Dell Configuration Guide for the S6000–ON System 9.8(0.
Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your computer. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. Copyright © 2015 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws.
Contents 1 About this Guide................................................................................................. 34 Audience..............................................................................................................................................34 Conventions........................................................................................................................................ 34 Related Documents...............................................................
Using Hashes to Validate Software Images........................................................................................58 4 Management....................................................................................................... 60 Configuring Privilege Levels............................................................................................................... 60 Creating a Custom Privilege Level.....................................................................................
Using Telnet to get to Another Network Device............................................................................... 82 Lock CONFIGURATION Mode............................................................................................................83 Viewing the Configuration Lock Status........................................................................................83 Restoring the Factory Default Settings....................................................................................
Configuring Filters Without a Sequence Number...................................................................... 118 Configure Layer 2 and Layer 3 ACLs.................................................................................................119 Assign an IP ACL to an Interface....................................................................................................... 119 Applying an IP ACL...................................................................................................
BGP Attributes................................................................................................................................... 169 Best Path Selection Criteria........................................................................................................ 169 Weight...........................................................................................................................................171 Local Preference............................................................
Filtering BGP Routes...................................................................................................................209 Filtering BGP Routes Using Route Maps..................................................................................... 211 Filtering BGP Routes Using AS-PATH Information.....................................................................211 Configuring BGP Route Reflectors.............................................................................................
Priority-Based Flow Control....................................................................................................... 247 Enhanced Transmission Selection............................................................................................. 249 Data Center Bridging Exchange Protocol (DCBx)..................................................................... 250 Data Center Bridging in a Traffic Flow.......................................................................................
DCBx Example.............................................................................................................................276 DCBx Prerequisites and Restrictions.......................................................................................... 276 Configuring DCBx....................................................................................................................... 277 Verifying the DCB Configuration......................................................................
Configuring the Hash Algorithm.................................................................................................319 Enabling Deterministic ECMP Next Hop.................................................................................... 319 Configuring the Hash Algorithm Seed....................................................................................... 320 Link Bundle Monitoring...........................................................................................................
Unexpected Reload of the System............................................................................................. 347 Software Upgrade....................................................................................................................... 347 LACP Fast Switchover................................................................................................................. 347 Changes to BGP Multipath.................................................................................
Related Configuration Tasks....................................................................................................... 371 Viewing IGMP Enabled Interfaces.................................................................................................... 372 Selecting an IGMP Version................................................................................................................372 Viewing IGMP Groups.................................................................................
Egress Interface Selection (EIS)........................................................................................................394 Important Points to Remember................................................................................................. 395 Configuring EIS........................................................................................................................... 395 Management Interfaces..............................................................................
Using Ethernet Pause Frames for Flow Control.............................................................................. 418 Enabling Pause Frames............................................................................................................... 419 Configure the MTU Size on an Interface......................................................................................... 420 Port-Pipes..........................................................................................................
Configure UDP Helper................................................................................................................444 Important Points to Remember................................................................................................. 445 Enabling UDP Helper........................................................................................................................ 445 Configuring a Broadcast Address.......................................................................
Monitoring IPv6 RA Guard.......................................................................................................... 473 22 iSCSI Optimization.........................................................................................474 iSCSI Optimization Overview........................................................................................................... 474 Monitoring iSCSI Traffic Flows.............................................................................................
24 Link Aggregation Control Protocol (LACP)............................................... 512 Introduction to Dynamic LAGs and LACP........................................................................................ 512 Important Points to Remember.................................................................................................. 512 LACP Modes.................................................................................................................................
802.1AB (LLDP) Overview................................................................................................................. 543 Protocol Data Units.....................................................................................................................543 Optional TLVs....................................................................................................................................544 Management TLVs...................................................................
Limiting the Source-Active Cache............................................................................................. 580 Clearing the Source-Active Cache............................................................................................ 580 Enabling the Rejected Source-Active Cache............................................................................ 580 Accept Source-Active Messages that Fail the RFP Check..............................................................
Implementation Information............................................................................................................ 614 Multicast Policies...............................................................................................................................615 IPv4 Multicast Policies.................................................................................................................615 31 Object Tracking.................................................................
Configuring Passive-Interface....................................................................................................666 Redistributing Routes..................................................................................................................667 Configuring a Default Route.......................................................................................................667 Enabling OSPFv3 Graceful Restart..........................................................................
Important Points to Remember....................................................................................................... 699 Port Monitoring.................................................................................................................................700 Configuring Port Monitoring............................................................................................................ 701 Configuring Monitor Multicast Queue.....................................................
Create Policy Maps......................................................................................................................741 Enabling QoS Rate Adjustment........................................................................................................ 746 Enabling Strict-Priority Queueing.................................................................................................... 746 Queue Classification Requirements for PFC Functionality..........................................
