr f00-3 Dell> (perm, OK) (perm, OK) (perm, OK) - IP IP IP 192.68.99.2 192.71.18.2 192.71.23.1 To view the current configuration, use the show running-config resolve command. Specifying the Local System Domain and a List of Domains If you enter a partial domain, Dell Networking OS can search different domains to finish or fully qualify that partial domain. A fully qualified domain name (FQDN) is any name that is terminated with a period/dot.
---------------------------------------------------------------------Tracing the route to www.force10networks.com (10.11.84.18), 30 hops max, 40 byte packets ---------------------------------------------------------------------TTL Hostname Probe1 Probe2 Probe3 1 10.11.199.190 001.000 ms 001.000 ms 002.000 ms 2 gwegress-sjc-02.force10networks.com (10.11.30.126) 005.000 ms 001.000 ms 001.000 ms 3 fw-sjc-01.force10networks.com (10.11.127.254) 000.000 ms 000.000 ms 000.000 ms 4 www.dell.com (10.11.84.18) 000.
Example of the show arp Command These entries do not age and can only be removed manually. To remove a static ARP entry, use the no arp ip-address command. To view the static entries in the ARP cache, use the show arp static command in EXEC privilege mode. Dell#show arp Protocol Address Age(min) Hardware Address Interface VLAN CPU -------------------------------------------------------------------------------Internet 10.1.2.
In the request, the host uses its own IP address in the Sender Protocol Address and Target Protocol Address fields. Enabling ARP Learning via Gratuitous ARP To enable ARP learning via gratuitous ARP, use the following command. • Enable ARP learning via gratuitous ARP. CONFIGURATION mode arp learn-enable ARP Learning via ARP Request In Dell Networking OS versions prior to 8.3.1.
Configuring ARP Retries You can configure the number of ARP retries. The default backoff interval remains at 20 seconds. To set and display ARP retries, use the following commands. • Set the number of ARP retries. CONFIGURATION mode arp retries number The default is 5. • The range is from 1 to 20. Set the exponential timer for resending unresolved ARPs. CONFIGURATION mode arp backoff-time The default is 30. • The range is from 1 to 3600. Display all ARP entries learned via gratuitous ARP.
To view if ICMP unreachable messages are sent on the interface, use the show config command in INTERFACE mode. If it is not listed in the show config command output, it is enabled. Only non-default information is displayed in the show config command output. UDP Helper User datagram protocol (UDP) helper allows you to direct the forwarding IP/UDP broadcast traffic by creating special broadcast addresses and rewriting the destination IP address of packets to match those addresses.
ip udp-broadcast-address Examples of Configuring and Viewing a Broadcast Address Dell(conf-if-vl-100)#ip udp-broadcast-address 1.1.255.255 Dell(conf-if-vl-100)#show config ! interface Vlan 100 ip address 1.1.0.1/24 ip udp-broadcast-address 1.1.255.255 untagged TenGigabitEthernet 1/2/1 no shutdown To view the configured broadcast address for an interface, use show interfaces command.
3. Packet 2 is also forwarded to the ingress interface with an unchanged destination address because it does not have broadcast address configured. Figure 47. UDP Helper with Broadcast-All Addresses UDP Helper with Subnet Broadcast Addresses When the destination IP address of an incoming packet matches the subnet broadcast address of any interface, the system changes the address to the configured broadcast address and sends it to matching interface.
Packet 2 is sent from a host on VLAN 101. It has broadcast MAC address and a destination IP address that matches the configured broadcast address on VLAN 101. In this case, Packet 2 is flooded on VLAN 101 with the destination address unchanged because the forwarding process is Layer 2. If you enabled UDP helper, the packet is flooded on VLAN 100 as well. Figure 49.
21 IPv6 Routing Internet protocol version 6 (IPv6) routing is the successor to IPv4. Due to the rapid growth in internet users and IP addresses, IPv4 is reaching its maximum usage. IPv6 will eventually replace IPv4 usage to allow for the constant expansion. This chapter provides a brief description of the differences between IPv4 and IPv6, and the Dell Networking support of IPv6. This chapter is not intended to be a comprehensive description of IPv6.
Extended Address Space The address format is extended from 32 bits to 128 bits. This not only provides room for all anticipated needs, it allows for the use of a hierarchical address space structure to optimize global addressing. Stateless Autoconfiguration When a booting device comes up in IPv6 and asks for its network prefix, the device can get the prefix (or prefixes) from an IPv6 router on its link.
• Payload Length (16 bits) • Next Header (8 bits) • Hop Limit (8 bits) • Source Address (128 bits) • Destination Address (128 bits) IPv6 provides for extension headers. Extension headers are used only if necessary. There can be no extension headers, one extension header or more than one extension header in an IPv6 packet. Extension headers are defined in the Next Header field of the preceding IPv6 header. Longest Prefix Match (LPM) Table and IPv6 /65 – /128 support Two partitions are available.
The optimized booting functionality does not use Openflow and therefore SDN support is not available. LPM partitioning might have a slight impact on the number of SDN-programmed L3 entries because the LPM space becomes reduced. IPv6 Header Fields The 40 bytes of the IPv6 header are ordered, as shown in the following illustration. Figure 50. IPv6 Header Fields Version (4 bits) The Version field always contains the number 6, referring to the packet’s IP version.
Next Header (8 bits) The Next Header field identifies the next header’s type. If an Extension header is used, this field contains the type of Extension header (as shown in the following table). If the next header is a transmission control protocol (TCP) or user datagram protocol (UDP) header, the value in this field is the same as for IPv4. The Extension header is located between the IP header and the TCP or UDP header. The following lists the Next Header field values.
Source Address (128 bits) The Source Address field contains the IPv6 address for the packet originator. Destination Address (128 bits) The Destination Address field contains the intended recipient’s IPv6 address. This can be either the ultimate destination or the address of the next hop router. Extension Header Fields Extension headers are used only when necessary. Due to the streamlined nature of the IPv6 header, adding extension headers do not severely impact performance.
11 Discard the packet and send an ICMP Parameter Problem, Code 2 message to the packet’s Source IP Address only if the Destination IP Address is not a multicast address. The second byte contains the Option Data Length. The third byte specifies whether the information can change en route to the destination. The value is 1 if it can change; the value is 0 if it cannot change.
In IPv6, every interface, whether using static or dynamic address assignments, also receives a local-link address automatically in the fe80::/64 subnet. Implementing IPv6 with Dell Networking OS Dell Networking OS supports both IPv4 and IPv6 and both may be used simultaneously in your system. The following table lists the Dell Networking OS version in which an IPv6 feature became available for each platform. The sections following the table give greater detail about the feature. Table 41.
Feature and Functionality Documentation and Chapter Location IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide. ISIS for IPv6 support for distribute lists and administrative distance Intermediate System to Intermediate System OSPF for IPv6 (OSPFv3) OSPFv3 in the Dell Networking OS Command Line Reference Guide. IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide.
• Error reporting messages indicate when the forwarding or delivery of the packet failed at the destination or intermediate node. These messages include Destination Unreachable, Packet Too Big, Time Exceeded and Parameter Problem messages. • Informational messages provide diagnostic functions and additional host functions, such as Neighbor Discovery and Multicast Listener Discovery. These messages also include Echo Request and Echo Reply messages.
used as the last 24 bits. Other hosts on the link do not participate in the process, greatly increasing network bandwidth efficiency. Figure 52. NDP Router Redirect IPv6 Neighbor Discovery of MTU Packets You can set the MTU advertised through the RA packets to incoming routers, without altering the actual MTU setting on the interface. The ipv6 nd mtu command sets the value advertised to routers. It does not set the actual MTU rate.
The following example configures a RDNNS server with an IPv6 address of 1000::1 and a lifetime of 1 second.
ND base reachable time is 30000 milliseconds ND advertised reachable time is 0 milliseconds ND advertised retransmit interval is 0 milliseconds ND router advertisements are sent every 198 to 600 seconds ND router advertisements live for 1800 seconds ND advertised hop limit is 64 IPv6 hop limit for originated packets is 64 ND dns-server address is 1000::1 with lifetime of 1 seconds ND dns-server address is 3000::1 with lifetime of 1 seconds ND dns-server address is 2000::1 with lifetime of 0 seconds To displ
• IPv6 L3 ACL (ipv6acl): 0 • L3 QoS (ipv4qos): 1 • L2 QoS (l2qos): 1 To have the changes take effect, save the new CAM settings to the startup-config (write-mem or copy run start) then reload the system for the new settings. • Allocate space for IPV6 ACLs. Enter the CAM profile name then the allocated amount. CONFIGURATION mode cam-acl { ipv6acl } When not selecting the default option, enter all of the profiles listed and a range for each. The total space allocated must equal 13.
NOTE: After you configure a static IPv6 route (the ipv6 route command) and configure the forwarding router’s address (specified in the ipv6 route command) on a neighbor’s interface, the IPv6 neighbor does not display in the show ipv6 route command output. • Set up IPv6 static routes. CONFIGURATION mode ipv6 route [vrf vrf-name] prefix interface-type slot/port [/subport] forwarding router tag – vrf vrf-name:(OPTIONAL) name of the VRF.
• snmp-server group access-list-name ipv6 Displaying IPv6 Information View specific IPv6 configuration with the following commands. • List the IPv6 show options.
Advertised by: fe80::201:e8ff:fe8b:3166 412::/64 onlink autoconfig Valid lifetime: 2592000, Preferred lifetime: 604800 Advertised by: fe80::201:e8ff:fe8b:3166 Global Anycast address(es): Joined Group address(es): ff02::1 ff02::1:ff8b:386e ND MTU is 0 ICMP redirects are not sent DAD is enabled, number of DAD attempts: 3 ND reachable time is 32000 milliseconds ND base reachable time is 30000 milliseconds ND retransmit interval is 1000 milliseconds ND hop limit is 64 Showing IPv6 Routes To view the global IPv
Destination Dist/Metric, Gateway, Last Change ----------------------------------------------------C 600::/64 [0/0] Direct, Te 1/24/1, 00:34:42 C 601::/64 [0/0] Direct, Te 1/24/1, 00:34:18 C 912::/64 [0/0] Direct, Lo 2, 00:02:33 O IA 999::1/128 [110/2] via fe80::201:e8ff:fe8b:3166, Te 1/24/1, 00:01:30 L fe80::/10 [0/0] Direct, Nu 0, 00:34:42 Dell# The following example shows the show ipv6 route static command.
– mask: the prefix length is from 0 to 128. NOTE: IPv6 addresses are normally written as eight groups of four hexadecimal digits, where each group is separated by a colon (:). Omitting zeros is accepted as described in Addressing. Configuring IPv6 RA Guard The IPv6 Router Advertisement (RA) guard allows you to block or reject the unwanted router advertisement guard messages that arrive at the network device platform.
POLICY LIST CONFIGURATION mode router—lifetime value The router lifetime range is from 0 to 9,000 seconds. 11 Apply the policy to trusted ports. POLICY LIST CONFIGURATION mode trusted-port 12 Set the maximum transmission unit (MTU) value. POLICY LIST CONFIGURATION mode mtu value 13 Set the advertised reachability time. POLICY LIST CONFIGURATION mode reachable—time value The reachability time range is from 0 to 3,600,000 milliseconds. 14 Set the advertised retransmission time.
3 Display the configurations applied on all the RA guard policies or a specific RA guard policy. EXEC Privilege mode show ipv6 nd ra-guard policy policy-name The policy name string can be up to 140 characters.
22 iSCSI Optimization This chapter describes how to configure internet small computer system interface (iSCSI) optimization, which enables qualityof-service (QoS) treatment for iSCSI traffic.
• iSCSI QoS — A user-configured iSCSI class of service (CoS) profile is applied to all iSCSI traffic. Classifier rules are used to direct the iSCSI data traffic to queues that can be given preferential QoS treatment over other data passing through the switch. Preferential treatment helps to avoid session interruptions during times of congestion that would otherwise cause dropped iSCSI packets. • iSCSI DCBx TLVs are supported.
Application of Quality of Service to iSCSI Traffic Flows You can configure iSCSI CoS mode. This mode controls whether CoS (dot1p priority) queue assignment and/or packet marking is performed on iSCSI traffic. When you enable iSCSI CoS mode, the CoS policy is applied to iSCSI traffic. When you disable iSCSI CoS mode, iSCSI sessions and connections are still detected and displayed in the status tables, but no CoS policy is applied to iSCSI traffic.
After a switch is reloaded, any information exchanged during the initial handshake is not available. If the switch picks up the communication after reloading, it would detect a session was in progress but could not obtain complete information for it. Any incomplete information of this type would not be available in the show commands.
Synchronizing iSCSI Sessions Learned on VLT-Lags with VLT-Peer The following behavior occurs during synchronization of iSCSI sessions. • If the iSCSI login request packet is received on a port belonging to a VLT lag, the information is synced to the VLT peer and the connection is associated with this interface. • Additional updates to connections (including aging updates) that are learnt on VLT lag members are synced to the peer.
Default iSCSI Optimization Values The following table lists the default values for the iSCSI optimization feature. Table 42. iSCSI Optimization Defaults Parameter Default Value iSCSI Optimization global setting Disabled. iSCSI CoS mode (802.1p priority queue mapping) dot1p priority 4 without the remark setting when you enable iSCSI. If you do not enable iSCSI, this feature is disabled.
CONFIGURATION mode iscsi enable 3 For a DCB environment: Configure iSCSI Optimization. EXEC Privilege mode iSCSI configuration: copy CONFIG_TEMPLATE/iSCSI_DCB_Config running-config. The configuration files are stored in the flash memory in the CONFIG_TEMPLATE file. NOTE: DCB/DCBx is enabled when you apply the iSCSI configuration in step 3. If you manually apply the iSCSI configuration by following steps 1 and 2, enable link layer discovery protocol (LLDP) before enabling iSCSI in step 2.
• dscp dscp-value: specifies the DSCP value assigned to incoming packets in an iSCSI session. The range is from 0 to 63. The default is: the DSCP value in ingress packets is not changed. • 8 remark: marks incoming iSCSI packets with the configured dot1p or DSCP value when they egress the switch. The default is: the dot1 and DSCP values in egress packets are not changed. (Optional) Set the aging time for iSCSI session monitoring. CONFIGURATION mode [no] iscsi aging time time.
iSCSI Targets and TCP Ports: -----------------------------------------------TCP Port Target IP Address 3260 860 The following example shows the show iscsi session command. VLT PEER1 Dell#show iscsi session Session 0: ----------------------------------------------------------------------------------Target: iqn.2001-05.com.equallogic:0-8a0906-0e70c2002-10a0018426a48c94-iom010 Initiator: iqn.1991-05.com.
23 Intermediate System to Intermediate System The intermediate system to intermediate system (IS-IS) protocol that uses a shortest-path-first algorithm. Dell Networking supports both IPv4 and IPv6 versions of IS-IS.
• area address — within your routing domain or area, each area must have a unique area value. The first byte is called the authority and format indicator (AFI). • system address — the router’s MAC address. • N-selector — this is always 0. The following illustration is an example of the ISO-style address to show the address format IS-IS uses. In this example, the first five bytes (47.0005.0001) are the area address. The system portion is 000c.000a.4321 and the last byte is always 0. Figure 54.
Interface Support MT IS-IS is supported on physical Ethernet interfaces, physical synchronous optical network technologies (SONET) interfaces, port-channel interfaces (static and dynamic using LACP), and virtual local area network (VLAN) interfaces. Adjacencies Adjacencies on point-to-point interfaces are formed as usual, where IS-IS routers do not implement MT extensions.
Implementation Information IS-IS implementation supports one instance of IS-IS and six areas. You can configure the system as a Level 1 router, a Level 2 router, or a Level 1-2 router. For IPv6, the IPv4 implementation has been expanded to include two new type, length, values (TLVs) in the PDU that carry information required for IPv6 routing. The new TLVs are IPv6 Reachability and IPv6 Interface Address. Also, a new IPv6 protocol identifier has also been included in the supported TLVs.
NOTE: When using the IS-IS routing protocol to exchange IPv6 routing information and to determine destination reachability, you can route IPv6 along with IPv4 while using a single intra-domain routing protocol. The configuration commands allow you to enable and disable IPv6 routing and to configure or remove IPv6 prefixes on links. Except where identified, the commands described in this chapter apply to both IPv4 and IPv6 versions of IS-IS.
Enter the keyword interface then the type of interface and slot/port information: 4 • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. • For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. • For a port channel interface, enter the keywords port-channel then a number.
Generate narrow metrics: Accept narrow metrics: Generate wide metrics: Accept wide metrics: Dell# level-1-2 level-1-2 none none To view IS-IS protocol statistics, use the show isis traffic command in EXEC Privilege mode.
Use this command for IPv6 route computation only when you enable multi-topology. If using single-topology mode, to apply to both IPv4 and IPv6 route computations, use the spf-interval command in CONFIG ROUTER ISIS mode. 4 Implement a wide metric-style globally. ROUTER ISIS AF IPV6 mode isis ipv6 metric metric-value [level-1 | level-2 | level-1-2] To configure wide or wide transition metric style, the cost can be between 0 and 16,777,215.
graceful-restart t3 {adjacency | manual seconds} – adjacency: the restarting router receives the remaining time value from its peer and adjusts its T3 value so if user has configured this option. – manual: allows you to specify a fixed value that the restarting router should use. The range is from 50 to 120 seconds. The default is 30 seconds.
LSP Interval: 33 Next IS-IS LAN Level-1 Hello in 4 seconds Next IS-IS LAN Level-2 Hello in 6 seconds LSP Interval: 33 Restart Capable Neighbors: 2, In Start: 0, In Restart: 0 Dell# Changing LSP Attributes IS-IS routers flood link state PDUs (LSPs) to exchange routing information. LSP attributes include the generation interval, maximum transmission unit (MTU) or size, and the refresh interval. You can modify the LSP attribute defaults, but it is not necessary.
Configuring the IS-IS Metric Style All IS-IS links or interfaces are associated with a cost that is used in the shortest path first (SPF) calculations. The possible cost varies depending on the metric style supported. If you configure narrow, transition, or narrow transition metric style, the cost can be a number between 0 and 63. If you configure wide or wide transition metric style, the cost can be a number between 0 and 16,777,215.
Distance: 115 Generate narrow metrics: Accept narrow metrics: Generate wide metrics: Accept wide metrics: Dell# level-1-2 level-1-2 none none Configuring the IS-IS Cost When you change from one IS-IS metric style to another, the IS-IS metric value could be affected. For each interface with IS-IS enabled, you can assign a cost or metric that is used in the link state calculation. To change the metric or cost of the interface, use the following commands. • Assign an IS-IS metric.
Changing the IS-Type To change the IS-type, use the following commands. You can configure the system to act as a Level 1 router, a Level 1-2 router, or a Level 2 router. To change the IS-type for the router, use the following commands. • Configure IS-IS operating level for a router. ROUTER ISIS mode is-type {level-1 | level-1-2 | level-2-only} • Default is level-1-2. Change the IS-type for the IS-IS process.
– For a VLAN interface, enter the keyword vlan then a number from 1 to 4094. Distribute Routes Another method of controlling routing information is to filter the information through a prefix list. Prefix lists are applied to incoming or outgoing routes and routes must meet the conditions of the prefix lists or Dell Networking OS does not install the route in the routing table. The prefix lists are globally applied on all interfaces running IS-IS.
ROUTER ISIS-AF IPV6 mode distribute-list prefix-list-name in [interface] Enter the type of interface and the interface information: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For a port channel interface, enter the keywords port-channel then a number.
redistribute ospf process-id [level-1| level-1-2 | level-2] [metric value] [match external {1 | 2} | match internal] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: – process-id the range is from 1 to 65535. – level-1, level-1-2, or level-2: assign all redistributed routes to a level. The default is level-2. – metric value the range is from 0 to 16777215. The default is 0. – match external the range is from 1 or 2.
Configuring Authentication Passwords You can assign an authentication password for routers in Level 1 and for routers in Level 2. Because Level 1 and Level 2 routers do not communicate with each other, you can assign different passwords for Level 1 routers and for Level 2 routers. However, if you want the routers in the level to communicate with each other, configure them with the same password. To configure a simple text password, use the following commands.
eljefe.01-00 * 0x00000001 0x68DF eljefe.02-00 * 0x00000001 0x2E7F Force10.00-00 0x00000002 0xD1A7 IS-IS Level-2 Link State Database LSPID LSP Seq Num LSP Checksum B233.00-00 0x00000006 0xC38A eljefe.00-00 * 0x0000000E 0x53BF eljefe.01-00 * 0x00000001 0x68DF eljefe.02-00 * 0x00000001 0x2E7F Force10.
To disable all IS-IS debugging, use the no debug isis command. To disable all debugging, use the undebug all command. IS-IS Metric Styles The following sections provide additional information about the IS-IS metric styles.
Table 45. Metric Value When the Metric Style Changes Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value wide narrow default value (10) if the original value is greater than 63. A message is sent to the console. wide transition truncated value (the truncated value appears in the LSP only). The original isis metric value is displayed in the show config and show runningconfig commands and is used if you change back to transition metric style.
Moving to transition and then to another metric style produces different results. Table 46. Metric Value when the Metric Style Changes Multiple Times Beginning Metric Style Next Metric Style Resulting Metric Value Next Metric Style Final Metric Value wide transition truncated value wide original value is recovered wide transition transition truncated value wide transition original value is recovered wide transition truncated value narrow default value (10).
Sample Configurations The following configurations are examples for enabling IPv6 IS-IS. These examples are not comprehensive directions. They are intended to give you some guidance with typical configurations. NOTE: Only one IS-IS process can run on the router, even if both IPv4 and IPv6 routing is being used. You can copy and paste from these examples to your CLI. To support your own IP addresses, interfaces, names, and so on, be sure that you make the necessary changes.
interface TenGigabitEthernet 3/17/1 ip address 24.3.1.1/24 ipv6 address 24:3::1/76 ip router isis ipv6 router isis no shutdown Dell (conf-if-te-3/17/1)# Dell (conf-router_isis)#show config ! router isis metric-style wide level-1 metric-style wide level-2 net 34.0000.0000.AAAA.
24 Link Aggregation Control Protocol (LACP) A link aggregation group (LAG), referred to as a port channel by the Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic. Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic.
LACP Modes Dell Networking OS provides three modes for configuration of LACP — Off, Active, and Passive. • Off — In this state, an interface is not capable of being part of a dynamic LAG. LACP does not run on any port that is configured to be in this state. • Active — In this state, the interface is said to be in the “active negotiating state.” LACP runs on any link that is configured to be in this state.
LACP Configuration Tasks The following configuration tasks apply to LACP. • • • • • Creating a LAG Configuring the LAG Interfaces as Dynamic Setting the LACP Long Timeout Monitoring and Debugging LACP Configuring Shared LAG State Tracking Creating a LAG To create a dynamic port channel (LAG), use the following command. First you define the LAG and then the LAG interfaces. • Create a dynamic port channel (LAG). CONFIGURATION mode • interface port-channel Create a dynamic port channel (LAG).
... Dell(conf)#interface TenGigabitethernet 4/16/1 Dell(conf-if-te-4/16/1)#no shutdown Dell(conf-if-te-4/16/1)#port-channel-protocol lacp Dell(conf-if-te-4/16/1-lacp)#port-channel 32 mode active The port-channel 32 mode active command shown here may be successfully issued as long as there is no existing static channel-member configuration in LAG 32. Setting the LACP Long Timeout PDUs are exchanged between port channel (LAG) interfaces to maintain LACP sessions.
Shared LAG State Tracking Shared LAG state tracking provides the flexibility to bring down a port channel (LAG) based on the operational state of another LAG. At any time, only two LAGs can be a part of a group such that the fate (status) of one LAG depends on the other LAG. As shown in the following illustration, the line-rate traffic from R1 destined for R4 follows the lowest-cost route via R2. Traffic is equally distributed between LAGs 1 and 2.
To view the failover group configuration, use the show running-configuration po-failover-group command. Dell#show running-config po-failover-group ! port-channel failover-group group 1 port-channel 1 port-channel 2 As shown in the following illustration, LAGs 1 and 2 are members of a failover group. LAG 1 fails and LAG 2 is brought down after the failure. This effect is logged by Message 1, in which a console message declares both LAGs down at the same time. Figure 57.
• If a LAG moves to the Down state due to this feature, its members may still be in the Up state. LACP Basic Configuration Example The screenshots in this section are based on the following example topology. Two routers are named ALPHA and BRAVO, and their hostname prompts reflect those names. Figure 58. LACP Basic Configuration Example Configure a LAG on ALPHA The following example creates a LAG on ALPHA.
0 64-byte pkts, 12 over 64-byte pkts, 120 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 132 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarded Output Statistics 136 packets, 16718 bytes, 0 underruns 0 64-byte pkts, 15 over 64-byte pkts, 121 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 136 Multicasts, 0 Broadcasts, 0 Unicasts 0 Vlans, 0 throttles, 0 discarded, 0 collisions, 0 wreddrops Rate info
Figure 59.
Figure 60.
Figure 61.
Summary of the LAG Configuration on Bravo Bravo(conf-if-te-3/21/1)#int port-channel 10 Bravo(conf-if-po-10)#no ip add Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config ! interface Port-channel 10 no ip address switchport no shutdown ! Bravo(conf-if-po-10)#exit Bravo(conf)#int tengig 3/21/1 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-te-3/21/1)#port-channel-protocol lacp Bravo(conf-if-te-3/21/1-lacp)#port-channel 10 mode activ
Figure 62.
Figure 63.
Figure 64. Inspecting the LAG Status Using the show lacp command The point-to-point protocol (PPP) is a connection-oriented protocol that enables layer two links over various different physical layer connections. It is supported on both synchronous and asynchronous lines, and can operate in Half-Duplex or Full-Duplex mode. It was designed to carry IP traffic but is general enough to allow any type of network layer datagram to be sent over a PPP connection.
25 Layer 2 This chapter describes the Layer 2 features supported on the device. Manage the MAC Address Table You can perform the following management tasks in the MAC address table. • Clearing the MAC Address Table • Setting the Aging Time for Dynamic Entries • Configuring a Static MAC Address • Displaying the MAC Address Table Clearing the MAC Address Table You may clear the MAC address table of dynamic entries. To clear a MAC address table, use the following command.
Configuring a Static MAC Address A static entry is one that is not subject to aging. Enter static entries manually. To create a static MAC address entry, use the following command. • Create a static MAC address entry in the MAC address table. CONFIGURATION mode mac-address-table static Displaying the MAC Address Table To display the MAC address table, use the following command. • Display the contents of the MAC address table.
NOTE: The CAM-check failure message beginning in Dell Networking OS version 8.3.1.0 is different from versions 8.2.1.1 and earlier, which read: % Error: ACL returned error % Error: Remove existing limit configuration if it was configured before Setting the MAC Learning Limit To set a MAC learning limit on an interface, use the following command. • Specify the number of MAC addresses that the system can learn off a Layer 2 interface.
mac learning-limit station-move The mac learning-limit station-move command allows a MAC address already in the table to be learned from another interface. For example, if you disconnect a network device from one interface and reconnect it to another interface, the MAC address is learned on the new interface. When the system detects this “station move,” the system clears the entry learned on the original interface and installs a new entry on the new interface.
Setting Station Move Violation Actions no-station-move is the default behavior. You can configure the system to take an action if a station move occurs using one the following options with the mac learning-limit command. To display a list of interfaces configured with MAC learning limit or station move violation actions, use the following commands. • Generate a system log message indicating a station move. INTERFACE mode • station-move-violation log Shut down the first port to learn the MAC address.