41 Rapid Spanning Tree Protocol (RSTP)........................................................ 786 Protocol Overview............................................................................................................................ 786 Configuring Rapid Spanning Tree.................................................................................................... 786 Related Configuration Tasks.......................................................................................................
Configuring the HMAC Algorithm for the SSH Server............................................................... 819 Configuring the SSH Server Cipher List......................................................................................819 Secure Shell Authentication....................................................................................................... 820 Troubleshooting SSH.................................................................................................................
Implementation Information............................................................................................................ 857 Important Points to Remember................................................................................................. 858 Enabling Extended sFlow................................................................................................................. 858 Enabling and Disabling sFlow on an Interface..........................................................
Viewing the Available Flash Memory Size..................................................................................884 MIB Support to Display the Software Core Files Generated by the System.................................. 884 Viewing the Software Core Files Generated by the System......................................................885 Manage VLANs using SNMP............................................................................................................. 885 Creating a VLAN.............
49 System Time and Date...................................................................................913 Network Time Protocol.................................................................................................................... 913 Protocol Overview...................................................................................................................... 914 Configure the Network Time Protocol.....................................................................................
53 VLT Proxy Gateway........................................................................................938 Proxy Gateway in VLT Domains....................................................................................................... 938 Guidelines for Enabling the VLT Proxy Gateway....................................................................... 939 Enabling the VLT Proxy Gateway...............................................................................................
Reconfiguring Stacked Switches as VLT..........................................................................................984 Specifying VLT Nodes in a PVLAN................................................................................................... 984 Association of VLTi as a Member of a PVLAN............................................................................985 MAC Synchronization for VLT Nodes in a PVLAN.....................................................................
Configuring a Static Route........................................................................................................1016 Sample VRF Configuration..............................................................................................................1016 Route Leaking VRFs........................................................................................................................ 1024 Dynamic Route Leaking.........................................................................
Enabling TCP Dumps......................................................................................................................1086 59 Standards Compliance................................................................................1087 IEEE Compliance.............................................................................................................................1087 RFC and I-D Compliance...............................................................................................
1 About this Guide This guide describes the protocols and features the Dell Networking Operating System (OS) supports and provides configuration instructions and examples for implementing them. The S6000–ON platform is available with Dell Networking OS version 9.7 (0.0) and beyond. Though this guide contains information on protocols, it is not intended to be a complete reference. This guide is a reference for configuring protocols on Dell Networking systems.
• Dell Quick Start Guide • Dell Networking OS Release Notes About this Guide 35
2 Configuration Fundamentals The Dell Networking Operating System (OS) command line interface (CLI) is a text-based interface you can use to configure interfaces and protocols. The CLI is largely the same for each platform except for some commands and command outputs. The CLI is structured in modes for security and management purposes. Different sets of commands are available in each mode, and you can limit user access to modes using privilege levels.
The Dell Networking OS CLI is divided into three major mode levels: • EXEC mode is the default mode and has a privilege level of 1, which is the most restricted level. Only a limited selection of commands is available, notably the show commands, which allow you to view system information. • EXEC Privilege mode has commands to view configurations, clear counters, manage configuration files, run diagnostics, and enable or disable debug operations. The privilege level is 15, which is unrestricted.
uBoot MAC ACCESS-LIST LINE AUXILLIARY CONSOLE VIRTUAL TERMINAL LLDP LLDP MANAGEMENT INTERFACE MONITOR SESSION MULTIPLE SPANNING TREE OPENFLOW INSTANCE PVST PORT-CHANNEL FAILOVER-GROUP PREFIX-LIST PRIORITY-GROUP PROTOCOL GVRP QOS POLICY RSTP ROUTE-MAP ROUTER BGP BGP ADDRESS-FAMILY ROUTER ISIS ISIS ADDRESS-FAMILY ROUTER OSPF ROUTER OSPFV3 ROUTER RIP SPANNING TREE TRACE-LIST VLT DOMAIN VRRP UPLINK STATE GROUP Navigating CLI Modes The Dell Networking OS prompt changes to indicate the CLI mode.
CLI Command Mode Prompt Access Command • From every mode except EXEC and EXEC Privilege, enter the exit command. NOTE: Access all of the following modes from CONFIGURATION mode.
CLI Command Mode Prompt Access Command Per-VLAN SPANNING TREE Plus Dell(config-pvst)# protocol spanning-tree pvst PREFIX-LIST Dell(conf-nprefixl)# ip prefix-list RAPID SPANNING TREE Dell(config-rstp)# protocol spanning-tree rstp REDIRECT Dell(conf-redirect-list)# ip redirect-list ROUTE-MAP Dell(config-route-map)# route-map ROUTER BGP Dell(conf-router_bgp)# router bgp BGP ADDRESS-FAMILY Dell(conf-router_bgp_af)# address-family {ipv4 multicast | ipv6 unicast} (for IPv4) (ROUTER BGP Mode)
CLI Command Mode Prompt Access Command LLDP MANAGEMENT INTERFACE Dell(conf-lldp-mgmtIf)# management-interface (LLDP Mode) LINE Dell(config-line-console) or Dell(config-line-vty) line console orline vty MONITOR SESSION Dell(conf-mon-sesssessionID)# monitor session OPENFLOW INSTANCE Dell(conf-of-instance-ofid)# openflow of-instance PORT-CHANNEL FAILOVERGROUP Dell(conf-po-failovergrp)# port-channel failovergroup PRIORITY GROUP Dell(conf-pg)# priority-group PROTOCOL GVRP Dell(config-gvrp)#
----------------------------------------------------------------------------------1 Management online S6000-ON S6000-ON 1-0(0-3932) 128 2 Member not present 3 Member not present 4 Member not present 5 Member not present 6 Member not present -- Power Supplies -Unit Bay Status Type FanStatus FanSpeed(rpm) --------------------------------------------------------------------------1 1 up AC absent 0 1 2 absent absent 0 -- Fan Status -Unit Bay TrayStatus Fan0 Speed Fan1 Speed -------------------------------------
Obtaining Help Obtain a list of keywords and a brief functional description of those keywords at any CLI mode using the ? or help command: • To list the keywords available in the current mode, enter ? at the prompt or after a keyword. • Enter ? after a prompt lists all of the available keywords. The output of this command is the same for the help command.
Short-Cut Key Combination Action CNTL-B Moves the cursor back one character. CNTL-D Deletes character at cursor. CNTL-E Moves the cursor to the end of the line. CNTL-F Moves the cursor forward one character. CNTL-I Completes a keyword. CNTL-K Deletes all characters from the cursor to the end of the command line. CNTL-L Re-enters the previous command. CNTL-N Return to more recent commands in the history buffer after recalling commands with CTRL-P or the UP arrow key.
Starting with Dell Networking OS version 7.8.1.0, the grep command accepts an ignore-case suboption that forces the search to case-insensitive. For example, the commands: • show run | grep Ethernet returns a search result with instances containing a capitalized “Ethernet,” such as interface TenGigabitEthernet 1/1/1. • show run | grep ethernet does not return that search result because it only searches for instances containing a non-capitalized “ethernet.
1 2 absent absent 0 -- Fan Status -Unit Bay TrayStatus Fan0 Speed ----------------------------------------------------------------------------------1 1 up up 9900 1 2 up up 9900 1 3 up up 9900 Speed in RPM The display command displays additional configuration information. The no-more command displays the output all at once rather than one screen at a time. This is similar to the terminal length command except that the no-more option affects the output of the specified command only.
Getting Started 3 This chapter describes how you start configuring your system. When you power up the chassis, the system performs a power-on self test (POST) during which the line card status light emitting diodes (LEDs) blink green. The system then loads the Dell Networking Operating System (OS). Boot messages scroll up the terminal window during this process. No user interaction is required if the boot process proceeds without interruption.
Accessing the Console Port To access the console port, follow these steps: For the console port pinout, refer to Accessing the RJ-45 Console Port with a DB-9 Adapter. 1. Install an RJ-45 copper cable into the console port.Use a rollover (crossover) cable to connect the S4810 console port to a terminal server. 2. Connect the other end of the cable to the DTE terminal server. 3.
Default Configuration A version of Dell Networking OS is pre-loaded onto the chassis; however, the system is not configured when you power up for the first time (except for the default hostname, which is Dell). You must configure the system using the CLI. Configuring a Host Name The host name appears in the prompt. The default host name is Dell. • Host names must start with a letter and end with a letter or digit. • Characters within the string can be letters, digits, and hyphens.
CONFIGURATION mode interface ManagementEthernet slot/port 2. Assign an IP address to the interface. INTERFACE mode ip address ip-address/mask 3. • ip-address: an address in dotted-decimal format (A.B.C.D). • mask: a subnet mask in /prefix-length format (/ xx). Enable the interface. INTERFACE mode no shutdown Configure a Management Route Define a path from the system to the network from which you are accessing the system remotely.
Configuring the Enable Password Access EXEC Privilege mode using the enable command. EXEC Privilege mode is unrestricted by default. Configure a password as a basic security measure. There are two types of enable passwords: • enable password stores the password in the running/startup configuration using a DES encryption method. • enable secret is stored in the running/startup configuration in using a stronger, MD5 encryption method. Dell Networking recommends using the enable secret password.
Table 3.