Disabling MAC Address Learning on the System You can configure the system to not learn MAC addresses from LACP and LLDP BPDUs. To disable source MAC address learning from LACP and LLDP BPDUs, follow this procedure: • Disable source MAC address learning from LACP BPDUs. CONFIGURATION mode • mac-address-table disable-learning lacp Disable source MAC address learning from LLDP BPDUs. CONFIGURATION mode • mac-address-table disable-learning lldp Disable source MAC address learning from LACP and LLDP BPDUs.
NOTE: If you have configured the no mac-address-table station-move refresh-arp command, traffic continues to be forwarded to the failed NIC until the ARP entry on the switch times out. Figure 66.
Apply all other configurations to each interface in the redundant pair such that their configurations are identical, so that transition to the backup interface in the event of a failure is transparent to rest of the network. Figure 67. Configuring Redundant Layer 2 Pairs without Spanning Tree You configure a redundant pair by assigning a backup interface to a primary interface with the switchport backup interface command.
Important Points about Configuring Redundant Pairs • • • • You may not configure any interface to be a backup for more than one interface, no interface can have more than one backup, and a backup interface may not have a backup interface. The active or backup interface may not be a member of a LAG. The active and standby do not have to be of the same type (1G, 10G, and so on). You may not enable any Layer 2 protocol on any interface of a redundant pair or to ports connected to them.
Dell(conf-if-po-1)#switchport backup interface port-channel 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-L2BKUP_WARN: Do not run any Layer2 protocols on Po 1 and Po 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-OSTATE_DN: Changed interface state to down: Po 2 Apr 9 00:15:13: %STKUNIT0-M:CP %IFMGR-5-STATE_ACT_STBY: Changed interface state to standby: Po 2 Dell(conf-if-po-1)# Dell# Dell#show interfaces switchport backup Interface Status Paired Interface Status Port-channel 1 Active Port-chato mannel 2 Standby Port-c
FEFD State Changes FEFD has two operational modes, Normal and Aggressive. When you enable Normal mode on an interface and a far-end failure is detected, no intervention is required to reset the interface to bring it back to an FEFD operational state. When you enable Aggressive mode on an interface in the same state, manual intervention is required to reset the interface.
Configuring FEFD You can configure FEFD for all interfaces from CONFIGURATION mode, or on individual interfaces from INTERFACE mode. To enable FEFD globally on all interfaces, use the following command. • Enable FEFD globally on all interfaces. CONFIGURATION mode fefd-global To report interval frequency and mode adjustments, use the following commands. 1 Setup two or more connected interfaces for Layer 2 or Layer 3.
• Disable FEFD protocol on one interface. INTERFACE mode fefd disable Disabling an interface shuts down all protocols working on that interface’s connected line. It does not delete your previous FEFD configuration which you can enable again at any time. To set up and activate two or more connected interfaces, use the following commands. 1 Setup two or more connected interfaces for Layer 2 or Layer 3. INTERFACE mode ip address ip address, switchport 2 Activate the necessary ports administratively.
Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port-Subport(Te 1/1/1) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port-Subport(Te 4/1/1) Sender hold time -- 3 (second) 2w1d22h : FEFD packet received on interface Te 4/1/1 Sender state -- Bi-directional Sender info -- Mgmt Mac(00:01:e8:14:89:25), Slot-Port-Subport(Te 1/1/1) Peer info -- Mgmt Mac (00:01:e8:14:89:25), Slot-Port-Subport(Te 4/1/1) Sender hold time -- 3 (second) An RPM Failover In the event that an RPM failove
26 Link Layer Discovery Protocol (LLDP) This chapter describes how to configure and use the link layer discovery protocol (LLDP). 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices.
Table 49. Type, Length, Value (TLV) Types Type TLV Description 0 End of LLDPDU Marks the end of an LLDPDU. 1 Chassis ID An administratively assigned name that identifies the LLDP agent. 2 Port ID An administratively assigned name that identifies a port through which TLVs are sent and received. 3 Time to Live An administratively assigned name that identifies a port through which TLVs are sent and received.
Management TLVs A management TLV is an optional TLVs sub-type. This kind of TLV contains essential management information about the sender. Organizationally Specific TLVs A professional organization or a vendor can define organizationally specific TLVs. They have two mandatory fields (as shown in the following illustration) in addition to the basic TLV fields. Figure 71. Organizationally Specific TLV IEEE Organizationally Specific TLVs Eight TLV types have been defined by the IEEE 802.1 and 802.
Type TLV Description 127 Port and Protocol VLAN ID On Dell Networking systems, indicates the tagged VLAN to which a port belongs (and the untagged VLAN to which a port belongs if the port is in Hybrid mode). 127 Protocol Identity Indicates the protocols that the port can process. Dell Networking OS does not currently support this TLV.
TIA Organizationally Specific TLVs The Dell Networking system is an LLDP-MED Network Connectivity Device (Device Type 4). Network connectivity devices are responsible for: • transmitting an LLDP-MED capability TLV to endpoint devices • storing the information that endpoint devices advertise The following table describes the five types of TIA-1057 Organizationally Specific TLVs. Table 51.
Type SubType TLV Description 127 8 Inventory — Serial Number Indicates the device serial number of the LLDP-MED device. 127 9 Inventory — Manufacturer Name Indicates the manufacturer of the LLDP-MED device. 127 10 Inventory — Model Name Indicates the model of the LLDP-MED device. 127 11 Inventory — Asset ID Indicates a user specified device number to manage inventory.
Table 53. LLDP-MED Device Types Value Device Type 0 Type Not Defined 1 Endpoint Class 1 2 Endpoint Class 2 3 Endpoint Class 3 4 Network Connectivity 5–255 Reserved LLDP-MED Network Policies TLV A network policy in the context of LLDP-MED is a device’s VLAN configuration and associated Layer 2 and Layer 3 configurations.
Type Application Description 6 Video Conferencing Specify this application type for dedicated video conferencing and other similar appliances supporting realtime interactive video. 7 Streaming Video Specify this application type for dedicated video conferencing and other similar appliances supporting realtime interactive video. 8 Video Signaling Specify this application type only if video control packets use a separate network policy than video data. 9–255 Reserved — Figure 73.
2. Advertise TLVs out of an interface. Related Configuration Tasks • Viewing the LLDP Configuration • Viewing Information Advertised by Adjacent LLDP Agents • Configuring LLDPDU Intervals • Configuring Transmit and Receive Mode • Configuring a Time to Live • Debugging LLDP Important Points to Remember • LLDP is enabled by default. • Dell Networking systems support up to eight neighbors per interface. • Dell Networking systems support a maximum of 8000 total neighbors per system.
end Exit from configuration mode exit Exit from LLDP configuration mode hello LLDP hello configuration mode LLDP mode configuration (default = rx and tx) multiplier LLDP multiplier configuration no Negate a command or set its defaults show Show LLDP configuration Dell(conf-if-te-1/3/1-lldp)# Enabling LLDP LLDP is enabled by default. Enable and disable LLDP globally or per interface. If you enable LLDP globally, all UP interfaces send periodic LLDPDUs. To enable LLDP, use the following command.
CONFIGURATION mode. protocol lldp 2 Enter LLDP management-interface mode. LLDP-MANAGEMENT-INTERFACE mode. management-interface 3 Enter the disable command. LLDP-MANAGEMENT-INTERFACE mode. To undo an LLDP management port configuration, precede the relevant command with the keyword no. Advertising TLVs You can configure the system to advertise TLVs out of all interfaces or out of specific interfaces. • If you configure the system globally, all interfaces send LLDPDUs with the specified TLVs.
In the following example, LLDP is enabled globally. R1 and R2 are transmitting periodic LLDPDUs that contain management, 802.1, and 802.3 TLVs. Figure 75. Configuring LLDP Viewing the LLDP Configuration To view the LLDP configuration, use the following command. • Display the LLDP configuration. CONFIGURATION or INTERFACE mode show config Examples of Viewing LLDP Configurations The following example shows viewing an LLDP global configuration.
Viewing Information Advertised by Adjacent LLDP Agents To view brief information about adjacent devices or to view all the information that neighbors are advertising, use the following commands. • Display brief information about adjacent devices. • show lldp neighbors Display all of the information that neighbors are advertising.
• Configure a non-default transmit interval.
tx Tx only R1(conf-lldp)#mode tx R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description mode tx no disable R1(conf-lldp)#no mode R1(conf-lldp)#show config ! protocol lldp advertise dot1-tlv port-protocol-vlan-id port-vlan-id advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description no disable R1(conf-lldp)# Configuring the Time to
Debugging LLDP You can view the TLVs that your system is sending and receiving. To view the TLVs, use the following commands. • View a readable version of the TLVs. • debug lldp brief View a readable version of the TLVs plus a hexadecimal version of the entire LLDPDU. debug lldp detail To stop viewing the LLDP TLVs sent and received by the system, use the no debug lldp command. Figure 76.
Table 55. LLDP Configuration MIB Objects MIB Object Category LLDP Variable LLDP MIB Object Description LLDP Configuration adminStatus lldpPortConfigAdminStatus Whether you enable the local LLDP agent for transmit, receive, or both. msgTxHold lldpMessageTxHoldMultiplier Multiplier value. msgTxInterval lldpMessageTxInterval Transmit Interval value. rxInfoTTL lldpRxInfoTTL Time to live for received TLVs. txInfoTTL lldpTxInfoTTL Time to live for transmitted TLVs.
TLV Type 4 5 6 7 8 TLV Name Port Description System Name System Description System Capabilities Management Address TLV Variable port description system name system description system capabilities enabled capabilities management address length management address subtype management address interface numbering subtype interface number OID System LLDP MIB Object Remote lldpRemPortId Local lldpLocPortDesc Remote lldpRemPortDesc Local lldpLocSysName Remote lldpRemSysName Local
TLV Type TLV Name TLV Variable PPVID 127 VLAN Name VID VLAN name length VLAN name System LLDP MIB Object Remote lldpXdot1RemProtoVlanE nabled Local lldpXdot1LocProtoVlanId Remote lldpXdot1RemProtoVlanI d Local lldpXdot1LocVlanId Remote lldpXdot1RemVlanId Local lldpXdot1LocVlanName Remote lldpXdot1RemVlanName Local lldpXdot1LocVlanName Remote lldpXdot1RemVlanName Table 58.
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object L2 Priority Local lldpXMedLocMediaPolicy Priority Remote lldpXMedRemMediaPolic yPriority Local lldpXMedLocMediaPolicy Dscp Remote lldpXMedRemMediaPolic yDscp Local lldpXMedLocLocationSub type Remote lldpXMedRemLocationSu btype Local lldpXMedLocLocationInf o Remote lldpXMedRemLocationInf o Local lldpXMedLocXPoEDevice Type Remote lldpXMedRemXPoEDevic eType Local lldpXMedLocXPoEPSEPo werSource DSCP Value 3 Location Iden
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object lldpXMedRemXPoEPDPo werReq Link Layer Discovery Protocol (LLDP) 502
27 Microsoft Network Load Balancing Network load balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems (OSs). NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group.
With Multicast NLB mode, the data forwards to all the servers based on the port specified using the following Layer 2 multicast command in CONFIGURATION MODE: mac-address-table static multicast vlan output-range , Limitations of the NLB Feature The following limitations apply to switches on which you configure NLB: • The NLB Unicast mode uses switch flooding to transmit all packets to all the servers that are part of the VLAN.
CONFIGURATION mode ip vlan-flooding There might be some ARP table entries that are resolved through ARP packets, which had the Ethernet MAC SA different from the MAC information inside the ARP packet. This unicast data traffic flooding occurs only for those packets that use these ARP entries.
28 Multicast Source Discovery Protocol (MSDP) Multicast source discovery protocol (MSDP) is supported on Dell Networking OS. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
RPs advertise each (S,G) in its domain in type, length, value (TLV) format. The total number of TLVs contained in the SA is indicated in the “Entry Count” field. SA messages are transmitted every 60 seconds, and immediately when a new source is detected. Figure 78.
With Anycast RP, all the RPs are configured to be MSDP peers of each other. When a source registers with one RP, an SA message is sent to the other RPs informing them that there is an active source for a particular multicast group. The result is that each RP is aware of the active sources in the area of the other RPs. If any of the RPs fail, IP routing converges and one of the RPs becomes the active RP in more than one area. New sources register with the backup RP.
Figure 79.
Figure 80.
Figure 81.
Figure 82. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. 1 Enable MSDP. CONFIGURATION mode ip multicast-msdp 2 Peer PIM systems in different administrative domains. CONFIGURATION mode ip msdp peer connect-source Examples of Configuring and Viewing MSDP R3(conf)#ip multicast-msdp R3(conf)#ip msdp peer 192.168.0.
Peer Addr Description Local Addr State Source SA Up/Down To view details about a peer, use the show ip msdp peer command in EXEC privilege mode. Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache). The system does not create entries in the multicast routing table until there is a local receiver for the corresponding multicast group. R3#show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.
If the total number of active sources is already larger than the limit when limiting is applied, the sources that are already in Dell Networking OS are not discarded. To enforce the limit in such a situation, use the clear ip msdp sa-cache command to clear all existing entries. Clearing the Source-Active Cache To clear the source-active cache, use the following command. • Clear the SA cache of all, local, or rejected entries, or entries for a specific group.
Figure 83.
Figure 84.
Figure 85. MSDP Default Peer, Scenario 4 Specifying Source-Active Messages To specify messages, use the following command. • Specify the forwarding-peer and originating-RP from which all active sources are accepted without regard for the RPF check. CONFIGURATION mode ip msdp default-peer ip-address list If you do not specify an access list, the peer accepts all sources that peer advertises. All sources from RPs that the ACL denies are subject to the normal RPF check.
MSDP Source-Active Cache - 3 entries GroupAddr SourceAddr RPAddr LearnedFrom 229.0.50.2 24.0.50.2 200.0.0.50 10.0.50.2 229.0.50.3 24.0.50.3 200.0.0.50 10.0.50.2 229.0.50.4 24.0.50.4 200.0.0.50 10.0.50.2 Dell#ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 3 rejected SAs received, cache-size 32766 UpTime GroupAddr SourceAddr RPAddr 00:33:18 229.0.50.64 24.0.50.64 200.0.1.50 00:33:18 229.0.50.65 24.0.50.65 200.0.1.50 00:33:18 229.0.50.66 24.0.50.66 200.0.1.
R1_E600(conf)#do show ip msdp sa-cache rejected-sa MSDP Rejected SA Cache 1 rejected SAs received, cache-size 1000 UpTime GroupAddr SourceAddr RPAddr LearnedFrom 00:02:20 239.0.0.1 10.11.4.2 192.168.0.1 local Reason Redistribute Preventing MSDP from Caching a Remote Source To prevent MSDP from caching a remote source, use the following commands. 1 OPTIONAL: Cache sources that the SA filter denies in the rejected SA cache.
! ip multicast-msdp ip msdp peer 192.168.0.3 connect-source Loopback 0 ip msdp sa-filter out 192.168.0.3 list mylocalfilter R1(conf)#do show run acl ! ip access-list extended mylocalfilter seq 5 deny ip host 239.0.0.1 host 10.11.4.2 seq 10 deny ip any any R1(conf)#do show ip msdp sa-cache MSDP Source-Active Cache - 1 entries GroupAddr SourceAddr RPAddr LearnedFrom Expire 239.0.0.1 10.11.4.2 192.168.0.
Timers: KeepAlive 30 sec, Hold time 75 sec SourceActive packet count (in/out): 0/0 SAs learned from this peer: 0 SA Filtering: Clearing Peer Statistics To clear the peer statistics, use the following command. • Reset the TCP connection to the peer and clear all peer statistics. CONFIGURATION mode clear ip msdp peer peer-address Example of the clear ip msdp peer Command and Verifying Statistics are Cleared R3(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.
MSDP with Anycast RP Anycast RP uses MSDP with PIM-SM to allow more than one active group to use RP mapping. PIM-SM allows only active groups to use RP mapping, which has several implications: • traffic concentration: PIM-SM allows only one active group to RP mapping which means that all traffic for the group must, at least initially, travel over the same part of the network.
3. RPs use MSDP to peer with each other using a unique address. Figure 86. MSDP with Anycast RP Configuring Anycast RP To configure anycast RP, use the following commands. 1 In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback 2 Make this address the RP for the group.
4 Peer each RP with every other RP using MSDP, specifying the unique Loopback address as the connect-source. CONFIGURATION mode ip msdp peer 5 Advertise the network of each of the unique Loopback addresses throughout the network. ROUTER OSPF mode network Reducing Source-Active Message Flooding RPs flood source-active messages to all of their peers away from the RP.
no shutdown ! router ospf 1 network 10.11.2.0/24 area 0 network 10.11.1.0/24 area 0 network 10.11.3.0/24 area 0 network 192.168.0.11/32 area 0 ! ip multicast-msdp ip msdp peer 192.168.0.3 connect-source Loopback 1 ip msdp peer 192.168.0.22 connect-source Loopback 1 ip msdp mesh-group AS100 192.168.0.22 ip msdp originator-id Loopback 1! ip pim rp-address 192.168.0.1 group-address 224.0.0.0/4 The following example shows an R2 configuration for MSDP with Anycast RP.
The following example shows an R3 configuration for MSDP with Anycast RP. ip multicast-routing ! interface TenGigabitEthernet 3/21/1 ip pim sparse-mode ip address 10.11.0.32/24 no shutdown interface TenGigabitEthernet 3/41/1 ip pim sparse-mode ip address 10.11.6.34/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.3/32 no shutdown ! router ospf 1 network 10.11.6.0/24 area 0 network 192.168.0.
ip address 192.168.0.1/32 no shutdown ! router ospf 1 network 10.11.2.0/24 area 0 network 10.11.1.0/24 area 0 network 192.168.0.1/32 area 0 network 10.11.3.0/24 area 0 ! ip multicast-msdp ip msdp peer 192.168.0.3 connect-source Loopback 0 ! ip pim rp-address 192.168.0.1 group-address 224.0.0.0/4 MSDP Sample Configuration: R2 Running-Config ip multicast-routing ! interface TenGigabitEthernet 1/1/1 ip pim sparse-mode ip address 10.11.4.
ip address 10.11.80.3/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.3/32 no shutdown ! router ospf 1 network 10.11.6.0/24 area 0 network 192.168.0.3/32 area 0 redistribute static redistribute connected redistribute bgp 200 ! router bgp 200 redistribute ospf 1 neighbor 192.168.0.2 remote-as 100 neighbor 192.168.0.2 ebgp-multihop 255 neighbor 192.168.0.2 update-source Loopback 0 neighbor 192.168.0.2 no shutdown ! ip multicast-msdp ip msdp peer 192.168.0.
29 Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances. Protocol Overview MSTP — specified in IEEE 802.
• Creating Multiple Spanning Tree Instances • Influencing MSTP Root Selection • Interoperate with Non-Dell Bridges • Changing the Region Name or Revision • Modifying Global Parameters • Modifying the Interface Parameters • Configuring an EdgePort • Flush MAC Addresses after a Topology Change • MSTP Sample Configurations • Debugging and Verifying MSTP Configurations Spanning Tree Variations The Dell Networking OS supports four variations of spanning tree, as shown in the following table.
• Interoperate with Non-Dell Networking OS Bridges • Changing the Region Name or Revision • Modifying Global Parameters • Modifying the Interface Parameters • Configuring an EdgePort • Flush MAC Addresses after a Topology Change • Debugging and Verifying MSTP Configurations • Prevent Network Disruptions with BPDU Guard • Enabling SNMP Traps for Root Elections and Topology Changes • Configuring Spanning Trees as Hitless Enable Multiple Spanning Tree Globally MSTP is not enabled by default
PROTOCOL MSTP mode msti Specify the keyword vlan then the VLANs that you want to participate in the MSTI. Examples of Configuring and Viewing MSTI The following examples shows the msti command. Dell(conf)#protocol spanning-tree mstp Dell(conf-mstp)#msti 1 vlan 100 Dell(conf-mstp)#msti 2 vlan 200-300 Dell(conf-mstp)#show config ! protocol spanning-tree mstp no disable MSTI 1 VLAN 100 MSTI 2 VLAN 200-300 All bridges in the MSTP region must have the same VLAN-to-instance mapping.
Bridge Identifier has priority 32768, Address 0001.e80d.b6d6 Configured hello time 2, max age 20, forward delay 15, max hops 20 Current root has priority 32768, Address 0001.e806.953e Number of topology changes 2, last change occured 1d2h ago on Te 1/21/1 Port 374 (TenGigabitEthernet 1/21/1) is root Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.374 Designated root has priority 32768, address 0001.e806.953e Designated bridge has priority 32768, address 0001.e806.
• Revision is a 2-byte number. The default revision number OS is 0. • VLAN-to-instance mapping is the placement of a VLAN in an MSTI. For a bridge to be in the same MSTP region as another, all three of these qualities must match exactly. The default values for the name and revision number must match on all Dell Networking OS devices. If there are non-Dell devices that participate in MSTP, ensure these values match on all devices. NOTE: Some non-Dell devices may implement a non-null default region name.
The default is 15 seconds. 2 Change the hello-time parameter. PROTOCOL MSTP mode hello-time seconds NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. The default is 2 seconds. 3 Change the max-age parameter. PROTOCOL MSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. 4 Change the max-hops parameter. PROTOCOL MSTP mode max-hops number The range is from 1 to 40.
Table 60.
• Enable EdgePort on an interface. INTERFACE mode spanning-tree mstp edge-port [bpduguard | shutdown-on-violation] Dell Networking OS Behavior: Regarding bpduguard shutdown-on-violation behavior: – If the interface to be shut down is a port channel, all the member ports are disabled in the hardware. – When you add a physical port to a port channel already in the Error Disable state, the new member port is also disabled in the hardware.
MSTP Sample Configurations The running-configurations support the topology shown in the following illustration. The configurations are from Dell Networking OS systems. Figure 88. MSTP with Three VLANs Mapped to Two Spanning Tree Instances Router 1 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3.
! interface Vlan 200 no ip address tagged TenGigabitEthernet 1/21,31/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/21,31/1 no shutdown Router 2 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
interface TenGigabitEthernet 2/31/1 no ip address switchport no shutdown ! (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 2/11/1,31/1 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 2/11/1,31/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 2/11/1,31/1 no shutdown Router 3 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2.
revision 123 MSTI 1 VLAN 100 MSTI 2 VLAN 200,300 ! (Step 2) interface TenGigabitEthernet 3/11/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/21/1 no ip address switchport no shutdown ! (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown SFTOS Example Running-Configuration Th
interface vlan 200 tagged 1/0/31 tagged 1/0/32 exit interface vlan 300 tagged 1/0/31 tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. • Display BPDUs. EXEC Privilege mode • debug spanning-tree mstp bpdu Display MSTP-triggered topology change messages.
Dell# 4w0d4h : MSTP: Sending BPDU on Te 2/21/1 : ProtId: 0, Ver: 3, Bpdu Type: MSTP, Flags 0x6e CIST Root Bridge Id: 32768:0001.e806.953e, Ext Path Cost: 0 Regional Bridge Id: 32768:0001.e806.953e, CIST Port Id: 128:470 Msg Age: 0, Max Age: 20, Hello: 2, Fwd Delay: 15, Ver1 Len: 0, Ver3 Len: 96 Name: Tahiti, Rev: 123, Int Root Path Cost: 0 Rem Hops: 20, Bridge Id: 32768:0001.e806.953e 4w0d4h : INST 1: Flags: 0x6e, Reg Root: 32768:0001.e806.
30 Multicast Features NOTE: Multicast routing is supported on secondary IP addresses; it is not supported on IPv6. NOTE: Multicast routing is supported across default and non-default virtual routing and forwarding (VRFs).
Protocol Ethernet Address NTP 01:00:5e:00:01:01 VRRP 01:00:5e:00:00:12 PIM-SM 01:00:5e:00:00:0d • The Dell Networking OS implementation of MTRACE is in accordance with IETF draft draft-fenner-traceroute-ipm. • Multicast is not supported on secondary IP addresses. • If you enable multicast routing, egress Layer 3 ACL is not applied to multicast data traffic. Multicast Policies The Dell Networking OS supports multicast features for IPv4.
NOTE: The IN-L3-McastFib CAM partition stores multicast routes and is a separate hardware limit that exists per port-pipe. Any software-configured limit may supersede this hardware space limitation. The opposite is also true, the CAM partition might not be exhausted at the time the system-wide route limit is reached using the ip multicast-limit command.
entry is created only for group 239.0.0.1. VLAN 300 has no access list limiting Receiver 1, so both IGMP reports are accepted and two corresponding entries are created in the routing table. Figure 89. Preventing a Host from Joining a Group The following table lists the location and description shown in the previous illustration. Table 61. Preventing a Host from Joining a Group — Description Location Description 1/21/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.12.
Location Description • no shutdown 2/1/1 • • • • Interface TenGigabitEthernet 2/1/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11/1 • • • • Interface TenGigabitEthernet 2/11/1 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31/1 • • • • Interface TenGigabitEthernet 2/31/1 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1/1 • • • • Interface TenGigabitEthernet 3/1/1 ip pim sparse-mode ip address 10.11.5.
Preventing a PIM Router from Forming an Adjacency To prevent a router from participating in PIM (for example, to configure stub multicast routing), use the following command. • Prevent a router from participating in PIM. INTERFACE mode ip pim neighbor-filter Setting a Threshold for Switching to the SPT The functionality to specify a threshold for switchover to the shortest path trees (SPTs) is available on the system.
Figure 90. Preventing a Source from Transmitting to a Group The following table lists the location and description shown in the previous illustration. Table 63. Preventing a Source from Transmitting to a Group — Description Location Description 1/21/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.12.1/24 no shutdown 1/31/1 • • • • Interface TenGigabitEthernet 1/31/1 ip pim sparse-mode ip address 10.11.13.
Location Description 2/1/1 • • • • Interface TenGigabitEthernet 2/1/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11/1 • • • • Interface TenGigabitEthernet 2/11/1 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31/1 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown • • • • Interface TenGigabitEthernet 3/1/1 ip pim sparse-mode ip address 10.11.5.
Preventing a PIM Router from Processing a Join To permit or deny PIM Join/Prune messages on an interface using an extended IP access list, use the following command. NOTE: Dell Networking recommends not using the ip pim join-filter command on an interface between a source and the RP router. Using this command in this scenario could cause problems with the PIM-SM source registration process resulting in excessive traffic being sent to the CPU of both the RP and PIM DR of the source.
31 Object Tracking IPv4 or IPv6 object tracking is available on Dell Networking OS. Object tracking allows the Dell Networking OS client processes, such as virtual router redundancy protocol (VRRP), to monitor tracked objects (for example, interface or link status) and take appropriate action when the state of an object changes. NOTE: In Dell Networking OS release version 8.4.1.0, object tracking is supported only on VRRP.
the default route in each router changes, the mastership of the VRRP group is automatically reassigned to the router with the better metric. Figure 91. Object Tracking Example When you configure a tracked object, such as an IPv4/IPv6 a route or interface, you specify an object number to identify the object. Optionally, you can also specify: • UP and DOWN thresholds used to report changes in a route metric. • A time delay before changes in a tracked object’s state are reported to a client.
Track IPv4 and IPv6 Routes You can create an object that tracks an IPv4 or IPv6 route entry in the routing table. Specify a tracked route by its IPv4 or IPv6 address and prefix-length. Optionally specify a tracked route by a virtual routing and forwarding (VRF) instance name if the route to be tracked is part of a VRF. The next-hop address is not part of the definition of the tracked object.