To mount an NFS file system, perform the following steps: Table 4. Mounting an NFS File System File Operation Syntax To mount an NFS file system: mount nfs rhost:path mount-point username password The foreign file system remains mounted as long as the device is up and does not reboot. You can run the file system commands without having to mount or un-mount the file system each time you run a command.
Example of Copying to NFS Mount Dell#copy flash://test.txt nfsmount:/// Destination file name [test.txt]: ! 15 bytes successfully copied Dell#copy flash://ashu/capture.txt.pcap nfsmount:/// Destination file name [test.txt]: ! 15 bytes successfully copied Dell#copy flash://ashu/capture.txt.pcap nfsmount:///ashutosh/snoop.pcap ! 24 bytes successfully copied Dell# Dell#copy tftp://10.16.127.
Configure the Overload Bit for a Startup Scenario For information about setting the router overload bit for a specific period of time after a switch reload is implemented, refer to the Intermediate System to Intermediate System (IS-IS) section in the Dell Networking OS Command Line Reference Guide. Viewing Files You can only view file information and content on local file systems. To view a list of files or the contents of a file, use the following commands. • View a list of files on the internal flash.
View Configuration Files Configuration files have three commented lines at the beginning of the file, as shown in the following example, to help you track the last time any user made a change to the file, which user made the changes, and when the file was last saved to the startup-configuration.
- - - network - network - network rw ftp: rw tftp: rw scp: You can change the default file system so that file management commands apply to a particular device or memory. To change the default directory, use the following command. • Change the default directory. EXEC Privilege mode cd directory View Command History The command-history trace feature captures all commands entered by all users of the system with a time stamp and writes these messages to a dedicated trace log buffer.
• To copy a file on the external FLASH, enter usbflash:// followed by the filename. In the Dell Networking OS release 9.8(0.0), HTTP services are enhanced to support the VRF-aware functionality. If you want the HTTP server to use a VRF table that is attached to an interface, configure that HTTP server to use a specific routing table. You can use the ip http vrf command to inform the HTTP server to use a specific routing table.
1. Download Dell Networking OS software image file from the iSupport page to the local (FTP or TFTP) server. The published hash for that file is displayed next to the software image file on the iSupport page. 2. Go on to the Dell Networking system and copy the software image to the flash drive, using the copy command. 3. Run the verify {md5 | sha256} [ flash://]img-file [hash-value] command. For example, verify sha256 flash://FTOS-SE-9.5.0.0.bin 4.
4 Management This chapter describes the different protocols or services used to manage the Dell Networking system. Configuring Privilege Levels Privilege levels restrict access to commands based on user or terminal line. There are 16 privilege levels, of which three are pre-defined. The default privilege level is 1. Level Description Level 0 Access to the system begins at EXEC mode, and EXEC mode commands are limited to enable, disable, and exit.
Moving a Command from EXEC Privilege Mode to EXEC Mode To move a command from EXEC Privilege to EXEC mode for a privilege level, use the privilege exec command from CONFIGURATION mode. In the command, specify the privilege level of the user or terminal line and specify all keywords in the command to which you want to allow access. Allowing Access to CONFIGURATION Mode Commands To allow access to CONFIGURATION mode, use the privilege exec level level configure command from CONFIGURATION mode.
• Allow access to CONFIGURATION mode. CONFIGURATION mode • privilege exec level level configure Allow access to INTERFACE, LINE, ROUTE-MAP, and/or ROUTER mode. Specify all the keywords in the command. CONFIGURATION mode • privilege configure level level {interface | line | route-map | router} {command-keyword ||...|| command-keyword} Allow access to a CONFIGURATION, INTERFACE, LINE, ROUTE-MAP, and/or ROUTER mode command.
null Null interface port-channel Port-channel interface range Configure interface range sonet SONET interface tengigabitethernet TenGigabit Ethernet interface vlan VLAN interface Dell(conf)#interface tengigabitethernet 1/1/1 Dell(conf-if-te-1/1/1)#? end Exit from configuration mode exit Exit from interface configuration mode Dell(conf-if-te-1/1/1)#exit Dell(conf)#line ? aux Auxiliary line console Primary terminal line vty Virtual terminal Dell(conf)#line vty 0 Dell(config-line-vty)#? exit Exit from line con
• the internal buffer • console and terminal lines • any configured syslog servers To disable logging, use the following commands. • Disable all logging except on the console. CONFIGURATION mode • no logging on Disable logging to the logging buffer. CONFIGURATION mode • no logging buffer Disable logging to terminal lines. CONFIGURATION mode • no logging monitor Disable console logging.
Security Logs The security log contains security events and information. RBAC restricts access to audit and security logs based on the CLI sessions’ user roles. The types of information in this log consist of the following: • Establishment of secure traffic flows, such as SSH. • Violations on secure flows or certificate issues. • Adding and deleting of users.
admin on line vty0 ( 10.14.1.91 ) Clearing Audit Logs To clear audit logs, use the clear logging auditlog command in Exec mode. When RBAC is enabled, only the system administrator user role can issue this command. Example of the clear logging auditlog Command Dell# clear logging auditlog Configuring Logging Format To display syslog messages in a RFC 3164 or RFC 5424 format, use the logging version [0 | 1} command in CONFIGURATION mode. By default, the system log version is set to 0.
Setting Up a Secure Connection to a Syslog Server You can use reverse tunneling with the port forwarding to securely connect to a syslog server. Pre-requisites To configure a secure connection from the switch to the syslog server: 1. On the switch, enable the SSH server Dell(conf)#ip ssh server enable 2.
In the following example the syslog server IP address is 10.156.166.48 and the listening port is 5141. The switch IP address is 10.16.131.141 and the listening port is 5140 ssh -R 5140:10.156.166.48:5141 admin@10.16.131.141 -nNf 3. Configure logging to a local host. locahost is “127.0.0.1” or “::1”. If you do not, the system displays an error when you attempt to enable role-based only AAA authorization. Dell(conf)# logging localhost tcp port Dell(conf)#logging 127.0.0.
Sending System Messages to a Syslog Server To send system messages to a specified syslog server, use the following command. The following syslog standards are supported: RFC 5424 The SYSLOG Protocol, R.Gerhards and Adiscon GmbH, March 2009, obsoletes RFC 3164 and RFC 5426 Transmission of Syslog Messages over UDP. • Specify the server to which you want to send system messages. You can configure up to eight syslog servers.
Configuring Login Activity Tracking To enable and configure login activity tracking, follow these steps: 1. Enable login activity tracking. CONFIGURATION mode login statistics enable After enabling login statistics, the system stores the login activity details for the last 30 days. 2. (Optional) Configure the number of days for which the system stores the user login statistics. The range is from 1 to 30.
Last login time: Mon Feb 16 04:40:00 2015 Last login location: Line vty0 ( 10.14.1.97 ) Unsuccessful login attempt(s) since the last successful login: 0 Unsuccessful login attempt(s) in last 7 day(s): 3 ----------------------------------------------------------------------------------------------------------------------------------User: secadm Last login time: Mon Feb 16 04:45:29 2015 Last login location: Line vty0 ( 10.14.1.
CONFIGURATION mode login concurrent-session limit number-of-sessions Example of Configuring Concurrent Session Limit The following example limits the permitted number of concurrent login sessions to 4. Dell(config)#login concurrent-session limit 4 Enabling the System to Clear Existing Sessions To enable the system to clear existing login sessions, follow this procedure: • Use the following command.
5 vty 3 10.14.1.97 Kill existing session? [line number/Enter to cancel]: Changing System Logging Settings You can change the default settings of the system logging by changing the severity level and the storage location. The default is to log all messages up to debug level, that is, all system messages. By changing the severity level in the logging commands, you control the number of system messages logged. To specify the system logging settings, use the following commands.
Display the Logging Buffer and the Logging Configuration To display the current contents of the logging buffer and the logging settings for the system, use the show logging command in EXEC privilege mode. When RBAC is enabled, the security logs are filtered based on the user roles. Only the security administrator and system administrator can view the security logs.
CONFIGURATION mode logging facility [facility-type] – auth (for authorization messages) – cron (for system scheduler messages) – daemon (for system daemons) – kern (for kernel messages) – local0 (for local use) – local1 (for local use) – local2 (for local use) – local3 (for local use) – local4 (for local use) – local5 (for local use) – local6 (for local use) – local7 (for local use) – lpr (for line printer system messages) – mail (for mail system messages) – news (for USENET news messages) – sys9 (system us
Synchronizing Log Messages You can configure Dell Networking OS to filter and consolidate the system messages for a specific line by synchronizing the message output. Only the messages with a severity at or below the set level appear. This feature works on the terminal and console connections available on the system. 1. Enter LINE mode.
To view the configuration, use the show running-config logging command in EXEC privilege mode. To disable time stamping on syslog messages, use the no service timestamps [log | debug] command. File Transfer Services With Dell Networking OS, you can configure the system to transfer files over the network using the file transfer protocol (FTP).
Configuring FTP Server Parameters After you enable the FTP server on the system, you can configure different parameters. To specify the system logging settings, use the following commands. • Specify the directory for users using FTP to reach the system. CONFIGURATION mode ftp-server topdir dir • The default is the internal flash directory. Specify a user name for all FTP users and configure either a plain text or encrypted password.