DOWN. For example, to configure object tracking for a RIP route to be considered UP only if the RIP hop count is less than or equal to 4, you would configure the UP threshold to be 64 (4 x 16) and the DOWN threshold to be 65. Set Tracking Delays You can configure an optional UP and/or DOWN timer for each tracked object to set the time delay before a change in the state of a tracked object is communicated to clients.
To configure object tracking on the status of a Layer 2 interface, use the following commands. 1 Configure object tracking on the line-protocol state of a Layer 2 interface. CONFIGURATION mode track object-id interface interface line-protocol Valid object IDs are from 1 to 65535. 2 (Optional) Configure the time delay used before communicating a change in the status of a tracked interface. OBJECT TRACKING mode delay {[up seconds] [down seconds]} Valid delay times are from 0 to 180 seconds.
• The status of an IPv6 interface is UP only if the Layer 2 status of the interface is UP and the interface has a valid IPv6 address. • The Layer 3 status of an IPv6 interface goes DOWN when its Layer 2 status goes down (for a Layer 3 VLAN, all VLAN ports must be down) or the IPv6 address is removed from the routing table. To remove object tracking on a Layer 3 IPv4/IPv6 interface, use the no track object-id command.
Track an IPv4/IPv6 Route You can create an object that tracks the reachability or metric of an IPv4 or IPv6 route. You specify the route to be tracked by its address and prefix-length values. Optionally, for an IPv4 route, you can enter a VRF instance name if the route is part of a VPN routing and forwarding (VRF) table. The next-hop address is not part of the definition of a tracked IPv4/IPv6 route.
CONFIGURATION mode track object-id {ip route ip-address/prefix-len | ipv6 route ipv6-address/prefix-len} reachability [vrf vrf-name] Valid object IDs are from 1 to 65535. Enter an IPv4 address in dotted decimal format; valid IPv4 prefix lengths are from / 0 to /32. Enter an IPv6 address in X:X:X:X::X format; valid IPv6 prefix lengths are from / 0 to /128. (Optional) E-Series only: For an IPv4 route, you can enter a VRF name to specify the virtual routing table to which the tracked route belongs.
Reachability is Down (route not in route table) 2 changes, last change 00:03:03 Tracking a Metric Threshold Use the following commands to configure object tracking on the metric threshold of an IPv4 or IPv6 route. To remove object tracking, use the no track object-id command. 1 (Optional) Reconfigure the default resolution value used by the specified protocol to scale the metric for IPv4 or IPv6 routes.
Example of IPv4 and IPv6 Tracking Metric Thresholds The following example configures object tracking on the metric threshold of an IPv4 route: Dell(conf)#track 6 ip route 2.1.1.0/24 metric threshold Dell(conf-track-6)#delay down 20 Dell(conf-track-6)#delay up 20 Dell(conf-track-6)#description track ip route metric Dell(conf-track-6)#threshold metric down 40 Dell(conf-track-6)#threshold metric up 40 Dell(conf-track-6)#exit Dell(conf)#track 10 ip route 3.1.1.
IP routing is Up 3 changes, last change 00:03:30 Tracked by: Example of the show track brief Command Router# show track brief ResId State 1 Resource LastChange IP route reachability Parameter 10.16.0.0/16 Example of the show track resolution Command Dell#show track resolution IP Route Resolution ISIS 1 OSPF 1 IPv6 Route Resolution ISIS 1 Example of the show track vrf Command Dell#show track vrf red Track 5 IP route 192.168.0.
32 Open Shortest Path First (OSPFv2 and OSPFv3) Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on Dell Networking OS. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell Networking Operating System (OS). NOTE: The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same between OSPFv2 and OSPFv3.
area within the AS may not see the details of another area’s topology. AS areas are known by their area number or the router’s IP address. Figure 92. Autonomous System Areas Area Types The backbone of the network is Area 0. It is also called Area 0.0.0.0 and is the core of any AS. All other areas must connect to Area 0. An OSPF backbone is responsible for distributing routing information between areas.
• Totally stubby areas are referred to as no summary areas in the Dell Networking OS. Networks and Neighbors As a link-state protocol, OSPF sends routing information to other OSPF routers concerning the state of the links between them. The state (up or down) of those links is important. Routers that share a link become neighbors on that segment. OSPF uses the Hello protocol as a neighbor discovery and keep alive mechanism.
The following example shows different router designations. Figure 93. OSPF Routing Examples Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example. Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone.
An ABR can connect to many areas in an AS, and is considered a member of each area it connects to. Autonomous System Border Router (ASBR) The autonomous system border area router (ASBR) connects to more than one AS and exchanges information with the routers in other ASs. Generally, the ASBR connects to a non-interior gate protocol (IGP) such as BGP or uses static routes.
• Type 7: External LSA — Routers in an NSSA do not receive external LSAs from ABRs, but are allowed to send external routing information for redistribution. They use Type 7 LSAs to tell the ABRs about these external routes, which the ABR then translates to Type 5 external LSAs and floods as normal to the rest of the OSPF network. • Type 8: Link LSA (OSPFv3) — This LSA carries the IPv6 address information of the local links.
Figure 94. Priority and Cost Examples OSPF with Dell Networking OS The Dell Networking OS supports up to 10,000 OSPF routes for OSPFv2. Within the that 10,000 routes, you can designate up to 8,000 routes as external and up to 2,000 as inter/intra area routes. Dell Networking OS version 9.4(0.0) and later support only one OSPFv2 process per VRF. Dell Networking OS version 9.7(0.0) and later support OSPFv3 in VRF. Also, on OSPFv3, Dell Networking OS supports only one OSPFv3 process per VRF.
Graceful Restart When a router goes down without a graceful restart, there is a possibility for loss of access to parts of the network due to ongoing network topology changes. Additionally, LSA flooding and reconvergence can cause substantial delays. It is, therefore, desirable that the network maintains a stable topology if it is possible for data flow to continue uninterrupted.
An unplanned restart occurs when an unplanned event causes the active RPM to switch to the backup RPM, such as when an active process crashes, the active RPM is removed, or a power failure happens. During an unplanned restart, OSPF sends out a Grace LSA when the backup RPM comes online. To display the configuration values for OSPF graceful restart, enter the show run ospf command for OSPFv2 and the show run ospf and show ipv6 ospf database database-summary commands for OSPFv3.
flood-2328 Example of Viewing the Debug Log for Flooding Behavior To confirm RFC 2328 flooding behavior, use the debug ip ospf packet command. The following example shows no change in the updated packets (shown in bold). ACKs 2 (shown in bold) is printed only for ACK packets. The following example shows no change in the updated packets (shown in bold). ACKs 2 (shown in bold) is printed only for ACK packets. 00:10:41 : OSPF(1000:00): Rcv. v:2 t:5(LSAck) l:64 Acks 2 rid:2.2.2.
Examples of Setting and Viewing a Dead Interval In the following example, the dead interval is set at 4x the hello interval (shown in bold). Dell(conf)#int tengigabitethernet 2/2/1 Dell(conf-if-te-2/2/1)#ip ospf hello-interval 20 Dell(conf-if-te-2/2/1)#ip ospf dead-interval 80 Dell(conf-if-te-2/2/1)# In the following example, the dead interval is set at 4x the hello interval (shown in bold).
• Troubleshooting OSPFv2 1 Configure a physical interface. Assign an IP address, physical or Loopback, to the interface to enable Layer 3 routing. 2 Enable OSPF globally. Assign network area and neighbors. 3 Add interfaces or configure other attributes. 4 Set the time interval between when the switch receives a topology change and starts a shortest path first (SPF) calculation.
After the OSPF process and the VRF are tied together, the OSPF process ID cannot be used again in the system. If you try to enter an OSPF process ID, or if you try to enable more OSPF processes than available Layer 3 interfaces, prior to assigning an IP address to an interface and setting the no shutdown command, the following message displays: Dell(conf)#router ospf 1 % Error: No router ID available. Assigning a Router ID In CONFIGURATION ROUTER OSPF mode, assign the router ID.
The IP Address Format is A.B.C.D/M. The area ID range is from 0 to 65535 or A.B.C.D/M. Enable OSPFv2 on Interfaces Enable and configure OSPFv2 on each interface (configure for Layer 3 protocol), and not shutdown. You can also assign OSPFv2 to a Loopback interface as a virtual interface. OSPF functions and features, such as MD5 Authentication, Grace Period, Authentication Wait Time, are assigned on a per interface basis.
Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 13.1.1.1 (Designated Router) Dell> Loopback interfaces also help the OSPF process. OSPF picks the highest interface address as the router-id and a Loopback interface address has a higher precedence than other interface addresses. Example of Viewing OSPF Status on a Loopback Interface Dell#show ip ospf 1 int TenGigabitEthernet 1/23/1 is up, line protocol is up Internet Address 10.168.0.1/24, Area 0.0.0.1 Process ID 1, Router ID 10.168.
Example of the show ip ospf database database-summary Command To view which LSAs are transmitted, use the show ip ospf database process-id database-summary command in EXEC Privilege mode. Dell#show ip ospf 34 database database-summary OSPF Router with ID (10.1.2.100) (Process ID 34) Area 2.2.2.2 3.3.3.3 Dell# ID Router Network S-Net S-ASBR Type-7 Subtotal 1 0 0 0 0 1 1 0 0 0 0 1 To view information on areas, use the show ip ospf process-id command in EXEC Privilege mode.
Backup Designated Router (ID) 0.0.0.0, Interface address 0.0.0.0 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 No Hellos (Passive interface) Neighbor Count is 0, Adjacent neighbor count is 0 Loopback 45 is up, line protocol is up Internet Address 10.1.1.23/24, Area 2.2.2.2 Process ID 34, Router ID 10.1.2.
Changing OSPFv2 Parameters on Interfaces In Dell Networking OS, you can modify the OSPF settings on the interfaces. Some interface parameter values must be consistent across all interfaces to avoid routing errors. For example, set the same time interval for the hello packets on all routers in the OSPF network to prevent misconfiguration of OSPF neighbors. To change OSPFv2 parameters on the interfaces, use any or all of the following commands. • Change the cost associated with OSPF traffic on the interface.
• Change the wait period between link state update packets sent out the interface. CONFIG-INTERFACE mode ip ospf transmit-delay seconds – seconds: the range is from 1 to 65535 (the default is 1 second). The transmit delay must be the same on all routers in the OSPF network. Example of Changing and Verifying the cost Parameter and Viewing Interface Status To view interface configurations, use the show config command in CONFIGURATION INTERFACE mode.
The default is 0 seconds. Enabling OSPFv2 Graceful Restart Graceful restart is enabled for the global OSPF process. The Dell Networking implementation of OSPFv2 graceful restart enables you to specify: • grace period — the length of time the graceful restart process can last before OSPF terminates it. • helper-reject neighbors — the router ID of each restart router that does not receive assistance from the configured router. • mode — the situation or situations that trigger a graceful restart.
For more information about OSPF graceful restart, refer to the Dell Networking OS Command Line Reference Guide. Example of the show run ospf Command When you configure a graceful restart on an OSPFv2 router, the show run ospf command displays information similar to the following. Dell#show run ospf ! router ospf 1 graceful-restart grace-period 300 graceful-restart role helper-only graceful-restart mode unplanned-only graceful-restart helper-reject 10.1.1.1 graceful-restart helper-reject 20.1.1.1 network 10.
NOTE: Do not route iBGP routes to OSPF unless there are route-maps associated with the OSPF redistribution. To redistribute routes, use the following command. • Specify which routes are redistributed into OSPF process.
• View the summary information of the IP routes. EXEC Privilege mode • show ip route summary View the summary information for the OSPF database. EXEC Privilege mode • show ip ospf database View the configuration of OSPF neighbors connected to the local router. EXEC Privilege mode • show ip ospf neighbor View the LSAs currently in the queue. EXEC Privilege mode • show ip ospf timers rate-limit View debug messages.
Basic OSPFv2 Router Topology The following illustration is a sample basic OSPFv2 topology. Figure 95. Basic Topology and CLI Commands for OSPFv2 OSPF Area 0 — Te 1/1/1 and 1/2/1 router ospf 11111 network 10.0.11.0/24 area 0 network 10.0.12.0/24 area 0 network 192.168.100.0/24 area 0 ! interface TenGigabitEthernet 1/1/1 ip address 10.1.11.1/24 no shutdown ! interface TenGigabitEthernet 1/2/1 ip address 10.2.12.2/24 no shutdown ! interface Loopback 10 ip address 192.168.100.
OSPF Area 0 — Te 2/1/1 and 2/2/1 router ospf 22222 network 192.168.100.0/24 area 0 network 10.2.21.0/24 area 0 network 10.2.22.0/24 area 0 ! interface Loopback 20 ip address 192.168.100.20/24 no shutdown ! interface TenGigabitEthernet 2/1/1 ip address 10.2.21.2/24 no shutdown ! interface TenGigabitEthernet 2/2/1 ip address 10.2.22.
Enabling IPv6 Unicast Routing To enable IPv6 unicast routing, use the following command. • Enable IPv6 unicast routing globally. CONFIGURATION mode ipv6 unicast routing Applying cost for OSPFv3 Change in bandwidth directly affects the cost of OSPF routes. • Explicitly specify the cost of sending a packet on an interface. INTERFACE mode ipv6 ospf interface-cost • – interface-cost:The range is from 1 to 65535. Default cost is based on the bandwidth.
tasks — the router ospf command to create the OSPF process, then the network area command to enable OSPFv2 on an interface. NOTE: The OSPFv2 network area command enables OSPFv2 on multiple interfaces with the single command. Use the OSPFv3 ipv6 ospf area command on each interface that runs OSPFv3. • Assign the OSPFv3 process and an OSPFv3 area to this interface. CONF-INT-type slot/port mode ipv6 ospf process-id area area-id – process-id: the process ID number assigned.
router-id {number} – number: the IPv4 address. The format is A.B.C.D. NOTE: Enter the router-id for an OSPFv3 router as an IPv4 IP address. • Disable OSPF. CONFIGURATION mode • no ipv6 router ospf process-id} Reset the OSPFv3 process. EXEC Privilege mode clear ipv6 ospf process Configuring Stub Areas To configure IPv6 stub areas, use the following command. • Configure the area as a stub area.
Redistributing Routes You can add routes from other routing instances or protocols to the OSPFv3 process. With the redistribute command, you can include RIP, static, or directly connected routes in the OSPF process. Route redistribution is also supported between OSPF Routing process IDs. To add redistributing routes, use the following command. • Specify which routes are redistributed into the OSPF process.
When you enable the helper-reject role on an interface using the ipv6 ospf graceful-restart helper-reject command, you reconfigure OSPFv3 graceful restart to function in a restarting-only role. OSPFv3 does not participate in the graceful restart of a neighbor. NOTE: Enter the ipv6 ospf graceful-restart helper-reject command in Interface configuration mode. • Enable OSPFv3 graceful restart globally by setting the grace period (in seconds).
router-id 200.1.1.1 log-adjacency-changes graceful-restart grace-period 180 network 20.1.1.0/24 area 0 network 30.1.1.0/24 area 0 ! ipv6 router ospf 1 log-adjacency-changes graceful-restart grace-period 180 The following example shows the show ipv6 ospf database database-summary command. Dell#show ipv6 ospf database database-summary ! OSPFv3 Router with ID (200.1.1.
• Transport mode — encrypts only the data portion (payload) of each packet, but leaves the header untouched. • Tunnel mode — is more secure and encrypts both the header and payload. On the receiving side, an IPsec-compliant device decrypts each packet. NOTE: Dell Networking OS supports only Transport Encryption mode in OSPFv3 authentication with IPsec.
– ESP with non-null encryption is supported for full confidentiality. – 3DES, DES, AES-CBC, and NULL encryption algorithms are supported; encrypted and unencrypted keys are supported. NOTE: To encrypt all keys on a router, use the service password-encryption command in Global Configuration mode. However, this command does not provide a high level of network security.
NOTE: When you configure encryption using the ipv6 ospf encryption ipsec command, you enable both IPsec encryption and authentication. However, when you enable authentication on an interface using the ipv6 ospf authentication ipsec command, you do not enable encryption at the same time. The SPI value must be unique to one IPsec security policy (authentication or encryption) on the router. Configure the same authentication policy (the same SPI and key) on each OSPFv3 interface in a link.
– area area-id: specifies the area for which OSPFv3 traffic is to be authenticated. For area-id, enter a number or an IPv6 prefix. – spi number: is the SPI value. The range is from 256 to 4294967295. – MD5 | SHA1: specifies the authentication type: message digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1). – key-encryption-type: (optional) specifies if the key is encrypted. The valid values are 0 (key is not encrypted) or 7 (key is encrypted). • – key: specifies the text string used in authentication.
• Display the configuration of IPsec encryption policies on the router. show crypto ipsec policy Displaying OSPFv3 IPsec Security Policies To display the configuration of IPsec authentication and encryption policies, use the following commands. • Display the AH and ESP parameters configured in IPsec security policies, including the SPI number, key, and algorithms used. EXEC Privilege mode show crypto ipsec policy [name name] • – name: displays configuration details about a specified policy.
bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba8ed8bb5efe91e97eb7c0c30808825fb5 Outbound ESP Auth Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba8ed8bb5efe91e97eb7c0c30808825fb5 Inbound ESP Cipher Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba10345a1039ba8f8a Outbound ESP Cipher Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba10345a1039ba8f8a Transform set : esp-128-aes esp-sha1-hmac The following example shows the show crypto ipsec sa ipv6 command.
• Did you configure the interfaces for Layer 3 correctly? • Is the router in the correct area type? • Did you include the routes in the OSPF database? • Did you include the OSPF routes in the routing table (not just the OSPF database)? Some useful troubleshooting commands are: • show ipv6 interfaces • show ipv6 protocols • debug ipv6 ospf events and/or packets • show ipv6 neighbors • show ipv6 routes Viewing Summary Information To get general route, configuration, links status, and debug i
33 Policy-based Routing (PBR) Policy-based routing (PBR) allows a switch to make routing decisions based on policies applied to an interface. Overview When a router receives a packet, the router decides where to forward the packet based on the destination address in the packet, which is used to look up an entry in a routing table. However, in some cases, there may be a need to forward the packet based on other criteria: size, source, protocol type, destination, and so on.
• TCP Flags After you apply a redirect-list to an interface, all traffic passing through it is subjected to the rules defined in the redirect-list. Traffic is forwarded based on the following: • Next-hop addresses are verified. If the specified next hop is reachable, traffic is forwarded to the specified next-hop. • If the specified next-hops are not reachable, the normal routing table is used to forward the traffic. • Dell Networking OS supports multiple next-hop entries in the redirect lists.
PBR Exceptions (Permit) To create an exception to a redirect list, use thepermit command. Exceptions are used when a forwarding decision should be based on the routing table rather than a routing policy. The Dell Networking OS assigns the first available sequence number to a rule configured without a sequence number and inserts the rule into the PBR CAM region next to the existing entries. Because the order of rules is important, ensure that you configure any necessary sequence numbers.
• • • • • • • • • • • • tunnel is used to configure the tunnel settings tunnel-id is used to redirect the traffic track is used to track the object-id track is to enable the tracking FORMAT: A.B.C.D FORMAT: slot/port/subport ip-protocol-number or protocol-type is the type of protocol to be redirected FORMAT: 0-255 for IP protocol number, or enter protocol type source ip-address or any or host ip-address is the Source’s IP address FORMAT: A.B.C.
Dell(conf-redirect-list)#seq 15 redirect Dell(conf-redirect-list)#seq 20 redirect Dell(conf-redirect-list)#show config ! ip redirect-list test seq 10 redirect 10.1.1.2 ip 20.1.1.0/24 seq 15 redirect 10.1.1.3 ip 20.1.1.0/25 seq 20 redirect 10.1.1.3 ip 20.1.1.0/24 Dell(conf-redirect-list)# 10.1.1.3 ip 20.1.1.0/25 any 10.1.1.3 ip 20.1.1.128/24 any any any any NOTE: Starting with the Dell Networking OS version 9.4(0.
In addition to supporting multiple redirect-lists in a redirect-group, multiple redirect-groups are supported on a single interface. Dell Networking OS has the capability to support multiple groups on an interface for backup purposes. Show Redirect List Configuration To view the configuration redirect list configuration, use the following commands. 1 View the redirect list configuration and the associated interfaces.
NOTE: If you apply the redirect-list to an interface, the output of the show ip redirect-list redirect-listname command displays reachability status for the specified next-hop.
Create the Redirect-List GOLD EDGE_ROUTER(conf-if-Te-2/23/1)#ip redirect-list GOLD EDGE_ROUTER(conf-redirect-list)#description Route GOLD traffic to ISP_GOLD. EDGE_ROUTER(conf-redirect-list)#direct 10.99.99.254 ip 192.168.1.0/24 any EDGE_ROUTER(conf-redirect-list)#redirect 10.99.99.254 ip 192.168.2.0/24 any EDGE_ROUTER(conf-redirect-list)# seq 15 permit ip any any EDGE_ROUTER(conf-redirect-list)#show config ! ip redirect-list GOLD description Route GOLD traffic to ISP_GOLD. seq 5 redirect 10.99.99.
Dell(conf-redirect-list)#redirect 42.1.1.2 track 3 udp 155.55.0.0/16 host 144.144.144.144 Dell(conf-redirect-list)#redirect 42.1.1.2 track 3 udp any host 144.144.144.144 Dell(conf-redirect-list)#redirect 43.1.1.2 track 4 ip host 7.7.7.7 host 144.144.144.144 Dell(conf-redirect-list)#end Verify the Status of the Track Objects (Up/Down): Dell#show track brief ResId 1 2 3 4 Resource Interface ip routing Interface ipv6 routing IP Host reachability IP Host reachability Parameter Tunnel 1 Tunnel 2 42.1.1.
Create Track Objects to track the Tunnel Interfaces: Dell#configure terminal Dell(conf)#track 1 interface tunnel 1 ip routing Dell(conf-track-1)#exit Dell(conf)#track 2 interface tunnel 2 ipv6 routing Dell(conf-track-2)#end Verify the Status of the Track Objects (Up/Down): Dell#show track brief ResId 1 2 Dell# Resource Interface ip routing Interface ipv6 routing Parameter Tunnel 1 Tunnel 2 State Up Up LastChange 00:00:00 00:00:00 Create a Redirect-list with Track Objects pertaining to Tunnel Interfaces
34 PIM Sparse-Mode (PIM-SM) Protocol-independent multicast sparse-mode (PIM-SM) is a multicast protocol that forwards multicast traffic to a subnet only after a request using a PIM Join message; this behavior is the opposite of PIM-Dense mode, which forwards multicast traffic to all subnets until a request to stop. Implementation Information The following information is necessary for implementing PIM-SM.
Refuse Multicast Traffic A host requesting to leave a multicast group sends an IGMP Leave message to the last-hop DR. If the host is the only remaining receiver for that group on the subnet, the last-hop DR is responsible for sending a PIM Prune message up the RPT to prune its branch to the RP. 1. After receiving an IGMP Leave message, the gateway removes the interface on which it is received from the outgoing interface list of the (*,G) entry.
ip multicast-routing Related Configuration Tasks The following are related PIM-SM configuration tasks. • Configuring S,G Expiry Timers • Configuring a Static Rendezvous Point • Configuring a Designated Router • Creating Multicast Boundaries and Domains Enable PIM-SM You must enable PIM-SM on each participating interface. 1 Enable multicast routing on the system. CONFIGURATION mode ip multicast-routing 2 Enable PIM-Sparse mode.
TenGigabitEthernet 1/11/1 TenGigabitEthernet 2/13/1 (10.87.31.5, 192.1.2.1), uptime 00:01:24, expires 00:02:26, flags: FT Incoming interface: TenGigabitEthernet 2/11/1, RPF neighbor 0.0.0.0 Outgoing interface list: TenGigabitEthernet 1/11/1 TenGigabitEthernet 1/12/1 TenGigabitEthernet 2/13/1 --More-- Configuring S,G Expiry Timers By default, S, G entries expire in 210 seconds. You can configure a global expiry time (for all [S,G] entries) or configure an expiry time for a particular entry.
Configuring a Static Rendezvous Point The rendezvous point (RP) is a PIM-enabled interface on a router that acts as the root a group-specific tree; every group must have an RP. • Identify an RP by the IP address of a PIM-enabled or Loopback interface. ip pim rp-address Example of Viewing an RP on a Loopback Interface Dell#sh run int loop0 ! interface Loopback 0 ip address 1.1.1.1/32 ip pim sparse-mode no shutdown Dell#sh run pim ! ip pim rp-address 1.1.1.1 group-address 224.0.0.
• Change the interval at which a router sends hello messages. INTERFACE mode • ip pim query-interval seconds Display the current value of these parameter. EXEC Privilege mode show ip pim interface Creating Multicast Boundaries and Domains A PIM domain is a contiguous set of routers that all implement PIM and are configured to operate within a common boundary defined by PIM multicast border routers (PMBRs). PMBRs connect each PIM domain to the rest of the Internet.
35 PIM Source-Specific Mode (PIM-SSM) PIM source-specific mode (PIM-SSM) is a multicast protocol that forwards multicast traffic from a single source to a subnet. In the other versions of protocol independent multicast (PIM), a receiver subscribes to a group only. The receiver receives traffic not just from the source in which it is interested but from all sources sending to that group.
Configure PIM-SSM Configuring PIM-SSM is a two-step process. 1. Configure PIM-SSM. 2. Enable PIM-SSM for a range of addresses. Related Configuration Tasks • Use PIM-SSM with IGMP Version 2 Hosts Enabling PIM-SSM To enable PIM-SSM, follow these steps. 1 Create an ACL that uses permit rules to specify what range of addresses should use SSM. CONFIGURATION mode ip access-list standard name 2 Enter the ip pim ssm-range command and specify the ACL you created.
If you do not specify the group option, the display is a list of groups currently in the IGMP group table that has a group-tosource mapping. To display the list of sources mapped to a group currently in the IGMP group table, use the show ip igmp groups group detail command. Configuring PIM-SSM with IGMPv2 R1(conf)#do show run pim ! ip pim rp-address 10.11.12.2 group-address 224.0.0.0/4 ip pim ssm-range ssm R1(conf)#do show run acl ! ip access-list standard map seq 5 permit host 239.0.0.
36 Port Monitoring Port monitoring (also referred to as mirroring ) allows you to monitor ingress and/or egress traffic on specified ports. The mirrored traffic can be sent to a port to which a network analyzer is connected to inspect or troubleshoot the traffic. Mirroring is used for monitoring Ingress or Egress or both Ingress and Egress traffic on a specific port(s). This mirrored traffic can be sent to a port where a network sniffer can connect and monitor the traffic.
• Single MD can be monitored on max. of 4 MG ports. Port Monitoring Port monitoring is supported on both physical and logical interfaces, such as VLAN and port-channel interfaces. The source port (MD) with monitored traffic and the destination ports (MG) to which an analyzer can be attached must be on the same switch. You can configure up to 128 source ports in a monitoring session. Only one destination port is supported in a monitoring session.
Dell Networking OS Behavior: The platform continues to mirror outgoing traffic even after an MD participating in spanning tree protocol (STP) transitions from the forwarding to blocking. Configuring Port Monitoring To configure port monitoring, use the following commands. 1 Verify that the intended monitoring port has no configuration other than no shutdown, as shown in the following example.