To view the FTP configuration, use the show running-config ftp command in EXEC privilege mode, as shown in the example for Enable FTP Server. Terminal Lines You can access the system remotely and restrict access to the system by creating user profiles. Terminal lines on the system provide different means of accessing the system. The console line (console) connects you through the console port in the route processor modules (RPMs). The virtual terminal lines (VTYs) connect you through Telnet to the system.
Dell(config-std-nacl)#line vty 0 Dell(config-line-vty)#show config line vty 0 access-class myvtyacl Dell(conf-ipv6-acl)#do show run acl ! ip access-list extended testdeny seq 10 deny ip 30.1.1.
CONFIGURATION mode aaa authentication login {method-list-name | default} [method-1] [method-2] [method-3] [method-4] [method-5] [method-6] 2. Apply the method list from Step 1 to a terminal line. CONFIGURATION mode login authentication {method-list-name | default} 3. If you used the line authentication method in the method list you applied to the terminal line, configure a password for the terminal line.
Example of Setting the Time Out Period for EXEC Privilege Mode The following example shows how to set the time-out period and how to view the configuration using the show config command from LINE mode. Dell(conf)#line con 0 Dell(config-line-console)#exec-timeout 0 Dell(config-line-console)#show config line console 0 exec-timeout 0 0 Dell(config-line-console)# Using Telnet to get to Another Network Device To telnet to another device, use the following commands.
Lock CONFIGURATION Mode Dell Networking OS allows multiple users to make configurations at the same time. You can lock CONFIGURATION mode so that only one user can be in CONFIGURATION mode at any time (Message 2). You can set two types of lockst: auto and manual. • Set auto-lock using the configuration mode exclusive auto command from CONFIGURATION mode. When you set auto-lock, every time a user is in CONFIGURATION mode, all other users are denied access.
Restoring the Factory Default Settings Restoring the factory-default settings deletes the existing NVRAM settings, startup configuration, and all configured settings such as, stacking or fanout. To restore the factory default settings, use the restore factory-defaults stack-unit {1–6 | all} {clear-all | nvram | bootvar} command in EXEC Privilege mode. CAUTION: There is no undo for this command.
secondary partition contains a valid image, then the primary boot line is set to B: and the secondary and default boot lines are set to a Null String. If both the partitions contain invalid images, then primary, secondary, and default boot line values are set to a Null string. When you use the Network boot procedure to boot the device, the boot loader checks if the primary partition contains a valid image.
file name : FTOS-SI-9-5-0-169.bin Server IP address : 10.16.127.35 BOOT_USER # 4. Assign an IP address and netmask to the Management Ethernet interface. BOOT_USER # interface management ethernet ip address ip_address_with_mask For example, 10.16.150.106/16. 5. Assign an IP address as the default gateway for the system. default-gateway gateway_ip_address For example, 10.16.150.254. 6. The environment variables are auto saved. 7. Reload the system.
802.1X 5 802.1X is a method of port security. A device connected to a port that is enabled with 802.1X is disallowed from sending or receiving packets on the network until its identity can be verified (through a username and password, for example). This feature is named for its IEEE specification. 802.
Figure 3. EAP Frames Encapsulated in Ethernet and RADUIS The authentication process involves three devices: • The device attempting to access the network is the supplicant. The supplicant is not allowed to communicate on the network until the authenticator authorizes the port. It can only communicate with the authenticator in response to 802.1X requests. • The device with which the supplicant communicates is the authenticator. The authenticator is the gate keeper of the network.
2. The supplicant responds with its identity in an EAP Response Identity frame. 3. The authenticator decapsulates the EAP response from the EAPOL frame, encapsulates it in a RADIUS Access-Request frame and forwards the frame to the authentication server. 4. The authentication server replies with an Access-Challenge frame. The Access-Challenge frame requests that the supplicant prove that it is who it claims to be, using a specified method (an EAPMethod).
EAP over RADIUS 802.1X uses RADIUS to shuttle EAP packets between the authenticator and the authentication server, as defined in RFC 3579. EAP messages are encapsulated in RADIUS packets as a type of attribute in Type, Length, Value (TLV) format. The Type value for EAP messages is 79. Figure 5. EAP Over RADIUS RADIUS Attributes for 802.1 Support Dell Networking systems include the following RADIUS attributes in all 802.
• Configuring an Authentication-Fail VLAN Important Points to Remember • Dell Networking OS supports 802.1X with EAP-MD5, EAP-OTP, EAP-TLS, EAP-TTLS, PEAPv0, PEAPv1, and MS-CHAPv2 with PEAP. • All platforms support only RADIUS as the authentication server. • If the primary RADIUS server becomes unresponsive, the authenticator begins using a secondary RADIUS server, if configured. • 802.1X is not supported on port-channels or port-channel members. 802.
Enabling 802.1X Enable 802.1X globally. Figure 6. 802.1X Enabled 1. Enable 802.1X globally. CONFIGURATION mode dot1x authentication 2. Enter INTERFACE mode on an interface or a range of interfaces. INTERFACE mode interface [range] 3. Enable 802.1X on the supplicant interface only. INTERFACE mode dot1x authentication 92 802.
Examples of Verifying that 802.1X is Enabled Globally and on an Interface Verify that 802.1X is enabled globally and at the interface level using the show running-config | find dot1x command from EXEC Privilege mode. In the following example, the bold lines show that 802.1X is enabled. Dell#show running-config | find dot1x dot1x authentication ! [output omitted] ! interface TenGigabitEthernet 2/1/1 no ip address dot1x authentication no shutdown ! Dell# To view 802.
NOTE: There are several reasons why the supplicant might fail to respond; for example, the supplicant might have been booting when the request arrived or there might be a physical layer problem. To configure re-transmissions, use the following commands. • Configure the amount of time that the authenticator waits before re-transmitting an EAP Request Identity frame. INTERFACE mode dot1x tx-period number The range is from 1 to 65535 (1 year) • The default is 30.
• after 90 seconds and a maximum of 10 times for an unresponsive supplicant • re-transmits an EAP Request Identity frame The bold lines show the new re-transmit interval, new quiet period, and new maximum re-transmissions. FTOS(conf-if-range-Te-2/1/1)#dot1x tx-period 90 FTOS(conf-if-range-Te-2/1/1)#dot1x max-eap-req 10 FTOS(conf-if-range-Te-2/1/1)#dot1x quiet-period 120 FTOS#show dot1x interface TenGigabitEthernet 2/1/1 802.
The bold line shows the new port-control state. Dell(conf-if-Te-1/1/1)#dot1x port-control force-authorized Dell(conf-if-Te-1/1/1)#show dot1x interface TenGigabitEthernet 1/1/1 802.
The bold lines show that re-authentication is enabled and the new maximum and re-authentication time period. Dell(conf-if-Te-1/1/1)#dot1x reauthentication interval 7200 Dell(conf-if-Te-1/1/1)#dot1x reauth-max 10 Dell(conf-if-Te-1/1/1)#do show dot1x interface TenGigabitEthernet 1/1 802.
The bold lines show the new supplicant and server timeouts. Dell(conf-if-Te-1/1/1)#dot1x port-control force-authorized Dell(conf-if-Te-1/1/1)#do show dot1x interface TenGigabitEthernet 1/1/1 802.
Figure 7. Dynamic VLAN Assignment 1. Configure 8021.x globally (refer to Enabling 802.1X) along with relevant RADIUS server configurations (refer to the illustration inDynamic VLAN Assignment with Port Authentication). 2. Make the interface a switchport so that it can be assigned to a VLAN. 3. Create the VLAN to which the interface will be assigned. 4. Connect the supplicant to the port configured for 802.1X. 5.
If the supplicant fails authentication, the authenticator typically does not enable the port. In some cases this behavior is not appropriate. External users of an enterprise network, for example, might not be able to be authenticated, but still need access to the network. Also, some dumb-terminals, such as network printers, do not have 802.1X capability and therefore cannot authenticate themselves.
Example of Configuring Maximum Authentication Attempts Dell(conf-if-Te-2/1/1)#dot1x guest-vlan 200 Dell(conf-if-Te 2/1)#show config ! interface TenGigabitEthernet 2/1/1 switchport dot1x authentication dot1x guest-vlan 200 no shutdown Dell(conf-if-Te-2/1/1)# Dell(conf-if-Te-2/1/1)#dot1x auth-fail-vlan 100 max-attempts 5 Dell(conf-if-Te-2/1/1)#show config ! interface TenGigabitEthernet 2/1/1 switchport dot1x authentication dot1x guest-vlan 200 dot1x auth-fail-vlan 100 max-attempts 5 no shutdown Dell(conf-if-T
6 Access Control Lists (ACLs) This chapter describes access control lists (ACLs), prefix lists, and route-maps. At their simplest, access control lists (ACLs), prefix lists, and route-maps permit or deny traffic based on MAC and/or IP addresses. This chapter describes implementing IP ACLs, IP prefix lists and route-maps. For MAC ACLS, refer to Layer 2.
Ingress and egress Hot Lock ACLs allow you to append or delete new rules into an existing ACL (already written into CAM) without disrupting traffic flow. Existing entries in the CAM are shuffled to accommodate the new entries. Hot lock ACLs are enabled by default and support both standard and extended ACLs and on all platforms. NOTE: Hot lock ACLs are supported for Ingress ACLs only. CAM Usage The following section describes CAM allocation and CAM optimization.