In the following example, the host and server are exchanging traffic which passes through the uplink interface 1/1/1. Port 1/1/1 is the monitored port and port 1/32/1 is the destination port, which is configured to only monitor traffic received on tengigabitethernet 1/1/1 (host-originated traffic). Figure 96. Port Monitoring Example Configuring Monitor Multicast Queue To configure monitor QoS multicast queue ID, use the following commands. 1 Configure monitor QoS multicast queue ID.
Enabling Flow-Based Monitoring Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead of all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You can specify traffic using standard or extended access-lists. 1 Enable flow-based monitoring for a monitoring session.
Remote port mirroring helps network administrators monitor and analyze traffic to troubleshoot network problems in a timesaving and efficient way. In a remote-port mirroring session, monitored traffic is tagged with a VLAN ID and switched on a user-defined, non-routable L2 VLAN. The VLAN is reserved in the network to carry only mirrored traffic, which is forwarded on all egress ports of the VLAN.
Configuring Remote Port Mirroring Remote port mirroring requires a source session (monitored ports on different source switches), a reserved tagged VLAN for transporting mirrored traffic (configured on source, intermediate, and destination switches), and a destination session (destination ports connected to analyzers on destination switches).
• • • • • • • Maximum number of destination sessions supported on a switch: 64 Maximum number ports supported in a destination session: 64. You can configure any port as a destination port. You can configure additional destination ports in an active session. You can tunnel the mirrored traffic from multiple remote-port source sessions to the same destination port. By default, destination port sends the mirror traffic to the probe port by stripping off the rpm header.
R R 100 300 Active Active T Fo 1/20/1 T Fo 1/24/1 Configuring the Sample Remote Port Mirroring Remote port mirroring requires a source session (monitored ports on different source switches), a reserved tagged VLAN for transporting mirrored traffic (configured on source, intermediate, and destination switches), and a destination session (destination ports connected to analyzers on destination switches). Table 64.
Dell(conf)#inte te 1/30/1 Dell(conf-if-te-1/30)#no shutdown Dell(conf-if-te-1/30)#switchport Dell(conf-if-te-1/30)#exit Dell(conf)#interface vlan 30 Dell(conf-if-vl-30)#mode remote-port-mirroring Dell(conf-if-vl-30)#tagged te 1/30/1 Dell(conf-if-vl-30)#exit Dell(conf)#interface port-channel 10 Dell(conf-if-po-10)#channel-member te 1/28/1 - 1/28/2 Dell(conf-if-po-10)#no shutdown Dell(conf-if-po-10)#exit Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source port-channel 10 dest remote-vlan 30 dir
Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source remote-vlan 30 destination te 1/6/1 Dell(conf-mon-sess-3)#tagged destination te 1/6/1 Dell(conf-mon-sess-3)#end Dell# Dell#show monitor session SessID Source Destination Dir Mode Source IP ------ ------------------ ---- --------1 remote-vlan 10 Te 1/4/1 N/A N/A N/A 2 remote-vlan 20 Te 1/5/1 N/A N/A N/A 3 remote-vlan 30 Te 1/6/1 N/A N/A N/A Dell# Dest IP -------N/A N/A N/A Configuring RSPAN Source Sessions to Avoid BPD Issues When ever you
Encapsulated Remote Port Monitoring Encapsulated Remote Port Monitoring (ERPM) copies traffic from source ports/port-channels or source VLANs and forwards the traffic using routable GRE-encapsulated packets to the destination IP address specified in the session. NOTE: When configuring ERPM, follow these guidelines • The Dell Networking OS supports ERPM source session only. Encapsulated packets terminate at the destination IP address or at the analyzer.
5 no flow-based enable ERPM to be performed on a flow-by-flow basis or if you configure a VLAN source interface. Enter the no flow-based command to disable to disable flow-based ERPM. 6 no disable Enter the no disable command to activate the ERPM session.. The following example shows an ERPM configuration .
ERPM Behavior on a typical Dell Networking OS The Dell Networking OS is designed to support only the Encapsulation of the data received / transmitted at the specified source port (Port A). An ERPM destination session / decapsulation of the ERPM packets at the destination Switch are not supported. Figure 98.
– Some tools support options to edit the capture file. We can make use of such features (for example: editcap ) and chop the ERPM header part and save it to a new trace file. This new file (i.e. the original mirrored packet) can be converted back into stream and fed to any egress interface. b Using Python script – Either have a Linux server's ethernet port ip as the ERPM destination ip or connect the ingress interface of the server to the ERPM MirrorToPort.
37 Private VLANs (PVLAN) The private VLAN (PVLAN) feature is supported on Dell Networking OS. For syntax details about the commands described in this chapter, refer to the Private VLANs commands chapter in the Dell Networking OS Command Line Reference Guide. Private VLANs extend the Dell Networking OS security suite by providing Layer 2 isolation between ports within the same virtual local area network (VLAN).
– A primary VLAN and each of its secondary VLANs decrement the available number of VLAN IDs in the switch. – A primary VLAN has one or more promiscuous ports. – A primary VLAN might have one or more trunk ports, or none. • Secondary VLAN — a subdomain of the primary VLAN. – There are two types of secondary VLAN — community VLAN and isolated VLAN.
• show vlan private-vlan [community | interface | isolated | primary | primary_vlan | interface interface] Display primary-secondary VLAN mapping. EXEC mode or EXEC Privilege mode • show vlan private-vlan mapping Set the PVLAN mode of the selected port. INTERFACE switchport mode private-vlan {host | promiscuous | trunk} NOTE: Secondary VLANs are Layer 2 VLANs, so even if they are operationally down while primary VLANs are operationally up, Layer 3 traffic is still transmitted across secondary VLANs.
NOTE: You cannot add interfaces that are configured as PVLAN ports to regular VLANs. You also cannot add “regular” ports (ports not configured as PVLAN ports) to PVLANs. The following example shows the switchport mode private-vlan command on a port and on a port channel.
6 (OPTIONAL) Assign an IP address to the VLAN. INTERFACE VLAN mode ip address ip address 7 (OPTIONAL) Enable/disable Layer 3 communication between secondary VLANs. INTERFACE VLAN mode ip local-proxy-arp NOTE: If a promiscuous or host port is untagged in a VLAN and it receives a tagged packet in the same VLAN, the packet is NOT dropped. Creating a Community VLAN A community VLAN is a secondary VLAN of the primary VLAN in a private VLAN.
INTERFACE VLAN mode private-vlan mode isolated 4 Add one or more host ports to the VLAN. INTERFACE VLAN mode tagged interface or untagged interface You can enter the interfaces singly or in range format, either comma-delimited (slot/port,port,port) or hyphenated (slot/ port-port). You can only add ports defined as host to the VLAN.
Private VLAN Configuration Example The following example shows a private VLAN topology. Figure 99. Sample Private VLAN Topology The following configuration is based on the example diagram for the Z9500: • Te 1/1 and Te 1/23 are configured as promiscuous ports, assigned to the primary VLAN, VLAN 4000. • Te 1/25 is configured as a PVLAN trunk port, also assigned to the primary VLAN 4000. • Te 1/24 and Te 1/47 are configured as host ports and assigned to the isolated VLAN, VLAN 4003.
• • Te 1/3 is a promiscuous port and Te 1/25 is a PVLAN trunk port, assigned to the primary VLAN 4000. Te 1/4-6 are host ports. Te 1/4 and Te 1/5 are assigned to the community VLAN 4001, while Te 1/6 is assigned to the isolated VLAN 4003. The result is that: • • The S4810 ports would have the same intra-switch communication characteristics as described for the Z9500.
Primary Isolated Community : 4000 : 4003 : 4001 NOTE: In the following example, notice the addition of the PVLAN codes – P, I, and C – in the left column. The following example shows viewing the VLAN status.
38 Per-VLAN Spanning Tree Plus (PVST+) Per-VLAN spanning tree plus (PVST+) is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN). Protocol Overview PVST+ is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN).
Figure 100. Per-VLAN Spanning Tree The Dell Networking OS supports three other variations of spanning tree, as shown in the following table. Table 66. Spanning Tree Variations Dell Networking OS Supports Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .
2. Place the interfaces in VLANs. 3. Enable PVST+. 4. Optionally, for load balancing, select a nondefault bridge-priority for a VLAN.
Influencing PVST+ Root Selection As shown in the previous per-VLAN spanning tree illustration, all VLANs use the same forwarding topology because R2 is elected the root, and all TenGigabitEthernet ports have the same cost. The following per-VLAN spanning tree illustration changes the bridge priority of each bridge so that a different forwarding topology is generated for each VLAN. This behavior demonstrates how you can use PVST+ to achieve load balancing. Figure 101.
Root Identifier has priority 4096, Address 0001.e80d.b6d6 Root Bridge hello time 2, max age 20, forward delay 15 Bridge Identifier has priority 4096, Address 0001.e80d.b6d6 Configured hello time 2, max age 20, forward delay 15 We are the root of VLAN 100 Current root has priority 4096, Address 0001.e80d.b6d6 Number of topology changes 5, last change occurred 00:34:37 ago on Te 1/32/1 Port 375 (TenGigabitEthernet 1/22/1) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.
The values for global PVST+ parameters are given in the output of the show spanning-tree pvst command. Modifying Interface PVST+ Parameters You can adjust two interface parameters (port cost and port priority) to increase or decrease the probability that a port becomes a forwarding port. • Port cost — a value that is based on the interface type. The greater the port cost, the less likely the port is selected to be a forwarding port.
The values for interface PVST+ parameters are given in the output of the show spanning-tree pvst command, as previously shown. Configuring an EdgePort The EdgePort feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner. In this mode an interface forwards frames by default until it receives a BPDU that indicates that it should behave otherwise; it does not go through the Learning and Listening states.
To keep both ports in a Forwarding state, use extend system ID. Extend system ID augments the bridge ID with a VLAN ID to differentiate BPDUs on each VLAN so that PVST+ does not detect a loop and both ports can remain in a Forwarding state. Figure 102. PVST+ with Extend System ID • Augment the bridge ID with the VLAN ID.
! interface Vlan 200 no ip address tagged TenGigabitEthernet 1/22,32/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/22,32/1 no shutdown ! protocol spanning-tree pvst no disable vlan 100 bridge-priority 4096 Example of PVST+ Configuration (R2) interface TenGigabitEthernet 2/12/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 2/32/1 no ip address switchport no shutdown ! interface Vlan 100 no ip address tagged TenGigabitEthernet 2/12,32/1 no shutdown ! interf
protocol spanning-tree pvst no disable vlan 300 bridge-priority 4096 Per-VLAN Spanning Tree Plus (PVST+) 654
39 Quality of Service (QoS) This chapter describes how to use and configure Quality of Service service (QoS) features on the switch. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 68.
Feature Direction Create Input Policy Maps Ingress Honor DSCP Values on Ingress Packets Ingress Honoring dot1p Values on Ingress Packets Ingress Create Output Policy Maps Egress Specify an Aggregate QoS Policy Egress Create Output Policy Maps Egress Enabling QoS Rate Adjustment Enabling Strict-Priority Queueing Weighted Random Early Detection Egress Create WRED Profiles Egress Figure 103.
• Enabling Strict-Priority Queueing • Queue Classification Requirements for PFC Functionality • Support for marking dot1p value in L3 Input Qos Policy • Weighted Random Early Detection • Pre-Calculating Available QoS CAM Space • Specifying Policy-Based Rate Shaping in Packets Per Second • Configuring Policy-Based Rate Shaping • Configuring Weights and ECN for WRED • Configuring WRED and ECN Attributes • Guidelines for Configuring ECN for Classifying and Color-Marking Packets • Applying
dot1p Queue Number 5 5 6 6 7 7 • Change the priority of incoming traffic on the interface. dot1p-priority Example of Configuring a dot1p Priority on an Interface Dell#configure terminal Dell(conf)#interface tengigabitethernet 1/1/1 Dell(conf-if-te-1/1/1)#switchport Dell(conf-if-te-1/1/1)#dot1p-priority 1 Dell(conf-if-te-1/1/1)#end Honoring dot1p Priorities on Ingress Traffic By default, Dell Networking OS does not honor dot1p priorities on ingress traffic.
Configuring Port-Based Rate Policing If the interface is a member of a VLAN, you may specify the VLAN for which ingress packets are policed. • Rate policing ingress traffic on an interface. INTERFACE mode rate police Example of the rate police Command The following example shows configuring rate policing.
Policy-Based QoS Configurations Policy-based QoS configurations consist of the components shown in the following example. Figure 104. Constructing Policy-Based QoS Configurations Classify Traffic Class maps differentiate traffic so that you can apply separate quality of service policies to different types of traffic. For both class maps, Layer 2 and Layer 3, Dell Networking OS matches packets against match criteria in the order that you configure them.
Use step 1 or step 2 to start creating a Layer 3 class map. 1 Create a match-any class map. CONFIGURATION mode class-map match-any 2 Create a match-all class map. CONFIGURATION mode class-map match-all 3 Specify your match criteria. CLASS MAP mode match {ip | ipv6 | ip-any} After you create a class-map, Dell Networking OS places you in CLASS MAP mode. Match-any class maps allow up to five ACLs. Match-all class-maps allow only one ACL. 4 Link the class-map to a queue.
Use Step 1 or Step 2 to start creating a Layer 2 class map. 1 Create a match-any class map. CONFIGURATION mode class-map match-any 2 Create a match-all class map. CONFIGURATION mode class-map match-all 3 Specify your match criteria. CLASS MAP mode match mac After you create a class-map, Dell Networking OS places you in CLASS MAP mode. Match-any class maps allow up to five access-lists. Match-all class-maps allow only one. You can match against only one VLAN ID. 4 Link the class-map to a queue.
Examples of Traffic Classifications The following example shows incorrect traffic classifications.
– PSH – RST – URG In the existing software, ECE/CWR TCP flag qualifiers are not supported. • Because this functionality forcibly marks all the packets matching the specific match criteria as ‘yellow’, Dell Networking OS does not support Policer based coloring and this feature concurrently.
Setting a dot1p Value for Egress Packets Configuring Policy-Based Rate Policing To configure policy-based rate policing, use the following command. • Configure rate police ingress traffic. QOS-POLICY-IN mode rate-police Setting a dot1p Value for Egress Packets To set a dot1p value for egress packets, use the following command. • Set a dscp or dot1p value for egress packets.
The following table lists the default bandwidth weights for each queue, and their equivalent percentage which is derived by dividing the bandwidth weight by the sum of all queue weights. Table 70. Default Bandwidth Weights Queue Default Bandwidth Percentage for 4– Queue System Default Bandwidth Percentage for 8– Queue System 0 6.67% 1% 1 13.33% 2% 2 26.67% 3% 3 53.33% 4% 4 - 5% 5 - 10% 6 - 25% 7 - 50% NOTE: The system supports 8 data queues.
either transmit or drop the packet based on configured queuing behavior. Traffic marked as red (high drop precedence) is dropped. Important Points to Remember • All DSCP values that are not specified as yellow or red are colored green (low drop precedence). • A DSCP value cannot be in both the yellow and red lists. Setting the red or yellow list with any DSCP value that is already in the other list results in an error and no update to that DSCP list is made.
Dscp-color-map mapTWO yellow 16,55 Display a specific DSCP color map. Dell# show qos dscp-color-map mapTWO Dscp-color-map mapTWO yellow 16,55 Displaying a DSCP Color Policy Configuration To display the DSCP color policy configuration for one or all interfaces, use the show qos dscp-color-policy {summary [interface] | detail {interface}} command in EXEC mode. summary: Displays summary information about a color policy on one or more interfaces.
Applying a Class-Map or Input QoS Policy to a Queue Applying an Input QoS Policy to an Input Policy Map Honoring DSCP Values on Ingress Packets Honoring dot1p Values on Ingress Packets 3 Apply the input policy map to an interface. Applying a Class-Map or Input QoS Policy to a Queue To apply a class-map or input QoS policy to a queue, use the following command. • Assign an input QoS policy to a queue.
Honoring dot1p Values on Ingress Packets Dell Networking OS honors dot1p values on ingress packets with the Trust dot1p feature. The following table specifies the queue to which the classified traffic is sent based on the dot1p value. Table 72. Default dot1p to Queue Mapping dot1p Queue ID 0 1 1 0 2 2 3 3 4 4 5 5 6 6 7 7 The dot1p value is also honored for frames on the default VLAN. For more information, refer to Priority-Tagged Frames on the Default VLAN.
Applying an Input Policy Map to an Interface To apply an input policy map to an interface, use the following command. You can apply the same policy map to multiple interfaces, and you can modify a policy map after you apply it. • You cannot apply a class-map and QoS policies to the same interface. • You cannot apply an input Layer 2 QoS policy on an interface you also configure with vlan-stack access.
INTERFACE mode service-policy output You can apply the same policy map to multiple interfaces, and you can modify a policy map after you apply it. Enabling QoS Rate Adjustment By default while rate limiting, policing, and shaping, Dell Networking OS does not include the Preamble, SFD, or the IFG fields. These fields are overhead; only the fields from MAC destination address to the CRC are used for forwarding and are included in these rate metering calculations.
Queue Classification Requirements for PFC Functionality Queue classification requirements for PFC functionality are mentioned below: • On untagged ports, Queue classification must be based on DSCP. • On tagged ports, Queue classification must be based on Dot1p. Layer 3 classification configurations should not be present on the port. • On hybrid ports, Queue classification can be based on either Dot1p (for tagged packets) or DSCP (for untagged packets) but not both.
Dell(conf-qos-policy-in)# You will also be able to mark both DSCP and Dot1p in the L3 Input Qos Policy: Dell(conf)#qos-policy-input qos-input Dell(conf-qos-policy-in)#set mac-dot1p 2 Dell(conf-qos-policy-in)#set ip-dscp 5 Dell Dell(conf-qos-policy-in)# Weighted Random Early Detection Weighted random early detection (WRED) is a congestion avoidance mechanism that drops packets to prevent buffering resources from being consumed.
Figure 105. Packet Drop Rate for WRED You can create a custom WRED profile or use one of the five pre-defined profiles. Creating WRED Profiles To create WRED profiles, use the following commands. 1 Create a WRED profile. CONFIGURATION mode wred-profile 2 Specify the minimum and maximum threshold values. WRED mode threshold Applying a WRED Profile to Traffic After you create a WRED profile, you must specify to which traffic Dell Networking OS should apply the profile.
Displaying Default and Configured WRED Profiles To display the default and configured WRED profiles, use the following command. • Display default and configured WRED profiles and their threshold values. EXEC mode show qos wred-profile Displaying WRED Drop Statistics To display WRED drop statistics, use the following command. • Display the number of packets Dell Networking OS the WRED profile drops.
11 12 13 14 15 16 17 Dell# MCAST MCAST MCAST MCAST MCAST MCAST MCAST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pre-Calculating Available QoS CAM Space Before Dell Networking OS version 7.3.1, there was no way to measure the number of CAM entries a policy-map would consume (the number of CAM entries that a rule uses is not predictable; from 1 to 16 entries might be used per rule depending upon its complexity).
Specifying Policy-Based Rate Shaping in Packets Per Second You can configure the rate shaping in packets per second (pps) for QoS output policies. You can configure rate shaping in pps for a QoS output policy, apart from specifying the rate shaping value in bytes. You can also configure the peak rate and the committed rate for packets in kilobits per second (Kbps) or pps. Committed rate refers to the guaranteed bandwidth for traffic entering or leaving the interface under normal network conditions.
QOS-POLICY-OUT mode Dell(config-qos-policy-out)# rate shape Kbps peak-rate burst-KB committed Kbps committed-rate burst-KB Configuring Weights and ECN for WRED The WRED congestion avoidance functionality drops packets to prevent buffering resources from being consumed. Traffic is a mixture of various kinds of packets. The rate at which some types of packets arrive might be greater than others.
You can define WRED profiles and weight on each of the global service-pools for both loss-based and lossless (PFC) servicepools. The following events occur when you configure WRED and ECN on global service-pools: • If WRED/ECN is enabled on the global service-pool with threshold values and if it is not enabled on the queues, WRED/ECN are not effective based on global service-pool WRED thresholds.
To configure the weight factor for WRED and ECN capabilities, global buffer pools for multiple queues, and associating a service class with ECN marking, perform the following: 1 Configure the weight factor for the computation of average-queue size. This weight value applies to front-end ports. QOS-POLICY-OUT mode Dell(conf-qos-policy-out)#wred—profile weight number 2 Configure a WRED profile, and specify the threshold and maximum drop rate.
– CIR < x< PIR – will be marked as “Yellow” – PIR < x – will be marked as “Red” But ‘Green’ packets matching the specific match criteria for which ‘color-marking’ is configured will be over-written and marked as “Yellow”. Sample configuration to mark non-ecn packets as “yellow” with Multiple traffic class Consider the example where there are no different traffic classes that is all the packets are egressing on the default ‘queue0’.
As a part of this feature, the 2-bit ECN field of the IPv4 packet will also be available to be configured as one of the match qualifier. This way the entire 8-bit ToS field of the IPv4 header shall be used to classify traffic. The Dell Networking OS Release 9.3(0.0) supports the following QOS actions in the ingress policy based QOS: 1. Rate Policing 2. Queuing 3. Marking For the L3 Routed packets, the DSCP marking is the only marking action supported in the software.
• set the packet color as ‘yellow’ and set a new DSCP for the packet This marking action to set the color of the packet is allowed only on the ‘match-any’ logical operator of the class-map.
! ip access-list standard dscp_40_non_ecn seq 5 permit any dscp 40 ecn 0 ! class-map match-any class_dscp_40 match ip access-group dscp_40_non_ecn set-color yellow match ip access-group dscp_40_ecn ! class-map match-any class_dscp_50 match ip access-group dscp_50_non_ecn set-color yellow match ip access-group dscp_50_ecn ! policy-map-input pmap_dscp_40_50 service-queue 2 class-map class_dscp_40 service-queue 3 class-map class_dscp_50 Applying Layer 2 Match Criteria on a Layer 3 Interface To process Layer 3
mode provides the maximum values of counters accumulated over a period of time. Current Use count mode enables you to obtain a snapshot of the counters, at a particular time, using a triggering utility. The trigger can either be software-based or based on a predetermined threshold event. Software-based triggers are supported, which are the values derived from the show command output in the Max Use count mode. In Dell Networking OS Release 9.3(0.
Unit 1 unit: 3 port: 5 (interface Fo 1/148) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 9 (interface Fo 1/152) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 13 (interface Fo 1/156) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 17 (
UCAST UCAST UCAST UCAST UCAST UCAST UCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quality of Service (QoS) 688
40 Routing Information Protocol (RIP) The Routing Information Protocol (RIP) tracks distances or hop counts to nearby routers when establishing network connections and is based on a distance-vector algorithm. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter.
Implementation Information Dell Networking OS supports both versions of RIP and allows you to configure one version globally and the other version on interfaces or both versions on the interfaces. The following table lists the defaults for RIP in Dell Networking OS. Table 74.
Enabling RIP Globally By default, RIP is not enabled in Dell Networking OS. To enable RIP globally, use the following commands. 1 Enter ROUTER RIP mode and enable the RIP process on Dell Networking OS. CONFIGURATION mode router rip 2 Assign an IP network address as a RIP network to exchange routing information.
192.161.1.0/24 auto-summary 192.162.3.0/24 [120/1] via 29.10.10.12, 00:01:22, Fa 1/4 192.162.3.0/24 auto-summary Dell#show ip rip database Total number of routes in RIP database: 978 160.160.0.0/16 [120/1] via 29.10.10.12, 00:00:26, Fa 1/49 160.160.0.0/16 auto-summary 2.0.0.0/8 [120/1] via 29.10.10.12, 00:01:22, Fa 1/49 2.0.0.0/8 auto-summary 4.0.0.0/8 [120/1] via 29.10.10.12, 00:01:22, Fa 1/49 4.0.0.0/8 auto-summary 8.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 1/49 8.0.0.0/8 auto-summary 12.0.0.
• You can use this command multiple times to exchange RIP information with as many RIP networks as you want. Disable a specific interface from sending or receiving RIP routing information. ROUTER RIP mode passive-interface interface Assigning a Prefix List to RIP Routes Another method of controlling RIP (or any routing protocol) routing information is to filter the information through a prefix list. A prefix list is applied to incoming or outgoing routes.
Setting the Send and Receive Version To change the RIP version globally or on an interface in Dell Networking OS, use the following command. To specify the RIP version, use the version command in ROUTER RIP mode. To set an interface to receive only one or the other version, use the ip rip send version or the ip rip receive version commands in INTERFACE mode. You can set one RIP version globally on the system using system.
The following example of the show ip protocols command confirms that both versions are sent out that interface. This interface no longer sends and receives the same RIP versions as Dell Networking OS does globally (shown in bold).
Controlling Route Metrics As a distance-vector protocol, RIP uses hop counts to determine the best route, but sometimes the shortest hop count is a route over the lowest-speed link. To manipulate RIP routes so that the routing protocol prefers a different route, manipulate the route by using the offset command. Exercise caution when applying an offset command to routers on a broadcast network, as the router using the offset command is modifying RIP advertisements before sending out those advertisements.
RIP Configuration Example The examples in this section show the command sequence to configure RIPv2 on the two routers shown in the following illustration — Core 2 and Core 3. The host prompts used in the following example reflect those names. The examples are divided into the following groups of command sequences: • Configuring RIPv2 on Core 2 • Core 2 RIP Output • RIP Configuration on Core 3 • Core 3 RIP Output • RIP Configuration Summary Figure 106.
The following example shows the show ip rip database command to view the learned RIP routes on Core 2. Core2(conf-router_rip)#end 00:12:24: %RPM0-P:CP %SYS-5-CONFIG_I: Configured from console by console Core2#show ip rip database Total number of routes in RIP database: 7 10.11.30.0/24 [120/1] via 10.11.20.1, 00:00:03, TenGigabitEthernet 2/3/1 10.300.10.0/24 directly connected,TenGigabitEthernet 2/4/1 10.200.10.0/24 directly connected,TenGigabitEthernet 2/5/1 10.11.20.
10.11.10.0 Routing Information Sources: Gateway Distance Last Update 10.11.20.1 120 00:00:12 Distance: (default is 120) Core2# RIP Configuration on Core3 The following example shows how to configure RIPv2 on a host named Core3. Example of Configuring RIPv2 on Core3 Core3(conf)#router rip Core3(conf-router_rip)#version 2 Core3(conf-router_rip)#network 192.168.1.0 Core3(conf-router_rip)#network 192.168.2.0 Core3(conf-router_rip)#network 10.11.30.0 Core3(conf-router_rip)#network 10.11.20.
L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Dist/Metric Last Change ----------- ------- --------------------R 10.11.10.0/24 via 10.11.20.2, Te 3/21/1 120/1 00:01:14 C 10.11.20.0/24 Direct, Te 3/21/1 0/0 00:01:53 C 10.11.30.0/24 Direct, Te 3/11/1 0/0 00:06:00 R 10.200.10.0/24 via 10.11.20.2, Te 3/21/1 120/1 00:01:14 R 10.300.10.0/24 via 10.11.20.2, Te 3/21/1 120/1 00:01:14 C 192.168.1.
router rip version 2 10.200.10.0 10.300.10.0 10.11.10.0 10.11.20.0 The following example shows viewing the RIP configuration on Core 3. ! interface TenGigabitEthernet 3/1/1 ip address 10.11.30.1/24 no shutdown ! interface TenGigabitEthernet 3/2/1 ip address 10.11.20.1/24 no shutdown ! interface TenGigabitEthernet 3/4/1 ip address 192.168.1.1/24 no shutdown ! interface TenGigabitEthernet 3/5/1 ip address 192.168.2.1/24 no shutdown ! router rip version 2 network 10.11.20.0 network 10.11.30.0 network 192.168.
41 Remote Monitoring (RMON) RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell Networking Ethernet interfaces. RMON operates with the simple network management protocol (SNMP) and monitors all nodes on a local area network (LAN) segment. RMON monitors traffic passing through the router and segment traffic not destined for the router.
Setting the RMON Alarm To set an alarm on any MIB object, use the rmon alarm or rmon hc-alarm command in GLOBAL CONFIGURATION mode. • Set an alarm on any MIB object.
[no] rmon event number [log] [trap community] [description string] [owner string] – number: assigned event number, which is identical to the eventIndex in the eventTable in the RMON MIB. The value must be an integer from 1 to 65,535 and be unique in the RMON Event Table. – log: (Optional) generates an RMON log entry when the event is triggered and sets the eventType in the RMON MIB to log or log-and-trap. Default is no log. – trap community: (Optional) SNMP community string used for this trap.
[no] rmon collection history {controlEntry integer} [owner ownername] [buckets bucket-number] [interval seconds] – controlEntry: specifies the RMON group of statistics using a value. – integer: a value from 1 to 65,535 that identifies the RMON group of statistics. The value must be a unique index in the RMON History Table. – owner: (Optional) specifies the name of the owner of the RMON group of statistics. The default is a null-terminated string.
42 Rapid Spanning Tree Protocol (RSTP) The Rapid Spanning Tree Protocol (RSTP) is a Layer 2 protocol — specified by IEEE 802.1w — that is essentially the same as spanning-tree protocol (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). Protocol Overview RSTP is a Layer 2 protocol — specified by IEEE 802.
• All interfaces in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the RST topology. • Adding a group of ports to a range of VLANs sends multiple messages to the rapid spanning tree protocol (RSTP) task, avoid using the range command. When using the range command, Dell Networking recommends limiting the range to five ports and 40 VLANs. RSTP and VLT Virtual link trunking (VLT) provides loop-free redundant topologies and does not require RSTP.
Enabling Rapid Spanning Tree Protocol Globally Enable RSTP globally on all participating bridges; it is not enabled by default. When you enable RSTP, all physical and port-channel interfaces that are enabled and in Layer 2 mode are automatically part of the RST topology. • Only one path from any bridge to any other bridge is enabled. • Bridges block a redundant path by disabling one of the link ports. To enable RSTP globally for all Layer 2 interfaces, use the following commands.
no disable Dell(conf-rstp)# Figure 107. Rapid Spanning Tree Enabled Globally To view the interfaces participating in RSTP, use the show spanning-tree rstp command from EXEC privilege mode. If a physical interface is part of a port channel, only the port channel is listed in the command output. Dell#show spanning-tree rstp Root Identifier has priority 32768, Address 0001.e801.cbb4 Root Bridge hello time 2, max age 20, forward delay 15, max hops 0 Bridge Identifier has priority 32768, Address 0001.e801.
Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.379, designated path cost 0 Number of transitions to forwarding state 1 BPDU : sent 121, received 5 The port is not in the Edge port mode Port 380 (TenGigabitEthernet 2/4/1) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.380 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.
The following table displays the default values for RSTP. Table 76.
Enabling SNMP Traps for Root Elections and Topology Changes To enable SNMP traps, use the following command. • Enable SNMP traps for RSTP, MSTP, and PVST+ collectively. snmp-server enable traps xstp Modifying Interface Parameters On interfaces in Layer 2 mode, you can set the port cost and port priority values. • Port cost — a value that is based on the interface type. The previous table lists the default values. The greater the port cost, the less likely the port is selected to be a forwarding port.
PROTOCOL SPANNING TREE RSTP mode bridge-priority priority-value – priority-value The range is from 0 to 65535. The lower the number assigned, the more likely this bridge becomes the root bridge. The default is 32768. Entries must be multiples of 4096. Example of the bridge-priority Command A console message appears when a new root bridge has been assigned. The following example example shows the console message after the bridge-priority command is used to make R2 the root bridge (shown in bold).
no ip address switchport spanning-tree rstp edge-port shutdown Dell(conf-if-te-2/1/1)# Configuring Fast Hellos for Link State Detection Use RSTP fast hellos to achieve sub-second link-down detection so that convergence is triggered faster. The standard RSTP link-state detection mechanism does not offer the same low link-state detection speed. To achieve sub-second link-down detection so that convergence is triggered faster, use RSTP fast hellos.
43 Software-Defined Networking (SDN) The Dell Networking OS supports software-defined networking (SDN). For more information, see the SDN Deployment Guide.
44 Security This chapter describes several ways to provide security to the Dell Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell Networking OS Command Reference Guide.
Enabling AAA Accounting The aaa accounting command allows you to create a record for any or all of the accounting functions monitored. To enable AAA accounting, use the following command. • Enable AAA accounting and create a record for monitoring the accounting function. CONFIGURATION mode aaa accounting {commands | exec | suppress | system level} {default | name} {start-stop | wait-start | stop-only} {tacacs+} The variables are: – system: sends accounting information of any other AAA configuration.
Example of Configuring AAA Accounting to Track EXEC and EXEC Privilege Level Command Use In the following sample configuration, AAA accounting is set to track all usage of EXEC commands and commands on privilege level 15.
NOTE: If a console user logs in with RADIUS authentication, the privilege level is applied from the RADIUS server if the privilege level is configured for that user in RADIUS, whether you configure RADIUS authorization. NOTE: RADIUS and TACACS servers support VRF-awareness functionality. You can create RADIUS and TACACS groups and then map multiple servers to a group. The group to which you map multiple servers is bound to a single VRF.
LINE mode login authentication {method-list-name | default} To view the configuration, use the show config command in LINE mode or the show running-config in EXEC Privilege mode. NOTE: Dell Networking recommends using the none method only as a backup. This method does not authenticate users. The none and enable methods do not work with secure shell (SSH). You can create multiple method lists and assign them to different terminal lines.
The following example shows enabling local authentication for console and remote authentication for the VTY lines. Dell(config)# aaa authentication enable mymethodlist radius tacacs Dell(config)# line vty 0 9 Dell(config-line-vty)# enable authentication mymethodlist Server-Side Configuration Using AAA authentication, the switch acts as a RADIUS or TACACS+ client to send authentication requests to a TACACS+ or RADIUS server.
Privilege Levels Overview Limiting access to the system is one method of protecting the system and your network. However, at times, you might need to allow others access to the router and you can limit that access to a subset of commands. In Dell Networking OS, you can configure a privilege level for users who need limited access to the system. Every command in Dell Networking OS is assigned a privilege level of 0, 1, or 15. You can configure up to 16 privilege levels in Dell Networking OS.
username name [access-class access-list-name] [nopassword | password [encryption-type] password] [privilege level][secret] Configure the optional and required parameters: – name: Enter a text string up to 63 characters long. – access-class access-list-name: Enter the name of a configured IP ACL. – nopassword: Do not require the user to enter a password. – encryption-type: Enter 0 for plain text or 7 for encrypted text. – password: Enter a string. – privilege level The range is from 0 to 15.
CONFIGURATION mode username name [access-class access-list-name] [privilege level] [nopassword | password [encryption-type] password Secret] Configure the optional and required parameters: 2 • name: Enter a text string up to 63 characters(maximum) long. • access-class access-list-name: Restrict access by access-class.. • privilege level: The range is from 0 to 15. • nopassword: No password is required for the user to log in. • encryption-type: Enter 0 for plain text or 7 for encrypted text.
Dell(conf)#end Dell#show running-config Current Configuration ... ! hostname Force10 ! enable password level 8 notjohn enable password Force10 ! username admin password 0 admin username john password 0 john privilege 8 ! The following example shows the Telnet session for user john. The show privilege command output confirms that john is in privilege level 8. In EXEC Privilege mode, john can access only the commands listed. In CONFIGURATION mode, john can access only the snmp-server commands.
– password: Enter a text string up to 32 characters long. To view the password configured for a terminal, use the show config command in LINE mode. Enabling and Disabling Privilege Levels To enable and disable privilege levels, use the following commands. • Set a user’s security level. EXEC Privilege mode enable or enable privilege-level • If you do not enter a privilege level, Dell Networking OS sets it to 15 by default. Move to a lower privilege level.
After gaining authorization for the first time, you may configure these attributes. NOTE: RADIUS authentication/authorization is done for every login. There is no difference between first-time login and subsequent logins. Idle Time Every session line has its own idle-time. If the idle-time value is not changed, the default value of 30 minutes is used. RADIUS specifies idle-time allow for a user during a session before timeout.
• Specifying a RADIUS Server Host (mandatory) • Setting Global Communication Parameters for all RADIUS Server Hosts (optional) • Monitoring RADIUS (optional) For a complete listing of all Dell Networking OS commands related to RADIUS, refer to the Security chapter in the Dell Networking OS Command Reference Guide. NOTE: RADIUS authentication and authorization are done in a single step. Hence, authorization cannot be used independent of authentication.
Specifying a RADIUS Server Host When configuring a RADIUS server host, you can set different communication parameters, such as the UDP port, the key password, the number of retries, and the timeout. To specify a RADIUS server host and configure its communication parameters, use the following command. • Enter the host name or IP address of the RADIUS server host.
• – key: enter a string. The key can be up to 42 characters long. You cannot use spaces in the key. Configure the number of times Dell Networking OS retransmits RADIUS requests. CONFIGURATION mode radius-server retransmit retries • – retries: the range is from 0 to 100. Default is 3 retries. Configure the time interval the system waits for a RADIUS server host response. CONFIGURATION mode radius-server timeout seconds – seconds: the range is from 0 to 1000. Default is 5 seconds.
Enter the IP address or host name of the TACACS+ server. Use this command multiple times to configure multiple TACACS+ server hosts. 2 Enter a text string (up to 16 characters long) as the name of the method list you wish to use with the TACAS+ authentication method. CONFIGURATION mode aaa authentication login {method-list-name | default} tacacs+ [...method3] The TACACS+ method must not be the last method specified. 3 Enter LINE mode.
Monitoring TACACS+ To view information on TACACS+ transactions, use the following command. • View TACACS+ transactions to troubleshoot problems. EXEC Privilege mode debug tacacs+ TACACS+ Remote Authentication The system takes the access class from the TACACS+ server. Access class is the class of service that restricts Telnet access and packet sizes.
To view the TACACS+ configuration, use the show running-config tacacs+ command in EXEC Privilege mode. To delete a TACACS+ server host, use the no tacacs-server host {hostname | ip-address} command. freebsd2# telnet 2200:2200:2200:2200:2200::2202 Trying 2200:2200:2200:2200:2200::2202... Connected to 2200:2200:2200:2200:2200::2202. Escape character is '^]'.
ssh {hostname} [-l username | -p port-number | -v {1 | 2}| -c encryption cipher | -m HMAC algorithm • • hostname is the IP address or host name of the remote device. Enter an IPv4 or IPv6 address in dotted decimal format (A.B.C.D). SSH V2 is enabled by default on all the modes. Display SSH connection information.
Example of Using SCP to Copy from an SSH Server on Another Switch The following example shows the use of SCP and SSH to copy a software image from one switch running SSH server on UDP port 99 to the local switch. Other SSH related command include: • crypto key generate : generate keys for the SSH server. • debug ip ssh : enables collecting SSH debug information. • ip scp topdir : identify a location for files used in secure copy transfer.
• rekey-limit: volume-based rekey threshold for an SSH session. The range is from 1 to 4096 to megabytes. The default is 1024 megabytes. Examples The following example configures the time-based rekey threshold for an SSH session to 30 minutes. Dell(conf)#ip ssh rekey time 30 The following example configures the volume-based rekey threshold for an SSH session to 4096 megabytes.
The default HMAC algorithms are the following: • hmac-sha2-256 • hmac-sha1 • hmac-sha1-96 • hmac-md5 • hmac-md5-96 When FIPS is enabled, the default HMAC algorithm is hmac-sha2-256,hmac-sha1,hmac-sha1-96. Example of Configuring a HMAC Algorithm The following example shows you how to configure a HMAC algorithm list.
The following ciphers are available. • 3des-cbc • aes128-cbc • aes192-cbc • aes256-cbc • aes128-ctr • aes192-ctr • aes256-ctr The default cipher list is aes256-ctr, aes256-cbc, aes192-ctr, aes192-cbc, aes128-ctr, aes128-cbc, 3des-cbc. Example of Configuring a Cipher List The following example shows you how to configure a cipher list.
• Enable SSH password authentication. CONFIGURATION mode ip ssh password-authentication enable Example of Enabling SSH Password Authentication To view your SSH configuration, use the show ip ssh command from EXEC Privilege mode. Dell(conf)#ip ssh server enable Dell(conf)#ip ssh password-authentication enable Dell# show ip ssh SSH server : enabled. SSH server version : v1 and v2. SSH server vrf : default. SSH server ciphers : 3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,aes128-ctr,aes192ctr,aes256-ctr.
Configuring Host-Based SSH Authentication Authenticate a particular host. This method uses SSH version 2. To configure host-based authentication, use the following commands. 1 Configure RSA Authentication. Refer to Using RSA Authentication of SSH. 2 Create shosts by copying the public RSA key to the file shosts in the directory .ssh, and write the IP address of the host to the file. cp /etc/ssh/ssh_host_rsa_key.pub /.ssh/shosts Refer to the first example.
Using Client-Based SSH Authentication To SSH from the chassis to the SSH client, use the following command. This method uses SSH version 1 or version 2. If the SSH port is a non-default value, use the ip ssh server port number command to change the default port number. You may only change the port number when SSH is disabled. Then use the -p option with the ssh command. • SSH from the chassis to the SSH client. ssh ip_address Example of Client-Based SSH Authentication Dell#ssh 10.16.127.
VTY Line and Access-Class Configuration Various methods are available to restrict VTY access in Dell Networking OS. These depend on which authentication scheme you use — line, local, or remote. Table 77. VTY Access Authentication Method VTY access-class support? Username access-class support? Remote authorization support? Line YES NO NO Local NO YES NO TACACS+ YES NO YES (with Dell Networking OS version 5.2.1.0 and later) RADIUS YES NO YES (with Dell Networking OS version 6.1.1.
Dell(config-line-vty)#login authentication localmethod Dell(config-line-vty)#end VTY Line Remote Authentication and Authorization Dell Networking OS retrieves the access class from the VTY line. The Dell Networking OS takes the access class from the VTY line and applies it to ALL users. Dell Networking OS does not need to know the identity of the incoming user and can immediately apply the access class.
• Creating a New User Role • Modifying Command Permissions for Roles • Adding and Deleting Users from a Role • Role Accounting • Configuring AAA Authentication for Roles • Configuring AAA Authorization for Roles • Configuring an Accounting for Roles • Applying an Accounting Method to a Role • Displaying Active Accounting Sessions for Roles • Configuring TACACS+ and RADIUS VSA Attributes for RBAC • Displaying User Roles • Displaying Accounting for User Roles • Displaying Information
Configuring Role-based Only AAA Authorization You can configure authorization so that access to commands is determined only by the user’s role. If the user has no user role, access to the system is denied as the user will not be able to login successfully.
System-Defined RBAC User Roles By default, the Dell Networking OS provides 4 system defined user roles. You can create up to 8 additional user roles. NOTE: You cannot delete any system defined roles. The system defined user roles are as follows: • Network Operator (netoperator) - This user role has no privilege to modify any configuration on the switch. You can access Exec mode (monitoring) to view the current configuration and status information.
Consider the following when creating a user role: • Only the system administrator and user-defined roles inherited from the system administrator can create roles and user names. Only the system administrator, security administrator, and roles inherited from these can use the "role" command to modify command permissions. The security administrator and roles inherited by security administrator can only modify permissions for commands they already have access to.
The following output displays the modes available for the role command. Dell (conf)#role configure exec interface line route-map router ? Global configuration mode Exec Mode Interface configuration mode Line Configuration mode Route map configuration mode Router configuration mode Examples: Deny Network Administrator from Using the show users Command.
Dell(conf)#do show role mode ? configure Global configuration mode exec Exec Mode interface Interface configuration mode line Line Configuration mode route-map Route map configuration mode router Router configuration mode Dell(conf)#do show role mode configure line Role access:sysadmin Example: Grant and Remove Security Administrator Access to Configure Protocols By default, the system defined role, secadmin, is not allowed to configure protocols.
• Configuring TACACS+ and RADIUS VSA Attributes for RBAC Configure AAA Authentication for Roles Authentication services verify the user ID and password combination. Users with defined roles and users with privileges are authenticated with the same mechanism. There are six methods available for authentication: radius, tacacs+, local, enable, line, and none. When role-based only AAA authorization is enabled, the enable, line, and none methods are not available.
The following configuration example applies a method list other than default to each VTY line. NOTE: Note that the methods were not applied to the console so the default methods (if configured) are applied there.
The format to create a Dell Network OS AV pair for privilege level is shell:priv-lvl= where number is a value between 0 and 15. Force10-avpair= ”shell:priv-lvl=15“ Example for Creating a AVP Pair for System Defined or User-Defined Role The following section shows you how to create an AV pair to allow a user to login from a network access server to have access to commands based on the user’s role.
Displaying Active Accounting Sessions for Roles To display active accounting sessions for each user role, use the show accounting command in EXEC mode.
Dell#show role mode configure username Role access: sysadmin Dell##show role mode configure password-attributes Role access: secadmin,sysadmin Dell#show role mode configure interface Role access: netadmin, sysadmin Dell#show role mode configure line Role access: netadmin,sysadmin Displaying Information About Users Logged into the Switch To display information on all users logged into the switch, using the show users command in EXEC Privilege mode. The output displays privilege level and/or user role.
45 Service Provider Bridging Service provider bridging provides the ability to add a second VLAN ID tag in an Ethernet frame and is referred to as VLAN stacking in the Dell Networking OS. VLAN Stacking VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.
Figure 108. VLAN Stacking in a Service Provider Network Important Points to Remember • Interfaces that are members of the Default VLAN and are configured as VLAN-Stack access or trunk ports do not switch untagged traffic. To switch traffic, add these interfaces to a non-default VLAN-Stack-enabled VLAN. • Dell Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN.
2. Assign access and trunk ports to a VLAN (Creating Access and Trunk Ports). 3. Enabling VLAN-Stacking for a VLAN. Related Configuration Tasks • Configuring the Protocol Type Value for the Outer VLAN Tag • Configuring Dell Networking OS Options for Trunk Ports • Debugging VLAN Stacking • VLAN Stacking in Multi-Vendor Networks Creating Access and Trunk Ports To create access and trunk ports, use the following commands.
INTERFACE VLAN mode vlan-stack compatible Example of Viewing VLAN Stack Member Status To display the status and members of a VLAN, use the show vlan command from EXEC Privilege mode. Members of a VLANStacking-enabled VLAN are marked with an M in column Q.
Example of Configuring a Trunk Port as a Hybrid Port and Adding it to Stacked VLANs In the following example, TenGigabitEthernet 1/1/1 is a trunk port that is configured as a hybrid port and then added to VLAN 100 as untagged VLAN 101 as tagged, and VLAN 103, which is a stacking VLAN.
VLAN Stacking in Multi-Vendor Networks The first field in the VLAN tag is the tag protocol identifier (TPID), which is 2 bytes. In a VLAN-stacking network, after the frame is double tagged, the outer tag TPID must match the TPID of the next-hop system. While 802.1Q requires that the inner tag TPID is 0x8100, it does not require a specific value for the outer tag TPID.
Therefore, a mismatched TPID results in the port not differentiating between tagged and untagged traffic. Figure 109.
Figure 110.
Figure 111. Single and Double-Tag TPID Mismatch VLAN Stacking Packet Drop Precedence VLAN stacking packet-drop precedence is supported on the switch. The drop eligible indicator (DEI) bit in the S-Tag indicates to a service provider bridge which packets it should prefer to drop when congested. Enabling Drop Eligibility Enable drop eligibility globally before you can honor or mark the DEI value. When you enable drop eligibility, DEI mapping or marking takes place according to the defaults.
Table 78. Drop Eligibility Behavior Ingress Egress DEI Disabled DEI Enabled Normal Port Normal Port Retain CFI Set CFI to 0. Trunk Port Trunk Port Retain inner tag CFI Retain inner tag CFI. Retain outer tag CFI Set outer tag CFI to 0. Retain inner tag CFI Retain inner tag CFI Set outer tag CFI to 0 Set outer tag CFI to 0 Access Port Trunk Port To enable drop eligibility globally, use the following command. • Make packets eligible for dropping based on their DEI value.
Marking Egress Packets with a DEI Value On egress, you can set the DEI value according to a different mapping than ingress. For ingress information, refer to Honoring the Incoming DEI Value. To mark egress packets, use the following command. • Set the DEI value on egress according to the color currently assigned to the packet.
NOTE: The ability to map incoming C-Tag dot1p to any S-Tag dot1p requires installing up to eight entries in the Layer 2 QoS and Layer 2 ACL table for each configured customer VLAN. The scalability of this feature is limited by the impact of the 1:8 expansion in these content addressable memory (CAM) tables.
• vman-qos-dual-fp: mark the S-Tag dot1p and queue the frame according to the S-Tag dot1p. This method requires twice as many CAM entries as vman-qos and FP blocks in multiples of 2. The default is: 0 FP blocks for vman-qos and vman-qos-dual-fp. 2 The new CAM configuration is stored in NVRAM and takes effect only after a save and reload. EXEC Privilege mode copy running-config startup-config 3 Reload the system. reload 4 Map C-Tag dot1p values to a S-Tag dot1p value.
Figure 113. VLAN Stacking without L2PT You might need to transport control traffic transparently through the intermediate network to the other region. Layer 2 protocol tunneling enables BPDUs to traverse the intermediate network by identifying frames with the Bridge Group Address, rewriting the destination MAC to a user-configured non-reserved address, and forwarding the frames.
Figure 114. VLAN Stacking with L2PT Implementation Information • L2PT is available for STP, RSTP, MSTP, and PVST+ BPDUs. • No protocol packets are tunneled when you enable VLAN stacking. • L2PT requires the default CAM profile. Enabling Layer 2 Protocol Tunneling To enable Layer 2 protocol tunneling, use the following command. 1 Verify that the system is running the default CAM profile. Use this CAM profile for L2PT.
show cam-profile 2 Enable protocol tunneling globally on the system. CONFIGURATION mode protocol-tunnel enable 3 Tunnel BPDUs the VLAN. INTERFACE VLAN mode protocol-tunnel stp Specifying a Destination MAC Address for BPDUs By default, Dell Networking OS uses a Dell Networking-unique MAC address for tunneling BPDUs. You can configure another value. To specify a destination MAC address for BPDUs, use the following command.
Debugging Layer 2 Protocol Tunneling To debug Layer 2 protocol tunneling, use the following command. • Display debugging information for L2PT. EXEC Privilege mode debug protocol-tunnel Provider Backbone Bridging IEEE 802.1ad—Provider Bridges amends 802.1Q—Virtual Bridged Local Area Networks so that service providers can use 802.1Q architecture to offer separate VLANs to customers with no coordination between customers, and minimal coordination between customers and the provider. 802.
46 sFlow sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic. It is designed to provide traffic monitoring for high-speed networks with many switches and routers.
occurs, a back-off is triggered and the hardware sampling rate is backed-off from 512 to 1024. Note that port 1 maintains its sampling rate of 16384; port 1 is unaffected because it maintains its configured sampling rate of 16384.: • If the interface states are up and the sampling rate is not configured on the port, the default sampling rate is calculated based on the line speed. • If the interface states are shut down, the sampling rate is set using the global sampling rate.
Global default sampling rate: 32768 Global default counter polling interval: 20 Global default extended maximum header size: 128 bytes Global extended information enabled: switch 1 collectors configured Collector IP addr: 100.1.1.1, Agent IP addr: 1.1.1.
Egress Management Interface sFlow services are disabled Global default sampling rate: 32768 Global default counter polling interval: 86400 Global default extended maximum header size: 256 bytes Global extended information enabled: none 1 collectors configured Collector IP addr: 100.1.1.12, Agent IP addr: 100.1.1.
Global default sampling rate: 32768 Global default counter polling interval: 20 1 collectors configured Collector IP addr: 133.33.33.53, Agent IP addr: 133.33.33.116, UDP port: 6343 77 UDP packets exported 0 UDP packets dropped 165 sFlow samples collected 69 sFlow samples dropped due to sub-sampling Stack-unit 1 Port set 0 H/W sampling rate 8192 Displaying Show sFlow on an Interface To view sFlow information on a specific interface, use the following command.
Configuring Specify Collectors The sflow collector command allows identification of sFlow collectors to which sFlow datagrams are forwarded. You can specify up to two sFlow collectors. If you specify two collectors, the samples are sent to both. • Identify sFlow collectors to which sFlow datagrams are forwarded. CONFIGURATION mode sflow collector ip-address agent-addr ip-address [number [max-datagram-size number] ] | [maxdatagram-size number ] The default UDP port is 6343.
• extended-switch — 802.1Q VLAN ID and 802.1p priority information. • extended-router — Next-hop and source and destination mask length. • extended-gateway — Source and destination AS number and the BGP next-hop. NOTE: The entire AS path is not included. BGP community-list and local preference information are not included. These fields are assigned default values and are not interpreted by the collector. • Enable extended sFlow.
Table 79. Extended Gateway Summary IP SA IP DA srcAS and srcPeerAS dstAS and dstPeerAS Description static/connected/IGP static/connected/IGP — — Extended gateway data is not exported because there is no AS information. static/connected/IGP BGP 0 Exported src_as and src_peer_as are zero because there is no AS information for IGP. BGP static/connected/IGP — — Exported Exported Prior to Dell Networking OS version 7.8.1.
47 Simple Network Management Protocol (SNMP) The Simple Network Management Protocol (SNMP) is designed to manage devices on IP networks by monitoring device operation, which might require administrator intervention. NOTE: On Dell Networking routers, standard and private SNMP management information bases (MIBs) are supported, including all Get and a limited number of Set operations (such as set vlan and copy cmd).
Implementation Information The following describes SNMP implementation information. • Dell Networking OS supports SNMP version 1 as defined by RFC 1155, 1157, and 1212, SNMP version 2c as defined by RFC 1901, and SNMP version 3 as defined by RFC 2571. • Dell Networking OS supports up to 16 trap receivers. • Dell Networking OS implementation of the sFlow MIB supports sFlow configuration via SNMP sets.
1. SNMPv3 authentication provides only the sha option when the FIPS mode is enabled. 2. SNMPv3 privacy provides only the aes128 privacy option when the FIPS mode is enabled. 3. If you attempt to enable or disable FIPS mode and if any SNMPv3 users are previously configured, an error message is displayed stating you must delete all of the SNMP users before changing the FIPS mode. 4. A message is logged indicating whether FIPS mode is enabled for SNMPv3.
Creating a Community For SNMPv1 and SNMPv2, create a community to enable the community-based security in Dell Networking OS. The management station generates requests to either retrieve or alter the value of a management object and is called the SNMP manager. A network element that processes SNMP requests is called an SNMP agent. An SNMP community is a group of SNMP agents and managers that are allowed to interact.
CONFIGURATION mode • snmp-server user name group-name 3 noauth auth md5 auth-password Configure an SNMP group (password privileges only). CONFIGURATION mode • snmp-server group groupname {oid-tree} auth read name write name Configure an SNMPv3 view. CONFIGURATION mode snmp-server view view-name 3 noauth {included | excluded} NOTE: To give a user read and write privileges, repeat this step for each privilege type. • Configure an SNMP group (with password or privacy privileges).
The following example shows reading the value of the next managed object. > snmpgetnext -v 2c -c mycommunity 10.11.131.161 .1.3.6.1.2.1.1.3.0 SNMPv2-MIB::sysContact.0 = STRING: > snmpgetnext -v 2c -c mycommunity 10.11.131.161 sysContact.0 The following example shows reading the value of the many managed objects at one time. > snmpwalk -v 2c -c mycommunity 10.11.131.161 .1.3.6.1.2.1.1 SNMPv2-MIB::sysDescr.0 = STRING: Dell Real Time Operating System Software Dell Operating System Version: 1.
CONFIGURATION mode snmpset -v version -c community agent-ip sysContact.0 s “contact-info” You may use up to 55 characters. • The default is None. (From a management station) Identify the physical location of the system (for example, San Jose, 350 Holger Way, 1st floor lab, rack A1-1). CONFIGURATION mode snmpset -v version -c community agent-ip sysLocation.0 s “location-info” You may use up to 55 characters. The default is None.
Example of RFC-Defined SNMP Traps and Related Enable Commands The following example lists the RFC-defined SNMP traps and the command used to enable each. The coldStart and warmStart traps are enabled using a single command. snmp authentication string. snmp coldstart snmp linkdown snmp linkup SNMP_AUTH_FAIL:SNMP Authentication failed.Request with invalid community SNMP_COLD_START: Agent Initialized - SNMP COLD_START. SNMP_WARM_START:Agent Initialized - SNMP WARM_START.
temperature is within threshold of %dC) envmon fan FAN_TRAY_BAD: Major alarm: fantray %d is missing or down FAN_TRAY_OK: Major alarm cleared: fan tray %d present FAN_BAD: Minor alarm: some fans in fan tray %d are down FAN_OK: Minor alarm cleared: all fans in fan tray %d are good vlt Enable VLT traps. vrrp Enable VRRP state change traps xstp %SPANMGR-5-STP_NEW_ROOT: New Spanning Tree Root, Bridge ID Priority 32768, Address 0001.e801.fc35.
Enabling an SNMP Agent to Notify Syslog Server Failure You can configure a network device to send an SNMP trap if an audit processing failure occurs due to loss of connectivity with the syslog server. If a connectivity failure occurs on a syslog server that is configured for reliable transmission, an SNMP trap is sent and a message is displayed on the console.
Copy Configuration Files Using SNMP To do the following, use SNMP from a remote client. • copy the running-config file to the startup-config file • copy configuration files from the Dell Networking system to a server • copy configuration files from a server to the Dell Networking system You can perform all of these tasks using IPv4 or IPv6 addresses. The examples in this section use IPv4 addresses; however, you can substitute IPv6 addresses for the IPv4 addresses in all of the examples.
MIB Object OID Object Values Description copyDestFileLocation .1.3.6.1.4.1.6027.3.5.1.1.1.1.6 1 = flash Specifies the location of destination file. 2 = slot0 3 = tftp • 4 = ftp 5 = scp If copyDestFileLocation is FTP or SCP, you must specify copyServerAddress, copyUserName, and copyUserPassword. copyDestFileName .1.3.6.1.4.1.6027.3.5.1.1.1.1.7 Path (if the file is not in the default directory) and filename. Specifies the name of destination file. copyServerAddress .1.3.6.1.4.1.6027.3.5.1.1.
NOTE: You can use the entire OID rather than the object name. Use the form: OID.index i object-value. To view more information, use the following options in the snmpset command. • -c: View the community, either public or private. • -m: View the MIB files for the SNMP command. • -r: Number of retries using the option • -t: View the timeout. • -v: View the SNMP version (either 1, 2, 2d, or 3). The following examples show the snmpset command to copy a configuration.
The following example shows how to copy configuration files from a UNIX machine using OID. >snmpset -c public -v 2c 10.11.131.162 .1.3.6.1.4.1.6027.3.5.1.1.1.1.2.8 i 3 .1.3.6.1.4.1.6027.3.5.1.1.1.1.5.8 i 2 SNMPv2-SMI::enterprises.6027.3.5.1.1.1.1.2.8 = INTEGER: 3 SNMPv2-SMI::enterprises.6027.3.5.1.1.1.1.5.8 = INTEGER: 2 Copying the Startup-Config Files to the Server via FTP To copy the startup-config to the server via FTP from the UNIX machine, use the following command.
filename copyDestFileType.index i 3 copyServerAddress.index a server-ip-address copyUserName.index s server-login-id copyUserPassword.index s server-login-password Example of Copying a Binary File From the Server to the Startup-Configuration via FTP > snmpset -v 2c -c private -m ./f10-copy-config.mib 10.10.10.10 copySrcFileType.10 i 1 copySrcFileLocation.10 i 4 copyDestFileType.10 i 3 copySrcFileName.10 s /home/myfilename copyServerAddress.10 a 172.16.1.56 copyUserName.10 s mylogin copyUserPassword.
NOTE: You can use the entire OID rather than the object name. Use the form: OID.index. Examples of Getting MIB Object Values The following examples show the snmpget command to obtain a MIB object value. These examples assume that: • the server OS is UNIX • you are using SNMP version 2c • the community name is public • the file f10-copy-config.mib is in the current directory NOTE: In UNIX, enter the snmpset command for help using this command.
MIB Support to Display the Software Core Files Generated by the System Dell Networking provides MIB objects to display the software core files generated by the system. The chSysSwCoresTable contains the list of software core files generated by the system. The following table lists the related MIB objects. Table 85. MIB Objects for Displaying the Software Core Files Generated by the System MIB Object OID Description chSysSwCoresTable 1.3.6.1.4.1.6027.3.10.1.2.
enterprises.6027.3.10.1.2.10.1.5.1.3 = "vrrp" Hex: 76 72 72 70 enterprises.6027.3.10.1.2.10.1.5.2.1 = "sysd" Hex: 73 79 73 64 The output above displays that the software core files generated by the system. Manage VLANs using SNMP The qBridgeMIB managed objects in Q-BRIDGE-MIB, defined in RFC 2674, allows you to use SNMP to manage VLANs. Creating a VLAN To create a VLAN, use the dot1qVlanStaticRowStatus object.
NOTE: Whether adding a tagged or untagged port, specify values for both dot1qVlanStaticEgressPorts and dot1qVlanStaticUntaggedPorts. Example of Adding an Untagged Port to a VLAN using SNMP In the following example, Port 0/2 is added as an untagged member of VLAN 10. >snmpset -v2c -c mycommunity 10.11.131.185 .1.3.6.1.2.1.17.7.1.4.3.1.2.
To set time to wait till bgp session are up set 1.3.6.1.4.1.6027.3.18.1.3 and 1.3.6.1.4.1.6027.3.18.1.6 Enabling and Disabling a Port using SNMP To enable and disable a port using SNMP, use the following commands. 1 Create an SNMP community on the Dell system. CONFIGURATION mode snmp-server community 2 From the Dell Networking system, identify the interface index of the port for which you want to change the admin status.
Each object comprises an OID concatenated with an instance number. In the case of these objects, the instance number is the decimal equivalent of the MAC address; derive the instance number by converting each hex pair to its decimal equivalent. For example, the decimal equivalent of E8 is 232, and so the instance number for MAC address 00:01:e8:06:95:ac is. 0.1.232.6.149.172. The value of dot1dTpFdbPort is the port number of the port off which the system learns the MAC address.
the final, unused bit are not given. The interface is physical, so represent this type of interface by a 0 bit, and the unused bit is always 0. These 2 bits are not given because they are the most significant bits, and leading zeros are often omitted. To display the interface number, use the following command. • Display the interface index number.
Example of Viewing Status of Learned MAC Addresses If we learn MAC addresses for the LAG, status is shown for those as well. dot3aCurAggVlanId SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.1.1.0.0.0.0.0.1.1 dot3aCurAggMacAddr SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.2.1.0.0.0.0.0.1.1 dot3aCurAggIndex SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.3.1.0.0.0.0.0.1.1 dot3aCurAggStatus SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.4.1.0.0.0.0.0.1.
48 Storm Control Storm control allows you to control unknown-unicast, muticast, and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell Networking Operating System (OS) Behavior: Dell Networking OS supports unknown-unicast, muticast, and broadcast control for Layer 2 and Layer 3 traffic. To view the storm control broadcast configuration show storm-control broadcast | multicast | unknownunicast | pfc-llfc[interface] command.
• The storm control is calculated in packets per second. • Configure storm control. • INTERFACE mode Configure the packets per second of broadcast traffic allowed on an interface (ingress only). INTERFACE mode • storm-control broadcast packets_per_second in Configure the packets per second of multicast traffic allowed on C-Series or S-Series interface (ingress only) network only.
Once you detect PFC storm on a port or priority, you can discard all packets on that port/priority and enable drop of the queue, so that traffic corresponding to other priorities is not affected. You can restore the dropped queue to normal state after a period of time. Detect PFC Storm The following section explains the procedure to detect the PFC storm. You can detect the PFC storm by polling the lossless queues in a port or priority periodically.
Te 0/1 Te 0/2 Te 0/3 Te 0/4 Te 0/5 Te 0/80 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 Normal Normal Normal Normal Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Drop Normal Normal Normal Normal 0 0 0 0 14880 14880 14880 14780 14780 14760 14760 14760 14760 14760 14740 14740 14740 14640 14540 14540 0 0 0 0 0 0 0 0 8682814 8690956 8690823 8686064 8682775 8690918 8690786 8686030 8682643 8690784 8690653 8685901 8680780 8688702 8688349 8683376 0 0 0 0 Use the show storm-
49 Spanning Tree Protocol (STP) The spanning tree protocol (STP) is supported on Dell Networking OS.
• Enabling Spanning Tree Protocol Globally Related Configuration Tasks • Adding an Interface to the Spanning Tree Group • Modifying Global Parameters • Modifying Interface STP Parameters • Enabling PortFast • Prevent Network Disruptions with BPDU Guard • STP Root Guard • Enabling SNMP Traps for Root Elections and Topology Changes • Configuring Spanning Trees as Hitless Important Points to Remember • STP is disabled by default.
Configuring Interfaces for Layer 2 Mode All interfaces on all switches that participate in spanning tree must be in Layer 2 mode and enabled. Figure 115. Example of Configuring Interfaces for Layer 2 Mode To configure and enable the interfaces for Layer 2, use the following command. 1 If the interface has been assigned an IP address, remove it. INTERFACE mode no ip address 2 Place the interface in Layer 2 mode. INTERFACE switchport 3 Enable the interface.
Example of the show config Command To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. Dell(conf-if-te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 no ip address switchport no shutdown Dell(conf-if-te-1/1/1)# Enabling Spanning Tree Protocol Globally Enable the spanning tree protocol globally; it is not enabled by default.
Figure 116. Spanning Tree Enabled Globally To enable STP globally, use the following commands. 1 Enter PROTOCOL SPANNING TREE mode. CONFIGURATION mode protocol spanning-tree 0 2 Enable STP. PROTOCOL SPANNING TREE mode no disable Examples of Verifying Spanning Tree Information To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode.
Root Port is 289 (TenGigabitEthernet 2/1/1), cost of root path is 4 Topology change flag not set, detected flag not set Number of topology changes 3 last change occurred 0:16:11 ago from TenGigabitEthernet 2/3/1 Timers: hold 1, topology change 35 hello 2, max age 20, forward delay 15 Times: hello 0, topology change 0, notification 0, aging Normal Port 289 (TenGigabitEthernet 2/1/1) is Forwarding Port path cost 4, Port priority 8, Port Identifier 8.289 Designated root has priority 32768, address 0001.e80d.
Table 89.
• Port priority — influences the likelihood that a port is selected to be a forwarding port in case that several ports have the same port cost. The default values are listed in Modifying Global Parameters. To change the port cost or priority of an interface, use the following commands. • Change the port cost of an interface. INTERFACE mode spanning-tree 0 cost cost The range is from 0 to 65535. • The default values are listed in Modifying Global Parameters. Change the port priority of an interface.
Prevent Network Disruptions with BPDU Guard Configure the Portfast (and Edgeport, in the case of RSTP, PVST+, and MSTP) feature on ports that connect to end stations. End stations do not generate BPDUs, so ports configured with Portfast/ Edgport (edgeports) do not expect to receive BDPUs. If an edgeport does receive a BPDU, it likely means that it is connected to another part of the network, which can negatively affect the STP topology.
– Disabling global spanning tree (the no spanning-tree in CONFIGURATION mode). Figure 117. Enabling BPDU Guard Dell Networking OS Behavior: BPDU guard and BPDU filtering both block BPDUs, but are two separate features. BPDU guard: • • is used on edgeports and blocks all traffic on edgeport if it receives a BPDU. drops the BPDU after it reaches the RP and generates a console message.
Interface IP-Address OK Method Status Protocol TenGigabitEthernet 1/7/1 unassigned YES Manual up up Selecting STP Root The STP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it becomes the root bridge. You can also specify that a bridge is the root or the secondary root. To change the bridge priority or specify that a bridge is the root or secondary root, use the following command.
the BPDU is ignored and the port on Switch C transitions from a forwarding to a root-inconsistent state (shown by the green X icon). As a result, Switch A becomes the root bridge. Figure 118. STP Root Guard Prevents Bridging Loops Configuring Root Guard Enable STP root guard on a per-port or per-port-channel basis.
– 0: enables root guard on an STP-enabled port assigned to instance 0. – mstp: enables root guard on an MSTP-enabled port. – rstp: enables root guard on an RSTP-enabled port. – pvst: enables root guard on a PVST-enabled port. To disable STP root guard on a port or port-channel interface, use the no spanning-tree 0 rootguard command in an interface configuration mode.
As shown in the following illustration (STP topology 2, upper right), a loop can also be created if the forwarding port on Switch B becomes busy and does not forward BPDUs within the configured forward-delay time. As a result, the blocking port on Switch C transitions to a forwarding state, and both Switch A and Switch C transmit traffic to Switch B (STP topology 2, lower right).
• Loop guard is supported on any STP-enabled port or port-channel interface. • Loop guard is supported on a port or port-channel in any spanning tree mode: – Spanning Tree Protocol (STP) – Rapid Spanning Tree Protocol (RSTP) – Multiple Spanning Tree Protocol (MSTP) – Per-VLAN Spanning Tree Plus (PVST+) • You cannot enable root guard and loop guard at the same time on an STP port.
50 SupportAssist SupportAssist sends troubleshooting data securely to Dell. SupportAssist in this Dell Networking OS release does not support automated email notification at the time of hardware fault alert, automatic case creation, automatic part dispatch, or reports. SupportAssist requires Dell Networking OS 9.9(0.0) and SmartScripts 9.7 or later to be installed on the Dell Networking device. For more information on SmartScripts, see Dell Networking Open Automation guide. Figure 120.
• Configuring SupportAssist Person • Configuring SupportAssist Server • Viewing SupportAssist Configuration Configuring SupportAssist Using a Configuration Wizard You are guided through a series of queries to configure SupportAssist. The generated commands are added to the running configuration, including the DNS resolve commands, if configured. This command starts the configuration wizard for the SupportAssist. At any time, you can exit by entering Ctrl-C. If necessary, you can skip some data entry.
involve international transfers of data from you to Dell and/or to Dells affiliates, subcontractors or business partners. When making such transfers, Dell shall ensure appropriate protection is in place to safeguard the Collected Data being transferred in connection with SupportAssist. If you are downloading SupportAssist on behalf of a company or other legal entity, you are further certifying to Dell that you have appropriate authority to provide this consent on behalf of that entity.
support-assist activity {full-transfer} start now Dell#support-assist activity full-transfer start now Configuring SupportAssist Activity SupportAssist Activity mode allows you to configure and view the action-manifest file for a specific activity. To configure SupportAssist activity, use the following commands. 1 Move to the SupportAssist Activity mode for an activity. Allows you to configure customized details for a specific activity.
SUPPORTASSIST ACTIVITY mode action-manifest show {all} Dell(conf-supportassist-act-full-transfer)#action-manifest show all Dell(conf-supportassist-act-full-transfer)# 6 Enable a specific SupportAssist activity. SUPPORTASSIST ACTIVITY mode [no] enable Dell(conf-supportassist-act-full-transfer)#enable Dell(conf-supportassist-act-full-transfer)# Configuring SupportAssist Company SupportAssist Company mode allows you to configure name, address and territory information of the company.
[no] contact-person [first ] last Dell(conf-supportassist)#contact-person first john last doe Dell(conf-supportassist-pers-john_doe)# 2 Configure the email addresses to reach the contact person. SUPPORTASSIST PERSON mode [no] email-address primary email-address [alternate email-address] Dell(conf-supportassist-pers-john_doe)#email-address primary jdoe@mycompany.com Dell(conf-supportassist-pers-john_doe)# 3 Configure phone numbers of the contact person.
[no] enable Dell(conf-supportassist-serv-default)#enable Dell(conf-supportassist-serv-default)# 4 Configure the URL to reach the SupportAssist remote server. SUPPORTASSIST SERVER mode [no] url uniform-resource-locator Dell(conf-supportassist-serv-default)#url https://192.168.1.1/index.htm Dell(conf-supportassist-serv-default)# Viewing SupportAssist Configuration To view the SupportAssist configurations, use the following commands.
show eula-consent {support-assist | other feature} Dell#show eula-consent SupportAssist EULA has been: Accepted Additional information about the SupportAssist EULA is as follows: By installing SupportAssist, you allow Dell to save your contact information (e.g. name, phone number and/or email address) which would be used to provide technical support for your Dell products and services. Dell may use the information for providing recommendations to improve your IT infrastructure.
51 System Time and Date System time and date settings and the network time protocol (NTP) are supported on Dell Networking OS. You can set system times and dates and maintained through the NTP. They are also set through the Dell Networking Operating System (OS) command line interfaces (CLIs) and hardware settings. The Dell Networking OS supports reaching an NTP server through different VRFs. You can configure a maximum of eight logging servers across different VRFs or the same VRF.
Following conventions established by the telephone industry [BEL86], the accuracy of each server is defined by a number called the stratum, with the topmost level (primary servers) assigned as one and each level downwards (secondary servers) in the hierarchy assigned as one greater than the preceding level. Dell Networking OS synchronizes with a time-serving host to get the correct time. You can set Dell Networking OS to poll specific NTP time-serving hosts for the current time.
Figure 121. NTP Fields Implementation Information Dell Networking systems can only be an NTP client. Configure the Network Time Protocol Configuring NTP is a one-step process. • Enabling NTP Related Configuration Tasks • Configuring NTP Broadcasts • Disabling NTP on an Interface • Configuring a Source IP Address for NTP Packets (optional) Enabling NTP NTP is disabled by default. To enable NTP, specify an NTP server to which the Dell Networking system synchronizes.
Examples of Viewing System Clock To display the system clock state with respect to NTP, use the show ntp status command from EXEC Privilege mode. R6_E300(conf)#do show ntp status Clock is synchronized, stratum 2, reference is 192.168.1.1 frequency is -369.623 ppm, stability is 53.319 ppm, precision is 4294967279 reference time is CD63BCC2.0CBBD000 (16:54:26.049 UTC Thu Mar 12 2009) clock offset is 997.529984 msec, root delay is 0.00098 sec root dispersion is 10.04271 sec, peer dispersion is 10032.
CONFIGURATION mode ntp source interface Enter the following keywords and slot/port or number information: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For a port channel interface, enter the keywords port-channel then a number.
ntp server [vrf] {hostname | ipv4-address |ipv6-address} [ key keyid] [prefer] [version number] Configure the IP address of a server and the following optional parameters: • – vrf-name : Enter the name of the VRF through which the NTP server is reachable. – hostname : Enter the keyword hostname to see the IP address or host name of the remote device. – ipv4-address : Enter an IPv4 address in dotted decimal format (A.B.C.D).
NOTE: • Leap Indicator (sys.leap, peer.leap, pkt.leap) — This is a two-bit code warning of an impending leap second to be inserted in the NTP time scale. The bits are set before 23:59 on the day of insertion and reset after 00:00 on the following day. This causes the number of seconds (rollover interval) in the day of insertion to be increased or decreased by one.
Dell Networking OS Time and Date You can set the time and date using the Dell Networking OS CLI. Configuration Task List The following is a configuration task list for configuring the time and date settings.
– offset: enter one of the following: * a number from 1 to 23 as the number of hours in addition to UTC for the timezone. * a minus sign (-) then a number from 1 to 23 as the number of hours.
To set a recurring daylight saving time, use the following command. • Set the clock to the appropriate timezone and adjust to daylight saving time every year. CONFIGURATION mode clock summer-time time-zone recurring start-week start-day start-month start-time end-week end-day end-month end-time [offset] – time-zone: Enter the three-letter name for the time zone. This name displays in the show clock output.
7 2009" to "Summer time starts 02:00:00 Pacific Sun Mar 8 2009;Summer time ends 02:00:00 pacific Sun Nov 1 2009" System Time and Date 840
52 Tunneling Tunnel interfaces create a logical tunnel for IPv4 or IPv6 traffic. Tunneling supports RFC 2003, RFC 2473, and 4213. DSCP, hop-limits, flow label values, open shortest path first (OSPF) v2, and OSPFv3 are supported. Internet control message protocol (ICMP) error relay, PATH MTU transmission, and fragmented packets are not supported.
interface Tunnel 2 no ip address ipv6 address 2::1/64 tunnel destination 90.1.1.1 tunnel source 60.1.1.1 tunnel mode ipv6ip no shutdown The following sample configuration shows a tunnel configured in IPIP mode (IPv4 tunnel carries IPv4 and IPv6 traffic): Dell(conf)#interface tunnel 3 Dell(conf-if-tu-3)#tunnel source 5::5 Dell(conf-if-tu-3)#tunnel destination 8::9 Dell(conf-if-tu-3)#tunnel mode ipv6 Dell(conf-if-tu-3)#ip address 3.1.1.
The following sample configuration shows how to use the interface tunnel configuration commands. Dell(conf-if-te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 ip address 20.1.1.1/24 ipv6 address 20:1::1/64 no shutdown Dell(conf)#interface tunnel 1 Dell(conf-if-tu-1)#ip unnumbered tengigabitethernet 1/1/1 Dell(conf-if-tu-1)#ipv6 unnumbered tengigabitethernet 1/1/1 Dell(conf-if-tu-1)#tunnel source 40.1.1.
Dell(conf-if-tu-1)#tunnel allow-remote 40.1.1.2 Dell(conf-if-tu-1)#no shutdown Dell(conf-if-tu-1)#show config ! interface Tunnel 1 ip address 1.1.1.1/24 ipv6 address 1abd::1/64 tunnel source anylocal tunnel allow-remote 40.1.1.2 tunnel mode ipip decapsulate-any no shutdown Guidelines for Configuring Multipoint ReceiveOnly Tunnels • You can configure up to eight remote end-points for a multipoint receive-only tunnel.
53 Upgrade Procedures To find the upgrade procedures, go to the Dell Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell Networking OS version. To upgrade your system type, follow the procedures in the Dell Networking OS Release Notes. Get Help with Upgrades Direct any questions or concerns about the Dell Networking OS upgrade procedures to the Dell Technical Support Center. You can reach Technical Support: • On the web: http://www.dell.
54 Virtual LANs (VLANs) Virtual LANs (VLANs) are a logical broadcast domain or logical grouping of interfaces in a local area network (LAN) in which all data received is kept locally and broadcast to all members of the group. When in Layer 2 mode, VLANs move traffic at wire speed and can span multiple devices. The system supports up to 4093 portbased VLANs and one default VLAN, as specified in IEEE 802.1Q.
Default VLAN When you configure interfaces for Layer 2 mode, they are automatically placed in the Default VLAN as untagged interfaces. Only untagged interfaces can belong to the Default VLAN. The following example displays the outcome of placing an interface in Layer 2 mode. To configure an interface for Layer 2 mode, use the switchport command.
the network. The following example shows the structure of a frame with a tag header. The VLAN ID is inserted in the tag header. Figure 122. Tagged Frame Format The tag header contains some key information that Dell Networking OS uses: • • The VLAN protocol identifier identifies the frame as tagged according to the IEEE 802.1Q specifications (2 bytes). Tag control information (TCI) includes the VLAN ID (2 bytes total). The VLAN ID can have 4,096 values, but two are reserved.
Example of Verifying a Port-Based VLAN To view the configured VLANs, use the show vlan command in EXEC Privilege mode. Dell#show vlan Codes: * - Default VLAN, G - GVRP VLANs NUM * 1 2 3 4 5 6 Status Inactive Active Active Active Active Active Q U U U T U U U Ports So 9/4-11 Te 1/1,18/1 Te 1/2,19/1 Te 1/3,20/1 Po 1 Te 1/12/1 So 9/0 Assigning Interfaces to a VLAN You can only assign interfaces in Layer 2 mode to a VLAN using the tagged and untagged commands.
Dell#config Dell(conf)#interface vlan 4 Dell(conf-if-vlan)#tagged po 1 Dell(conf-if-vlan)#show conf ! interface Vlan 4 no ip address tagged Port-channel 1 Dell(conf-if-vlan)#end Dell#show vlan Codes: * - Default VLAN, G - GVRP VLANs NUM Status Q * 1 Inactive 2 Active T T 3 Active T T 4 Active T Ports Po1(So 0/0-1) Te 1/1/1 Po1(So 0/0-1) Te 1/2/1 Po1(So 0/0-1) When you remove a tagged interface from a VLAN (using the no tagged interface command), it remains tagged only if it is a tagged interface in anothe
Dell#conf Dell(conf)#interface vlan 4 Dell(conf-if-vlan)#untagged tengigabitethernet 1/2/1 Dell(conf-if-vlan)#show config ! interface Vlan 4 no ip address untagged TenGigabitEthernet 1/2/1 Dell(conf-if-vlan)#end Dell#show vlan Codes: * - Default VLAN, G - GVRP VLANs NUM * 1 2 3 4 Status Q Inactive Active T T Active T T Active U Ports Po1(So 0/0-1) Te 1/3/1 Po1(So 0/0-1) Te 1/1/1 Te 1/2/1 The only way to remove an interface from the Default VLAN is to place the interface in Default mode by using the no sw
NOTE: You cannot configure an existing switchport or port channel interface for Native VLAN. Interfaces must have no other Layer 2 or Layer 3 configurations when using the portmode hybrid command or a message similar to this displays: % Error: Port is in Layer-2 mode Gi 5/6. To configure a port so that it can be a member of an untagged and tagged VLANs, use the following commands. 1 Remove any Layer 2 or Layer 3 configurations from the interface. INTERFACE mode 2 Configure the interface for Hybrid mode.
55 VLT Proxy Gateway The virtual link trucking (VLT) proxy gateway feature allows a VLT domain to locally terminate and route L3 packets that are destined to a Layer 3 (L3) end point in another VLT domain. Enable the VLT proxy gateway using the link layer discover protocol (LLDP) method or the static configuration. For more information, see the Dell Networking OS Command Line Reference Guide.
For more information about eVLT, refer to the Virtual Link Trunking (VLT) chapter. The core or Layer 3 routers C and D in local VLT Domain and C1 and D1 in the remote VLT Domain are then part of a Layer 3 cloud. Figure 123. Sample Configuration for a VLT Proxy Gateway Guidelines for Enabling the VLT Proxy Gateway Keep the following points in mind when you enable a VLT proxy gateway: • • Proxy gateway is supported only for VLT; for example, across a VLT domain.
• If the port-channel specified in the proxy-gateway command is not a VLT LAG, the configuration is rejected by the CLI. • You cannot change the VLT LAG to a legacy LAG when it is part of proxy-gateway. • You cannot change the link layer discovery protocol (LLDP) port channel interface to a legacy LAG when you enable a proxy gateway. • Dell Networking recommends the vlt-peer-mac transmit command only for square VLTs without diagonal links.
The LLDP organizational TLV passes local destination MAC address information to peer VLT domain devices so they can act as a proxy gateway. To enable proxy gateway LLDP, two configurations are required: • You must configure the global proxy gateway LLDP to enable the proxy-gateway LLDP TLV. • You must configure the interface proxy gateway LLDP to enable or disable a proxy-gateway LLDP TLV on specific interfaces. • The interface is typically a VLT port-channel that connects to a remote VLT domain.
• LLDP packets fail to reach the remote VLT domain devices (for example, because the system is down, rebooting, or the port physical link connection is down). Figure 124. Sample Configuration for a VLT Proxy Gateway • The above figure shows a sample VLT Proxy gateway scenario. There are no diagonal links in the square VLT connection between the C and D in VLT domain 1 and C1 and D1 in the VLT domain 2. This causes sub-optimal routing with the VLT Proxy Gateway LLDP method.
Sample Configuration LLDP Method Dell(conf-vlt-domain)#proxy-gateway ll Dell(conf-vlt-domain-pxy-gw-lldp)#peer-domain-link port-channel 1 exclude-vlan 10 Sample Configuration Static Method Dell(conf-vlt-domain)#proxy-gateway static Dell(conf-vlt-domain-pxy-gw-static)#remote-mac-address exclude-vlan 10 • Packet duplication may happen with “Exclude-VLAN” configuration – Assume you used the exclude-vlan option (called VLAN 10) in C and D and in C1 and D1; If packets for VLAN 10 with C’s MA
56 Virtual Link Trunking (VLT) Virtual link trunking (VLT) allows physical links between two chassis to appear as a single virtual link to the network core or other switches such as Edge, Access, or top-of-rack (ToR). Overview VLT reduces the role of spanning tree protocols (STPs) by allowing link aggregation group (LAG) terminations on two separate distribution or core switches and supporting a loop-free topology.
The following example shows how VLT is deployed. The switches appear as a single virtual switch from the point of view of the switch or server supporting link aggregation control protocol (LACP). Figure 125. Example of VLT Deployment VLT on Core Switches Uplinks from servers to the access layer and from access layer to the aggregation layer are bundled in LAG groups with end-toend Layer 2 multipathing.
Enhanced VLT An enhanced VLT (eVLT) configuration creates a port channel between two VLT domains by allowing two different VLT domains, using different VLT domain ID numbers, connected by a standard link aggregation control protocol (LACP) LAG to form a loop-free Layer 2 topology in the aggregation layer. This configuration supports a maximum of four switches, increasing the number of available ports and allowing for dual redundancy of the VLT.
ensures that local traffic on a chassis does not traverse the VLTi and takes the shortest path to the destination via directly attached links. Configure Virtual Link Trunking VLT requires that you enable the feature and then configure the same VLT domain, backup link, and VLT interconnect on both peer switches. Important Points to Remember • VLT port channel interfaces must be switch ports. • If you include RSTP on the system, configure it before VLT. Refer to Configure Rapid Spanning Tree.
behavior is that Peer1 ignores the ARP requests that it receives on VLTi (ICL) and updates only the ARP requests that it receives on the local VLT. As a result, the remaining ARP requests still points to the Non-VLT links and traffic does not reach half of the hosts. To mitigate this issue, ensure that you configure the following settings on both the Peers (Peer1 and Peer2): arp learn-enable and mac-address-table station-move refresh-arp.
– ARP entries configured across the VLTi are the same on both VLT peer nodes. – If you shut down the port channel used in the VLT interconnect on a peer switch in a VLT domain in which you did not configure a backup link, the switch’s role displays in the show vlt brief command output as Primary instead of Standalone. – When you change the default VLAN ID on a VLT peer switch, the VLT interconnect may flap.
* • For example, if the DHCP server is on the ToR and VLTi (ICL) is down (due to either an unavailable peer or a link failure), whether you configured the VLT LAG as static or LACP, when a single VLT peer is rebooted in BMP mode, it cannot reach the DHCP server, resulting in BMP failure. Software features supported on VLT port-channels – In a VLT domain, the following software features are supported on VLT port-channels: 802.
received, the peer continues to forward traffic, assuming that it is the last device available in the network. In either case, after recovery of the peer link or reestablishment of message forwarding across the interconnect trunk, the two VLT peers resynchronize any MAC addresses learned while communication was interrupted and the VLT system continues normal data forwarding. – If the primary chassis fails, the secondary chassis takes on the operational role of the primary.
When the bandwidth usage drops below the 80% threshold, the system generates another syslog message (shown in the following message) and an SNMP trap. %STKUNIT0-M:CP %VLTMGR-6-VLT-LAG-ICL: Overall Bandwidth utilization of VLT-ICL-LAG (portchannel 25) reaches below threshold.
PIM-Sparse Mode Support on VLT The designated router functionality of the PIM Sparse-Mode multicast protocol is supported on VLT peer switches for multicast sources and receivers that are connected to VLT ports. VLT peer switches can act as a last-hop router for IGMP receivers and as a first-hop router for multicast sources. Figure 127.
domain. This does not apply to server-side L2 VLT ports because they do not connect to any PIM routers. These VLT ports can be members of multiple PIM-enabled L3 VLANs for compatibility with IGMP. To route traffic to and from the multicast source and receiver, enable PIM on the L3 side connected to the PIM router using the ip pim sparse-mode command. Each VLT peer runs its own PIM protocol independently of other VLT peers.
NOTE: If the CAM is full, do not enable peer-routing. NOTE: The peer routing and peer-routing-timeout is applicable for both IPv6/ IPv4. Configuring VLT Unicast To enable and configure VLT unicast, follow these steps. 1 Enable VLT on a switch, then configure a VLT domain and enter VLT-domain configuration mode. CONFIGURATION mode vlt domain domain-id 2 Enable peer-routing. VLT DOMAIN mode peer-routing 3 Configure the peer-routing timeout.
Configuring VLT Multicast To enable and configure VLT multicast, follow these steps. 1 Enable VLT on a switch, then configure a VLT domain and enter VLT-domain configuration mode. CONFIGURATION mode vlt domain domain-id 2 Enable peer-routing. VLT DOMAIN mode peer-routing 3 Configure the multicast peer-routing timeout. VLT DOMAIN mode multicast peer-routing—timeout value value: Specify a value (in seconds) from 1 to 1200. 4 Configure a PIM-SM compatible VLT node as a designated router (DR).
Preventing Forwarding Loops in a VLT Domain During the bootup of VLT peer switches, a forwarding loop may occur until the VLT configurations are applied on each switch and the primary/secondary roles are determined. To prevent the interfaces in the VLT interconnect trunk and RSTP-enabled VLT ports from entering a Forwarding state and creating a traffic loop in a VLT domain, take the following steps.
Configuring VLT To configure VLT, use the following procedure. Prerequisites: Before you begin, make sure that both VLT peer switches are running the same Dell Networking OS version and are configured for RSTP as described in RSTP Configuration. For VRRP operation, ensure that you configure VRRP groups and L3 routing on each VLT peer as described in VLT and VRRP interoperability in the Configuration Notes section.
Enabling VLT and Creating a VLT Domain To enable VLT and create a VLT domain, use the following steps. 1 Enable VLT on a switch, then configure a VLT domain and enter VLT-domain configuration mode. CONFIGURATION mode vlt domain domain-id The domain ID range is from 1 to 1000. Configure the same domain ID on the peer switch to allow for common peering. VLT uses the domain ID to automatically create a VLT MAC address for the domain.
Configuring a VLT Backup Link To configure a VLT backup link, use the following command. 1 Specify the management interface to be used for the backup link through an out-of-band management network. CONFIGURATION mode interface managementethernet slot/port Enter the slot (0-1) and the port (0). 2 Configure an IPv4 address (A.B.C.D) or IPv6 address (X:X:X:X::X) and mask (/x) on the interface.
CONFIGURATION mode vlt domain domain-id The range of domain IDs is from 1 to 1000. 2 After you configure a VLT domain on each peer switch and connect (cable) the two VLT peers on each side of the VLT interconnect, the system elects a primary and secondary VLT peer device. To configure the primary and secondary roles before the election process, use the primary-priority command. Enter a lower value on the primary peer and a higher value on the secondary peer.
INTERFACE PORT-CHANNEL mode switchport 4 Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: 5 • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information. • For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. Ensure that the port channel is active.
CONFIGURATION mode interface port-channel id-number Enter the same port-channel number configured with the peer-link port-channel command in the . 2 Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: 3 • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/subport information.
8 Configure enhanced VLT. Configure the port channel to be used for the VLT interconnect on a VLT switch and enter interface configuration mode. CONFIGURATION mode interface port-channel id-number Enter the same port-channel number configured with the peer-link port-channel command in the . 9 Place the interface in Layer 2 mode. INTERFACE PORT-CHANNEL mode switchport 10 Associate the port channel to the corresponding port channel in the VLT peer for the VLT connection to an attached device.
interface port-channel port-channel id NOTE: To benefit from the protocol negotiations, Dell Networking recommends configuring VLTs used as facing hosts/ switches with LACP. Ensure both peers use the same port channel ID. 4 Configure the peer-link port-channel in the VLT domains of each peer unit. INTERFACE PORTCHANNEL mode channel-member 5 Configure the backup link between the VLT peer units (shown in the following example).
2. Configure the peer-link port-channel in the VLT domains of each peer unit. Dell-2(conf)#interface port-channel Dell-2(conf-if-po-1)#channel-member Dell-4(conf)#interface port-channel Dell-4(conf-if-po-1)#channel-member 1 TenGigabitEthernet 1/4/1-1/4/4 1 TenGigabitEthernet 1/4/1-1/4/4 Configure the backup link between the VLT peer units. 1. Configure the peer 2 management ip/ interface ip for which connectivity is present in VLT peer 1. 2.
! port-channel-protocol LACP port-channel 100 mode active no shutdown s60-1#show running-config interface tengigabitethernet 1/30/1 ! interface TenGigabitEthernet 1/30/1 no ip address ! port-channel-protocol LACP port-channel 100 mode active no shutdown s60-1#show running-config interface port-channel 100 ! interface Port-channel 100 no ip address switchport no shutdown s60-1#show interfaces port-channel 100 brief Codes: L - LACP Port-channel L LAG 100 Mode L2 Status up Uptime 03:33:48 Ports Te 1/8/1
PVST+ Configuration PVST+ is supported in a VLT domain. Before you configure VLT on peer switches, configure PVST+ in the network. PVST+ is required for initial loop prevention during the VLT startup phase. You may also use PVST+ for loop prevention in the network outside of the VLT port channel. Run PVST+ on both VLT peer switches. A PVST+ instance is created for every VLAN configured in the system. PVST+ instances running in the Primary Peer control the VLT-LAGs on both Primary and Secondary peers.
eVLT Configuration Example The following example demonstrates the steps to configure enhanced VLT (eVLT) in a network. In this example, you are configuring two domains. Domain 1 consists of Peer 1 and Peer 2; Domain 2 consists of Peer 3 and Peer 4, as shown in the following example. In Domain 1, configure Peer 1 fist, then configure Peer 2. When that is complete, perform the same steps for the peer nodes in Domain 2. The interface used in this example is TenGigabitEthernet.
Figure 128. eVLT Configuration Example eVLT Configuration Step Examples In Domain 1, configure the VLT domain and VLTi on Peer 1. Domain_1_Peer1#configure Domain_1_Peer1(conf)#interface port-channel 1 Domain_1_Peer1(conf-if-po-1)# channel-member TenGigabitEthernet 1/8/1-1/8/2 Domain_1_Peer1(conf)#vlt domain 1000 Domain_1_Peer1(conf-vlt-domain)# peer-link port-channel 1 Domain_1_Peer1(conf-vlt-domain)# back-up destination 10.16.130.
Configure eVLT on Peer 2. Domain_1_Peer2(conf)#interface port-channel 100 Domain_1_Peer2(conf-if-po-100)# switchport Domain_1_Peer2(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_1_Peer2(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 2.
PIM-Sparse Mode Configuration Example The following sample configuration shows how to configure the PIM Sparse mode designated router functionality on the VLT domain with two VLT port-channels that are members of VLAN 4001. For more information, refer to PIM-Sparse Mode Support on VLT. Examples of Configuring PIM-Sparse Mode The following example shows how to enable PIM multicast routing on the VLT node globally.
EXEC mode • show vlt role Display the current configuration of all VLT domains or a specified group on the switch. EXEC mode • show running-config vlt Display statistics on VLT operation. EXEC mode • show vlt statistics Display the RSTP configuration on a VLT peer switch, including the status of port channels used in the VLT interconnect trunk and to connect to access devices. EXEC mode • show spanning-tree rstp Display the current status of a port or port-channel interface used in the VLT domain.
Version Local System MAC address Remote System MAC address Remote system version Delay-Restore timer : : : : : 6(3) 00:01:e8:8a:e9:91 00:01:e8:8a:e9:76 6(3) 90 seconds Delay-Restore Abort Threshold Peer-Routing Peer-Routing-Timeout timer Multicast peer-routing timeout Dell# : : : : 60 seconds Disabled 0 seconds 150 seconds The following example shows the show vlt detail command.
HeartBeat Messages Received: 986 ICL Hello's Sent: 148 ICL Hello's Received: 98 Dell_VLTpeer2# show vlt statistics VLT Statistics ---------------HeartBeat Messages Sent: HeartBeat Messages Received: ICL Hello's Sent: ICL Hello's Received: 994 978 89 89 The following example shows the show spanning-tree rstp command. The bold section displays the RSTP state of port channels in the VLT domain. Port channel 100 is used in the VLT interconnect trunk (VLTi) to connect to VLT peer2.
Enable VLT and create a VLT domain with a backup-link and interconnect trunk (VLTi). Dell_VLTpeer1(conf)#vlt domain 999 Dell_VLTpeer1(conf-vlt-domain)#peer-link port-channel 100 Dell_VLTpeer1(conf-vlt-domain)#back-up destination 10.11.206.35 Dell_VLTpeer1(conf-vlt-domain)#exit Configure the backup link. Dell_VLTpeer1(conf)#interface ManagementEthernet 1/1 Dell_VLTpeer1(conf-if-ma-1/1)#ip address 10.11.206.
Configure the port channel to an attached device. Dell_VLTpeer2(conf)#interface port-channel 110 Dell_VLTpeer2(conf-if-po-110)#no ip address Dell_VLTpeer2(conf-if-po-110)#switchport Dell_VLTpeer2(conf-if-po-110)#channel-member fortyGigE 1/12 Dell_VLTpeer2(conf-if-po-110)#no shutdown Dell_VLTpeer2(conf-if-po-110)#vlt-peer-lag port-channel 110 Dell_VLTpeer2(conf-if-po-110)#end Verify that the port channels used in the VLT domain are assigned to the same VLAN.
Description Behavior at Peer Up Behavior During Run Time Action to Take commands to view the VLT port channel status information. All VLT port channels go down on both VLT peers. A syslog error message is generated. No traffic is passed on the port channels. Spanning tree mismatch at port level A syslog error message is generated. A one-time informational syslog message is generated. Correct the spanning tree configuration on the ports.
Specifying VLT Nodes in a PVLAN You can configure VLT peer nodes in a private VLAN (PVLAN). VLT enables redundancy without the implementation of Spanning Tree Protocol (STP), and provides a loop-free network with optimal bandwidth utilization. Because the VLT LAG interfaces are terminated on two different nodes, PVLAN configuration of VLT VLANs and VLT LAGs are symmetrical and identical on both the VLT peers. PVLANs provide Layer 2 isolation between ports within the same VLAN.
information is synchronized with the other peer and VLTi is either added or removed from the VLAN based on the validation of the VLAN parity. For VLT VLANs, the association between primary VLAN and secondary VLANs is examined on both the peers. Only if the association is identical on both the peers, VLTi is configured as a member of those VLANs. This behavior is because of security functionalities in a PVLAN.
Interoperation of VLT Nodes in a PVLAN with ARP Requests When an ARP request is received, and the following conditions are applicable, the IP stack performs certain operations. • The VLAN on which the ARP request is received is a secondary VLAN (community or isolated VLAN). • Layer 3 communication between secondary VLANs in a private VLAN is enabled by using the ip local-proxy-arp command in INTERFACE VLAN configuration mode.
VLT LAG Mode Peer1 Promiscuous PVLAN Mode of VLT VLAN Peer2 Promiscuous Peer1 Peer2 • • Primary X Primary X ICL VLAN Membership Mac Synchronization Yes Yes Primary Primary Yes Yes - Secondary (Community) - Secondary (Community) Yes Yes - Secondary (Isolated) - Secondary (Isolated) Yes Yes Promiscuous Trunk Primary Normal No No Promiscuous Trunk Primary Primary Yes No Access Access Secondary (Community) Secondary (Community) Yes Yes - Primary VLAN X - Primary VLAN
Enter the same port-channel number configured with the peer-link port-channel command as described in Enabling VLT and Creating a VLT Domain. NOTE: To be included in the VLTi, the port channel must be in Default mode (no switchport or VLAN assigned). 2 Remove an IP address from the interface. INTERFACE PORT-CHANNEL mode no ip address 3 Add one or more port interfaces to the port channel.
switchport mode private-vlan {host | promiscuous | trunk} • • • 5 host (isolated or community VLAN port) promiscuous (intra-VLAN communication port) trunk (inter-switch PVLAN hub port) Access INTERFACE VLAN mode for the VLAN to which you want to assign the PVLAN interfaces. CONFIGURATION mode interface vlan vlan-id 6 Enable the VLAN. INTERFACE VLAN mode no shutdown 7 To obtain maximum VLT resiliency, configure the PVLAN IDs and mappings to be identical on both the VLT peer nodes.
the ARP-requested IP address is different from the received interface IP subnet. For example, if you configure VLAN 100 and 200 on the VLT peers, and if you configured the VLAN 100 IP address as 10.1.1.0/24 and you configured the VLAN 200 IP address as 20.1.1.0/24, the proxy ARP is not performed if the VLT node receives an ARP request for 20.1.1.0/24 on VLAN 100. Working of Proxy ARP for VLT Peer Nodes Proxy ARP is enabled only when you enable peer routing on both the VLT peers.
You can configure a VLT node to be an RP using the ip pim rp-address command in Global Configuration mode. When you configure a VLT node as an RP, the (*, G) routes that are synchronized from the VLT peers are ignored and not downloaded to the device. For the (S, G) routes that are synchronized from the VLT peer, after the RP starts receiving multicast traffic via these routes, these (S, G) routes are considered valid and are downloaded to the device.
Dell#show running-config vlt ! vlt domain 1 peer-link port-channel 1 back-up destination 10.16.151.
G - GVRP tagged, M - Vlan-stack i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged NUM 50 Status Active Description Dell# Q M M V Ports Po10(Te 1/8/1) Po20(Te 1/12/1) Po1(Te 1/30-32/1) Sample Configuration of VLAN-Stack Over VLT (Peer 2) Configure the VLT domain Dell(conf)#vlt domain 1 Dell(conf-vlt-domain)#peer-link port-channel 1 Dell(conf-vlt-domain)#back-up destination 10.16.151.
! interface Vlan 50 vlan-stack compatible member Port-channel 10,20 shutdown Dell# Verify that the Port Channels used in the VLT Domain are Assigned to the VLAN-Stack VLAN Dell#show vlan id 50 Codes: * - Default VLAN, G - GVRP VLANs, R - Remote Port Mirroring VLANs, P - Primary, C Community, I - Isolated O - Openflow Q: U - Untagged, T - Tagged x - Dot1x untagged, X - Dot1x tagged o - OpenFlow untagged, O - OpenFlow tagged G - GVRP tagged, M - Vlan-stack i - Internal untagged, I - Internal tagged, v - VLT u
57 Virtual Extensible LAN (VXLAN) Virtual Extensible LAN (VXLAN) is supported on Dell Networking OS. Overview The switch acts as the VXLAN gateway and performs the VXLAN Tunnel End Point (VTEP) functionality. VXLAN is a technology where in the data traffic from the virtualized servers is transparently transported over an existing legacy network. Figure 129.
Components of VXLAN network VXLAN provides a mechanism to extend an L2 network over an L3 network. In short, VXLAN is an L2 overlay scheme over an L3 network and this overlay is termed as a VXLAN segment.
Functional Overview of VXLAN Gateway The following section is the functional overview of VXLAN Gateway: 1. Provides connectivity between a Virtual server infrastructure and a Physical server infrastructure. 2. Provides the functions performed by a VTEP in a virtual server infrastructure. The functions of a VTEP are: • VTEP is responsible for creating one or more logical networks.
Outer IP Header: Outer UDP Header: VXLAN Header : Frame Check Sequence (FCS): • Destination Address: Generally, it is a first hop router's MAC address when the VTEP is on a different address. • Source Address : It is the source MAC address of the router that routes the packet. • VLAN: It is optional in a VXLAN implementation and will be designated by an ethertype of 0×8100 and has an associated VLAN ID tag. • Ethertype: It is set to 0×0800 because the payload packet is an IPv4 packet.
Figure 131. Create Hypervisor Figure 132. Edit Hypervisor Figure 133. Create Transport Connector 2.
To create service node, the required fields are the IP address and SSL certificate of the server. The Service node is responsible for broadcast/unknown unicast/multicast traffic replication. The following is the snapshot of the user interface for the creation of service node: Figure 134. Create Service Node 3. Create VXLAN Gateway To create a VXLAN L2 Gateway, the IP address of the Gateway is mandatory. The following is the snapshot of the user interface in creating a VXLAN Gateway Figure 135.
A logical switch port provides a logical connection point for a VM interface (VIF) and a L2 gateway connection to an external network. It binds the virtual access ports in the GW to logical network (VXLAN) and VLAN. Figure 137. Create Logical Switch Port NOTE: For more details about NVP controller configuration, refer to the NVP user guide from VMWare . Configuring VxLAN Gateway To configure the VxLAN gateway on the switch, follow these steps: 1. Connecting to NVP controller 2.
6 fail-mode (Optional) VxLAN INSTANCE mode fail-mode secure If the local VTEP loses connectivity with the controller, it will delete all its database and hardware flows/resources. 7 no shut VxLAN INSTANCE mode Advertising VXLAN Access Ports to Controller To advertise the access ports to the controller, use the following command. In INTERFACE mode, vxlan-instance command configures a VXLAN-Access Port into a VXLAN-instance.
The following example shows the show vxlan vxlan-instance physical-locator command. Dell#show vxlan vxlan-instance 1 physical-locator Instance : 1 Tunnel : count 1 36.1.1.1 : vxlan_over_ipv4 (up) The following example shows the show vxlan vxlan-instance unicast-mac-local command. The following example shows the show vxlan vxlan-instance unicast-mac-remote command. Dell# show vxlan vxlan-instance <1> unicast-mac-remote Total Local Mac Count: 1 VNI MAC TUNNEL 4656 00:00:01:00:00:01 36.1.1.
The following example shows the show vxlan vxlan-instance physical-locator command. Dell#show vxlan vxlan-instance 1 physical-locator Instance : 1 Tunnel : count 1 36.1.1.1 : vxlan_over_ipv4 (up) The following example shows the show vxlan vxlan-instance unicast-mac-local command.
58 Virtual Routing and Forwarding (VRF) Virtual Routing and Forwarding (VRF) allows a physical router to partition itself into multiple Virtual Routers (VRs). The control and data plane are isolated in each VR so that traffic does NOT flow across VRs.Virtual Routing and Forwarding (VRF) allows multiple instances of a routing table to co-exist within the same router at the same time. VRF Overview VRF improves functionality by allowing network paths to be segmented without using multiple devices.
Figure 138. VRF Network Example VRF Configuration Notes Although there is no restriction on the number of VLANs that can be assigned to a VRF instance, the total number of routes supported in VRF is limited by the size of the IPv4 CAM. VRF is implemented in a network device by using Forwarding Information Bases (FIBs). A network device may have the ability to configure different virtual routers, where entries in the FIB that belong to one VRF cannot be accessed by another VRF on the same device.
Table 92. Software Features Supported on VRF Feature/Capability Support Status for Default VRF Support Status for Non-default VRF Configuration rollback for commands introduced or modified Yes No LLDP protocol on the port Yes No 802.
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF sFlow Yes No VRRP on physical and logical interfaces Yes Yes VRRPV3 Yes Yes Secondary IP Addresses Yes No Following IPv6 capabilities No Basic Yes No OSPFv3 Yes Yes IS-IS Yes Yes BGP Yes Yes ACL Yes No Multicast Yes No NDP Yes Yes RAD Yes Yes Ingress/Egress Storm-Control (perinterface/global) Yes No DHCP DHCP requests are not forwarded across VRF instances.
Creating a Non-Default VRF Instance VRF is enabled by default on the switch and supports up to 64 VRF instances: 1 to 63 and the default VRF (0). • Create a non-default VRF instance by specifying a name and VRF ID number, and enter VRF configuration mode. CONFIGURATION ip vrf vrf-name vrf-id The VRF ID range is from 1 to 63. 0 is the default VRF ID. Assigning an Interface to a VRF You must enter the ip vrf forwarding command before you configure the IP address or any other setting on an interface.
View VRF Instance Information To display information about VRF configuration, enter the show ip vrf command. To display information on all VRF instances (including the default VRF 0), do not enter a value for vrf-name. • Display the interfaces assigned to a VRF instance. EXEC show ip vrf [vrf-name] Assigning an OSPF Process to a VRF Instance OSPF routes are supported on all VRF instances. SeeOpen Shortest Path First (OSPFv2) for complete OSPF configuration information.
Task Command Syntax Command Mode ip vrf forwarding vrf1 ip address 10.1.1.1/24 ! vrrp-group 10 virtual-address 10.1.1.100 no shutdown View VRRP command output for the VRF vrf1 show vrrp vrf vrf1 -----------------TenGigabitEthernet 1/13/1, IPv4 VRID: 10, Version: 2, Net: 10.1.1.1 VRF: 2 vrf1 State: Master, Priority: 100, Master: 10.1.1.
• ipv6 address — Configure IPv6 address on an interface NOTE: The command line help still displays relevant details corresponding to each of these commands. However, these interface range or interface group commands are not supported when Management VRF is configured. Configuring a Static Route • Configure a static route that points to a management interface.
Figure 140. Setup VRF Interfaces The following example relates to the configuration shown in the above illustrations. Router 1 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet no ip address switchport no shutdown ! interface TenGigabitEthernet ip vrf forwarding blue ip address 10.0.0.1/24 no shutdown ! interface TenGigabitEthernet ip vrf forwarding orange ip address 20.0.0.
ip address 30.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! router ospf 1 vrf blue router-id 1.0.0.1 network 1.0.0.0/24 area 0 network 10.0.0.0/24 area 0 ! router ospf 2 vrf orange router-id 2.0.0.
! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.2/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! router ospf 1 vrf blue router-id 1.0.0.2 network 11.0.0.0/24 area 0 network 1.0.0.0/24 area 0 passive-interface TenGigabitEthernet 2/1/1 ! router ospf 2 vrf orange router-id 2.0.0.2 network 21.0.0.0/24 area 0 network 2.0.0.0/24 area 0 passive-interface TenGigabitEthernet 2/2/1 ! ip route vrf green30.0.0.0/24 3.0.0.1 ! The following shows the output of the show commands on Router 1.
N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set C C O Destination ----------2.0.0.0/24 20.0.0.0/24 21.0.0.0/24 Gateway ------Direct, Vl 192 Direct, Te 1/2/1 via 2.0.0.
C O C Destination ----------1.0.0.0/24 10.0.0.0/24 11.0.0.0/24 Gateway ------Direct, Vl 128 via 1.0.0.
Dynamic Route Leaking Route Leaking is a powerful feature that enables communication between isolated (virtual) routing domains by segregating and sharing a set of services such as VOIP, Video, and so on that are available on one routing domain with other virtual domains. Inter-VRF Route Leaking enables a VRF to leak or export routes that are present in its RTM to one or more VRFs.
ip route-export 1:1 3 Configure VRF-red. ip vrf vrf-red interface-type slot/port[/subport] ip vrf forwarding VRF-red ip address ip—address mask A non-default VRF named VRF-red is created and the interface is assigned to this VRF. 4 Configure the import target in VRF-red. ip route-import 1:1 5 Configure the export target in VRF-red. ip route-export 2:2 6 Configure VRF-blue.
ip route-export ip route-import ip route-import 1:1 2:2 3:3 Show routing tables of all the VRFs (without any route-export and route-import tags being configured) Dell# show ip route vrf VRF-Red O 11.1.1.1/32 via 111.1.1.1 110/0 C 111.1.1.0/24 Direct, Te 1/11/1 0/0 00:00:10 22:39:59 Dell# show ip route vrf VRF-Blue O 22.2.2.2/32 via 122.2.2.2 110/0 00:00:11 C 122.2.2.0/24 Direct, Te 1/12/1 0/0 Dell# show ip route vrf VRF-Green O 33.3.3.3/32 via 133.3.3.3 00:00:11 C 133.3.3.
• • • • • • If the target VRF conatins the same prefix as either the sourced or Leaked route from some other VRF, then route Leaking for that particular prefix fails and the following error-log is thrown. SYSLOG (“Duplicate prefix found %s in the target VRF %d”, address, import_vrf_id) with The type/level is EVT_LOGWARNING. The source routes always take precedence over leaked routes. The leaked routes are deleted as soon as routes are locally learnt by the VRF using other means.
This action specifies that the route-map contains OSPF and BGP as the matching criteria for exporting routes from vrf-red. 4 Configure the export target in the source VRF with route-map export_ospfbgp_protocol. ip route-export 1:1 export_ospfbgp_protocol 5 Configure VRF-blue. ip vrf vrf-blue interface-type slot/port[/subport] ip vrf forwarding VRF-blue ip address ip—address mask A non-default VRF named VRF-blue is created and the interface 1/22/1 is assigned to it.
to some other VRF. Similarly, when two VRFs leak or export routes, there is no option to discretely filter leaked routes from each source VRF. Meaning, you cannot import one set of routes from VRF-red and another set of routes from VRF-blue.
59 Virtual Router Redundancy Protocol (VRRP) Virtual router redundancy protocol (VRRP) is designed to eliminate a single point of failure in a statically routed network. VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN).
Figure 141. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. Endstation connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. VRRP Implementation Within a single VRRP group, up to 12 virtual IP addresses are supported.
Table 94. Recommended VRRP Advertise Intervals Recommended Advertise Interval Groups/Interface Total VRRP Groups Groups/Interface Less than 250 1 second 12 Between 250 and 450 2–3 seconds 24 Between 450 and 600 3–4 seconds 36 Between 600 and 800 4 seconds 48 Between 800 and 1000 5 seconds 84 Between 1000 and 1200 7 seconds 100 Between 1200 and 1500 8 seconds 120 VRRP Configuration By default, VRRP is not configured.
no vrrp-group vrid Examples of Configuring and Verifying VRRP The following examples how to configure VRRP. Dell(conf)#interface tengigabitethernet 1/1/1 Dell(conf-if-te-1/1/1)#vrrp-group 111 Dell(conf-if-te-1/1/1-vrid-111)# The following examples how to verify the VRRP configuration. Dell(conf-if-te-1/1/1)#show conf ! interface TenGigabitEthernet 1/1/1 ip address 10.10.10.
2. Set the master switch to VRRP protocol version 3. Dell_master_switch(conf-if-te-1/1/1-vrid-100)#version 3 3. Set the backup switches to version 3. Dell_backup_switch1(conf-if-te-1/1/1-vrid-100)#version 3 Dell_backup_switch2(conf-if-te-1/2/1-vrid-100)#version 3 Assign Virtual IP addresses Virtual routers contain virtual IP addresses configured for that VRRP group (VRID). A VRRP group does not transmit VRRP packets until you assign the Virtual IP address to the VRRP group.
NOTE: In the following example, the primary IP address and the virtual IP addresses are on the same subnet. Dell(conf-if-te-1/1/1)#show conf ! interface TenGigabitEthernet 1/1/1 ip address 10.10.10.1/24 ! vrrp-group 111 priority 255 virtual-address 10.10.10.1 virtual-address 10.10.10.2 virtual-address 10.10.10.3 ! vrrp-group 222 no shutdown The following example shows the same VRRP group (VRID 111) configured on multiple interfaces on different subnets.
To verify the VRRP group priority, use the show vrrp command. Dellshow vrrp -----------------TenGigabitEthernet 1/1/1, VRID: 111, Net: 10.10.10.1 State: Master, Priority: 255, Master: 10.10.10.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 2343, Gratuitous ARP sent: 5 Virtual MAC address: 00:00:5e:00:01:6f Virtual IP address: 10.10.10.1 10.10.10.2 10.10.10.3 10.10.10.10 Authentication: (none) -----------------TenGigabitEthernet 1/2/1, VRID: 111, Net: 10.10.
Disabling Preempt The preempt command is enabled by default. The command forces the system to change the MASTER router if another router with a higher priority comes online. Prevent the BACKUP router with the higher priority from becoming the MASTER router by disabling preempt. NOTE: You must configure all virtual routers in the VRRP group the same: you must configure all with preempt enabled or configure all with preempt disabled.
• Change the advertisement interval setting. INTERFACE-VRID mode advertise-interval seconds The range is from 1 to 255 seconds. • The default is 1 second. For VRRPv3, change the advertisement centisecs interval setting. INTERFACE-VRID mode advertise-interval centisecs centisecs The range is from 25 to 4075 centisecs in units of 25 centisecs. The default is 100 centisecs.
For a virtual group, you can also track the status of a configured object (the track object-id command) by entering its object number. NOTE: You can configure a tracked object for a VRRP group (using the track object-id command in INTERFACE-VRID mode) before you actually create the tracked object (using a track object-id command in CONFIGURATION mode). However, no changes in the VRRP group’s priority occur until the tracked object is defined and determined to be down.
The following example shows verifying the tracking status.
Set the delay timer on individual interfaces. The delay timer is supported on all physical interfaces, VLANs, and LAGs. When you configure both CLIs, the later timer rules VRRP enabling. For example, if you set vrrp delay reload 600 and vrrp delay minimum 300, the following behavior occurs: • When the system reloads, VRRP waits 600 seconds (10 minutes) to bring up VRRP on all interfaces that are up and configured for VRRP.
Figure 142. VRRP for IPv4 Topology Examples of Configuring VRRP for IPv4 and IPv6 The following example shows configuring VRRP for IPv4 Router 2. R2(conf)#interface tengigabitethernet 2/31/1 R2(conf-if-te-2/31/1)#ip address 10.1.1.1/24 R2(conf-if-te-2/31/1)#vrrp-group 99 R2(conf-if-te-2/31/1-vrid-99)#priority 200 R2(conf-if-te-2/31/1-vrid-99)#virtual 10.1.1.3 R2(conf-if-te-2/31/1-vrid-99)#no shut R2(conf-if-te-2/31/1)#show conf ! interface TenGigabitEthernet 2/31/1 ip address 10.1.1.
TenGigabitEthernet 2/31/1, VRID: 99, Net: 10.1.1.1 State: Master, Priority: 200, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 817, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:63 Virtual IP address: 10.1.1.3 Authentication: (none) R2# Router 3 R3(conf)#interface tengigabitethernet 3/21/1 R3(conf-if-te-3/21/1)#ip address 10.1.1.2/24 R3(conf-if-te-3/21/1)#vrrp-group 99 R3(conf-if-te-3/21/1-vrid-99)#virtual 10.1.1.
10.1.1.3 Authentication: (none) Figure 143. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address. The following example shows configuring VRRP for IPv6 Router 2 and Router 3. Configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
R2(conf-if-te-1/1/1-vrid-10)#virtual-address fe80::10 R2(conf-if-te-1/1/1-vrid-10)#virtual-address 1::10 R2(conf-if-te-1/1/1-vrid-10)#no shutdown R2(conf-if-te-1/1/1)#show config interface TenGigabitEthernet 1/1/1 ipv6 address 1::1/64 vrrp-group 10 priority 100 virtual-address fe80::10 virtual-address 1::10 no shutdown R2(conf-if-te-1/1/1)#end R2#show vrrp -----------------TenGigabitEthernet 1/1/1, IPv6 VRID: 10, Version: 3, Net:fe80::201:e8ff:fe6a:c59f VRF: 0 default-vrf State: Master, Priority: 100, Maste
VRRP in a VRF: Non-VLAN Scenario The following example shows how to enable VRRP in a non-VLAN. The following example shows a typical use case in which you create three virtualized overlay networks by configuring three VRFs in two switches. The default gateway to reach the Internet in each VRF is a static route with the next hop being the virtual IP address configured in VRRP. In this scenario, a single VLAN is associated with each VRF.
Figure 144. VRRP in a VRF: Non-VLAN Example Example of Configuring VRRP in a VRF on Switch-1 (Non-VLAN) Switch-1 S1(conf)#ip vrf default-vrf 0 ! S1(conf)#ip vrf VRF-1 1 ! S1(conf)#ip vrf VRF-2 2 ! S1(conf)#ip vrf VRF-3 3 ! S1(conf)#interface TenGigabitEthernet 1/1/1 S1(conf-if-te-1/1/1)#ip vrf forwarding VRF-1 S1(conf-if-te-1/1/1)#ip address 10.10.1.5/24 S1(conf-if-te-1/1/1)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 1 will be 177.
S1(conf-if-te-1/3/1-vrid-105)#virtual-address 20.1.1.5 S1(conf-if-te-1/3/1)#no shutdown Dell#show vrrp tengigabitethernet 2/8/1 -----------------TenGigabitEthernet 2/8/1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 0 default State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 119, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.
VRRP in VRF: Switch-1 VLAN Configuration Switch-1 S1(conf)#ip vrf VRF-1 1 ! S1(conf)#ip vrf VRF-2 2 ! S1(conf)#ip vrf VRF-3 3 ! S1(conf)#interface TenGigabitEthernet 1/1/1 S1(conf-if-te-1/1/1)#no ip address S1(conf-if-te-1/1/1)#switchport S1(conf-if-te-1/1/1)#no shutdown ! S1(conf-if-te-1/1/1)#interface vlan 100 S1(conf-if-vl-100)#ip vrf forwarding VRF-1 S1(conf-if-vl-100)#ip address 10.10.1.
VRRP in VRF: Switch-2 VLAN Configuration Switch-2 S2(conf)#ip vrf VRF-1 1 ! S2(conf)#ip vrf VRF-2 2 ! S2(conf)#ip vrf VRF-3 3 ! S2(conf)#interface TenGigabitEthernet 1/1/1 S2(conf-if-te-1/1/1)#no ip address S2(conf-if-te-1/1/1)#switchport S2(conf-if-te-1/1/1)#no shutdown ! S2(conf-if-te-1/1/1)#interface vlan 100 S2(conf-if-vl-100)#ip vrf forwarding VRF-1 S2(conf-if-vl-100)#ip address 10.10.1.
VRF: 2 vrf2 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 419, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) VRRP for IPv6 Configuration This section shows VRRP IPv6 topology with CLI configurations. Consider an example VRRP for IPv6 configuration in which the IPv6 VRRP group consists of two routers. Figure 145.
NOTE: This example does not contain comprehensive directions and is intended to provide guidance for only a typical VRRP configuration. You can copy and paste from the example to your CLI. Be sure you make the necessary changes to support your own IP addresses, interfaces, names, and so on.
State: Backup, Priority: 100, Master: fe80::201:e8ff:fe6a:c59f Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 11, Bad pkts rcvd: 0, Adv sent: 0 Virtual MAC address: 00:00:5e:00:02:0a Virtual IP address: 1::10 fe80::10 Dell#show vrrp tengigabitethernet 1/1/1 TenGigabitEthernet 1/1/1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 0 default State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down: 0 centisec,
Port-channel 1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 2 vrf2 State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 548, Bad pkts rcvd: 0, Adv sent: 0 Virtual MAC address: 00:00:5e:00:02:ff Virtual IP address: 10:1:1::255 fe80::255 Virtual Router Redundancy Protocol (VRRP) 958
60 Debugging and Diagnostics This chapter describes debugging and diagnostics for the device. Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, Level 0 diagnostics verify the identification registers of the components on the board.
EXEC Privilege mode show system brief 3 Start diagnostics on the unit. diag stack-unit stack-unit-number When the tests are complete, the system displays the following message and automatically reboots the unit. Dell#00:09:42 : Diagnostic test results are stored on file: flash:/TestReport-SU-1.txt Diags completed... Rebooting the system now!!! Mar 12 10:40:35: %S6000:0 %DIAGAGT-6-DA_DIAG_DONE: Diags finished on stack unit 0 Dell#00:09:42 : Diagnostic test results are stored on file: flash:/TestReport-SU-0.
0 2 absent Speed in RPM The following example shows the diag command (standalone unit). Dell#diag stack-unit 1 level0 Warning - diagnostic execution will cause multiple link flaps on the peer side - advisable to shut directly connected ports Proceed with Diags [confirm yes/no]: yes Dell#Dec 15 04:14:07: %S4820:0 %DIAGAGT-6-DA_DIAG_STARTED: Starting diags on stack unit 1 00:12:10 : System may take additional time for Driver Init. 00:12:10 : Approximate time to complete the Diags ...
Test 5.000 - Psu0 Status Monitor Test ............................... PASS diagS6000PsuStatusMonitorTest[1099]: ERROR: Psu:1, It is not present... Test 5.001 - Psu1 Status Monitor Test ............................... NOT PRESENT Test 5 - Psu Status Monitor Test .................................... NOT PRESENT Test 6.000 - Psu0 Fan Speed Monitor Test ............................ PASS diagS6000IsPsuGood[954]: ERROR: Psu:1, Power supply is not present. Test 6.001 - Psu1 Fan Speed Monitor Test .................
Test 18 - CFast Presence Test ....................................... PASS Test 19 - Management Phy Presence Test .............................. PASS Trace Logs In addition to the syslog buffer, Dell Networking OS buffers trace messages which are continuously written by various Dell Networking OS software tasks to report hardware and software events and status information. Each trace message provides the date, time, and name of the Dell Networking OS process. All messages are stored in a ring buffer.
QSFP 52 Diagnostic Information =================================== QSFP 52 Rx Power measurement type =================================== QSFP 52 Temp High Alarm threshold QSFP 52 Voltage High Alarm threshold QSFP 52 Bias High Alarm threshold QSFP 52 RX Power High Alarm threshold QSFP 52 Temp Low Alarm threshold QSFP 52 Voltage Low Alarm threshold QSFP 52 Bias Low Alarm threshold QSFP 52 RX Power Low Alarm threshold =================================== QSFP 52 Temp High Warning threshold QSFP 52 Voltage High
Troubleshoot an Over-temperature Condition To troubleshoot an over-temperature condition, use the following information. 1. Use the show environment commands to monitor the temperature levels. 2. Check air flow through the system. Ensure that the air ducts are clean and that all fans are working correctly. 3. After the software has determined that the temperature levels are within normal limits, you can re-power the card safely. To bring back the line card online, use the power-on command in EXEC mode.
OID String OID Name Description .1.3.6.1.4.1.6027.3.27.1.4 dellNetFpPacketBufferTable View the modular packet buffers details per stack unit and the mode of allocation. .1.3.6.1.4.1.6027.3.27.1.5 dellNetFpStatsPerPortTable View the forwarding plane statistics containing the packet buffer usage per port per stack unit. .1.3.6.1.4.1.6027.3.27.1.6 dellNetFpStatsPerCOSTable View the forwarding plane statistics containing the packet buffer statistics per COS per port.
You can configure dynamic buffers per port on both 1G and 10G FPs and per queue on CSFs. By default, the FP dynamic buffer allocation is 10 times oversubscribed. For the 48-port 1G card: • Dynamic Pool= Total Available Pool(16384 cells) — Total Dedicated Pool = 5904 cells • Oversubscription ratio = 10 • Dynamic Cell Limit Per port = 59040/29 = 2036 cells Figure 146.
• buffer-profile csf csqueue Change the dedicated buffers on a physical 1G interface. BUFFER PROFILE mode • buffer dedicated Change the maximum number of dynamic buffers an interface can request. BUFFER PROFILE mode • buffer dynamic Change the number of packet-pointers per queue. BUFFER PROFILE mode • buffer packet-pointers Apply the buffer profile to a line card. CONFIGURATION mode • buffer fp-uplink linecard Apply the buffer profile to a CSF to FP link.
2 3 4 5 6 7 2.50 2.50 9.38 9.38 9.38 9.38 256 256 256 256 256 256 The following example shows viewing the buffer profile allocations. Dell#show running-config interface tengigabitethernet 1/1/1 ! interface TenGigabitEthernet 2/1/1 no ip address mtu 9216 switchport no shutdown buffer-policy myfsbufferprofile The following example shows viewing the default buffer profile on an interface.
If you have already applied a custom buffer profile on an interface, the buffer-profile global command fails and a message similar to the following displays: % Error: User-defined buffer profile already applied. Failed to apply global pre-defined buffer profile. Please remove all user-defined buffer profiles. Similarly, when you configure buffer-profile global, you cannot not apply a buffer profile on any single interface.
• • • • • • • • • show hardware drops interface interface show hardware buffer-stats-snapshot resource interface interface show hardware buffer inteface interface{priority-group { id | all } | queue { id| all} } buffer-info show hardware buffer-stats-snapshot resource interface interface{priority-group { id | all } | queue { ucast{id | all}{ mcast {id | all} | all} show hardware drops interface interface clear hardware stack-unit stack-unit-number counters clear hardware stack-unit stack-unit-number unit 0
Egress FCS Drops --- Egress FORWARD PROCESSOR IPv4 L3UC Aged & Drops TTL Threshold Drops INVALID VLAN CNTR Drops L2MC Drops PKT Drops of ANY Conditions Hg MacUnderflow TX Err PKT Counter --- Error counters--Internal Mac Transmit Errors Unknown Opcodes Internal Mac Receive Errors : 0 Drops : 0 : 0 : 0 : 0 : 0 : 0 : 0 --- : 0 : 0 : 0 Dell#show hardware stack-unit 1 drops UNIT No: 1 Total Total Total Total Total Ingress Drops IngMac Drops Mmu Drops EgMac Drops Egress Drops : : : : : 6804353 0 124904297
23 0 0 0 41 0 0 0 42 0 0 0 43 0 0 0 44 0 0 0 45 0 0 0 46 0 0 0 47 0 0 0 48 0 0 0 49 0 0 0 50 0 0 0 51 0 0 0 52 0 0 0 61 0 0 0 62 0 0 0 63 0 0 0 64 0 0 0 65 0 0 0 66 0 0 0 0 40 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 38 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 33 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 31 0 0 0 0 0 0 0 30 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 53 54/1 54/2 54/3 54/4 Internal Internal 67 0 0 0 68 0 0 0 69 0 0 0 70 0 0 0 71 0 0 0 72 0 0 0 53 0 0 0 57 4659499 0 0 Dataplane Statistics The show hardware stack-unit cpu data-plane statistics command provides insight into the packet types coming to the CPU.
txPkt(COS6 ) txPkt(COS7 ) txPkt(COS8 ) txPkt(COS9 ) txPkt(COS10) txPkt(COS11) txPkt(UNIT0) :0 :0 :0 :0 :0 :0 :0 Example of Viewing Party Bus Statistics Dell#sh hardware stack-unit 1 cpu party-bus statistics Input Statistics: 27550 packets, 2559298 bytes 0 dropped, 0 errors Output Statistics: 1649566 packets, 1935316203 bytes 0 errors Display Stack Port Statistics The show hardware stack-unit stack-port command displays input and output statistics for a stack-port interface.
RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX RX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX - 2048 to 4095 Byte Frame Counter 4096 to 9216 Byte Frame Counter Good Packet Counter Packet/frame Counter Unicast Packet Counter Multicast Packet Counter Broadcast Frame Counter Byte Counter Control frame counter PAUSE frame counter Oversized frame counter Jabber frame counter VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter VLAN tagged packets
RX RX RX RX RX RX RX RX RX RX RX RX RX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX TX - Unicast Packet Counter Multicast Packet Counter Broadcast Frame Counter Byte Counter Control frame counter PAUSE frame counter Oversized frame counter Jabber frame counter VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter VLAN tagged packets 64 Byte Frame Counter 64 to 127 Byte Frame Counter 128 to 255 Byte Frame Counter 256 to 511 Byte Frame Counter 512 t
RX - Fragment Counter RX - VLAN Tagged Packets RX - Ingress Dropped Packet RX - MTU Check Error Frame Counter RX - PFC Frame Priority 0 RX - PFC Frame Priority 1 RX - PFC Frame Priority 2 RX - PFC Frame Priority 3 RX - PFC Frame Priority 4 RX - PFC Frame Priority 5 RX - PFC Frame Priority 6 RX - PFC Frame Priority 7 RX - Debug Counter 0 RX - Debug Counter 1 RX - Debug Counter 2
panic string is : ---------------STACK TRACE START--------------0035d60c : 00274f8c : 0024e2b0 : 0024dee8 : 0024d9c4 : 002522b0 : 0026a8d0 : 0026a00c : ----------------STACK TRACE END-----------------------------------FREE MEMORY--------------uvmexp.
61 Standards Compliance This chapter describes standards compliance for Dell Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell Networking OS, the system also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website. Click “Browse and search IETF documents,” enter an RFC number, and inspect the top of the resulting document for obsolescence citations to related RFCs.
MTU 9,216 bytes RFC and I-D Compliance Dell Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell Networking OS first supports the standard. General Internet Protocols The following table lists the Dell Networking OS support per platform for general internet protocols. Table 97. General Internet Protocols RFC# Full Name Z-Series S-Series 768 User Datagram Protocol 7.6.
General IPv4 Protocols The following table lists the Dell Networking OS support per platform for general IPv4 protocols. Table 98. General IPv4 Protocols R F C # Full Name Z-Series S-Series 7 Internet Protocol 91 7.6.1 7 9 2 Internet Control Message Protocol 7.6.1 8 2 6 An Ethernet Address Resolution Protocol 7.6.1 1 0 2 7 Using ARP to Implement Transparent Subnet Gateways 7.6.1 1 0 3 5 DOMAIN NAMES IMPLEMENTATION AND SPECIFICATION (client) 7.6.
R F C # Full Name Z-Series S-Series 18 Requirements for 12 IP Version 4 Routers 7.6.1 21 Dynamic Host 31 Configuration Protocol 7.6.1 2 3 3 8 Virtual Router Redundancy Protocol (VRRP) 7.6.1 3 Using 31-Bit 0 Prefixes on IPv4 21 Point-to-Point Links 7.7.1 3 0 4 6 DHCP Relay Agent Information Option 7.8.1 3 0 6 9 VLAN Aggregation for Efficient IP Address Allocation 7.8.1 31 Protection Against 2 a Variant of the 8 Tiny Fragment Attack 7.6.
RFC Full Name # Z-Series S-Series (IPv6) Specification 246 2 (Par tial) IPv6 Stateless Address Autoconfigura tion 7.8.1 246 Transmission 4 of IPv6 Packets over Ethernet Networks 7.8.1 267 IPv6 5 Jumbograms 7.8.1 271 1 8.3.12.0 IPv6 Router Alert Option 358 IPv6 Global 7 Unicast Address Format 7.8.1 400 IPv6 Scoped 7 Address Architecture 8.3.12.0 429 Internet 1 Protocol Version 6 (IPv6) Addressing Architecture 7.8.
Border Gateway Protocol (BGP) The following table lists the Dell Networking OS support per platform for BGP protocols. Table 100. Border Gateway Protocol (BGP) RFC# Full Name S-Series/Z-Series 1997 BGP ComAmtturnibituitees 7.8.1 2385 Protection of BGP Sessions via the TCP MD5 Signature Option 7.8.1 2439 BGP Route Flap Damping 7.8.1 2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing 2796 BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP) 7.8.
Intermediate System to Intermediate System (IS-IS) The following table lists the Dell Networking OS support per platform for IS-IS protocol. Table 102.
Multicast The following table lists the Dell Networking OS support per platform for Multicast protocol. Table 104. Multicast RFC# Full Name Z-Series S-Series 1112 Host Extensions for IP Multicasting 7.8.1 2236 Internet Group Management Protocol, Version 2 7.8.1 3376 Internet Group Management Protocol, Version 3 7.8.1 3569 An Overview of SourceSpecific Multicast (SSM) 7.8.
RFC# Full Name S4810 1724 RIP Version 2 MIB Extension 1850 OSPF Version 2 Management Information Base 7.6.1 1901 Introduction to Community-based SNMPv2 7.6.1 2011 SNMPv2 Management Information Base for the Internet Protocol using SMIv2 7.6.1 2012 SNMPv2 Management Information Base for the Transmission Control Protocol using SMIv2 7.6.1 2013 SNMPv2 Management Information Base for the User Datagram Protocol using SMIv2 7.6.
RFC# Full Name S4810 3635 Definitions of Managed Objects for the Ethernetlike Interface Types 7.6.1 2674 Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions 7.6.1 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol 7.6.1 2819 Remote Network Monitoring Management Information Base: Ethernet Statistics Table, Ethernet History Control Table, Ethernet History Table, Alarm Table, Event Table, Log Table 7.6.
RFC# Full Name S4810 isisSysObject (top level scalar objects) isisISAdjTable isisISAdjAreaAddrTable isisISAdjIPAddrTable isisISAdjProtSuppTable draft-ietf-netmod-interfaces-cfg-03 Defines a YANG data model for the configuration of network interfaces. Used in the Programmatic Interface RESTAPI feature. 9.2(0.0) IEEE 802.1AB Management Information Base module for LLDP configuration, statistics, local system data and remote systems data components. 7.7.1 IEEE 802.
RFC# Full Name S4810 FORCE10-PRODUCTS-MIB Force10 Product Object Identifier MIB 7.6.1 FORCE10-SS-CHASSIS-MIB Force10 S-Series Enterprise Chassis MIB 7.6.1 FORCE10-SMI Force10 Structure of Management Information 7.6.1 FORCE10-SYSTEM-COMPONENTMIB Force10 System Component MIB (enables the user 7.6.1 to view CAM usage information) FORCE10-TC-MIB Force10 Textual Convention 7.6.1 FORCE10-TRAP-ALARM-MIB Force10 Trap Alarm MIB 7.6.