Stack-unit|Portpipe|CAM Partition|Available CAM|Estimated CAM per Port|Status -------------------------------------------------------------------------1| 1| IPv4Flow| 232| 0|Allowed Dell# Implementing ACLs on Dell Networking OS You can assign one IP ACL per interface with Dell Networking OS. If you do not assign an IP ACL to an interface, it is not used by the software in any other capacity. The number of entries allowed per ACL is hardware-dependent.
cmap1 and are buffered in queue 7, though you intended for these packets to match positive against cmap2 and be buffered in queue 4. In cases such as these, where class-maps with overlapping ACL rules are applied to different queues, use the order keyword to specify the order in which you want to apply ACL rules. The order can range from 0 to 254.
• Create a route map (mandatory) • Configure route map filters (optional) • Configure a route map for route redistribution (optional) • Configure a route map for route tagging (optional) Creating a Route Map Route maps, ACLs, and prefix lists are similar in composition because all three contain filters, but route map filters do not contain the permit and deny actions found in ACLs and prefix lists. Route map filters match certain routes and set or specify values.
To delete all instances of that route map, use the no route-map map-name command. To delete just one instance, add the sequence number to the command syntax. Dell(conf)#no route-map zakho 10 Dell(conf)#end Dell#show route-map route-map zakho, permit, sequence 20 Match clauses: interface TenGigabitEthernet 1/1/1 Set clauses: tag 35 level stub-area Dell# The following example shows a route map with multiple instances. The show config command displays only the configuration of the current route map instance.
Example of the match Command to Match All Specified Values In the next example, there is a match only if a route has both of the specified characteristics. In this example, there a match only if the route has a tag value of 1000 and a metric value of 2000. Also, if there are different instances of the same route-map, then it’s sufficient if a permit match happens in any instance of that route-map.
CONFIG-ROUTE-MAP mode • match ip address prefix-list-name Match destination routes specified in a prefix list (IPv6). CONFIG-ROUTE-MAP mode • match ipv6 address prefix-list-name Match next-hop routes specified in a prefix list (IPv4). CONFIG-ROUTE-MAP mode • match ip next-hop {access-list-name | prefix-list prefix-list-name} Match next-hop routes specified in a prefix list (IPv6).
CONFIG-ROUTE-MAP mode • set as-path prepend as-number [... as-number] Generate a tag to be added to redistributed routes. CONFIG-ROUTE-MAP mode • set automatic-tag Specify an OSPF area or ISIS level for redistributed routes. CONFIG-ROUTE-MAP mode • set level {backbone | level-1 | level-1-2 | level-2 | stub-area} Specify a value for the BGP route’s LOCAL_PREF attribute. CONFIG-ROUTE-MAP mode • set local-preference value Specify a value for redistributed routes.
Configure a Route Map for Route Redistribution Route maps on their own cannot affect traffic and must be included in different commands to affect routing traffic. Route redistribution occurs when Dell Networking OS learns the advertising routes from static or directly connected routes or another routing protocol. Different protocols assign different values to redistributed routes to identify either the routes and their origins.
route-map torip permit 10 match route-type internal set tag 34 ! Continue Clause Normally, when a match is found, set clauses are executed, and the packet is then forwarded; no more route-map modules are processed. If you configure the continue command at the end of a module, the next module (or a specified module) is processed even after a match is found. The following example shows a continue clause at the end of a route-map module.
IP Fragments ACL Examples The following examples show how you can use ACL commands with the fragment keyword to filter fragmented packets. Example of Permitting All Packets on an Interface The following configuration permits all packets (both fragmented and non-fragmented) with destination IP 10.1.1.1. The second rule does not get hit at all. Dell(conf)#ip access-list extended ABC Dell(conf-ext-nacl)#permit ip any 10.1.1.1/32 Dell(conf-ext-nacl)#deny ip any 10.1.1.
Example of Permitting Only First Fragments and Non-Fragmented Packets from a Specified Host In the following example, the TCP packets that are first fragments or non-fragmented from host 10.1.1.1 with TCP destination port equal to 24 are permitted. Additionally, all TCP non-first fragments from host 10.1.1.1 are permitted. All other IP packets that are non-first fragments are denied. Dell(conf)#ip access-list extended ABC Dell(conf-ext-nacl)#permit tcp host 10.1.1.
Example of Viewing the Rules of a Specific ACL on an Interface The following is an example of viewing the rules of a specific ACL on an interface. Dell#show ip accounting access-list ToOspf interface gig 1/6 Standard IP access list ToOspf seq 5 deny any seq 10 deny 10.2.0.0 /16 seq 15 deny 10.3.0.0 /16 seq 20 deny 10.4.0.0 /16 seq 25 deny 10.5.0.0 /16 seq 30 deny 10.6.0.0 /16 seq 35 deny 10.7.0.0 /16 seq 40 deny 10.8.0.0 /16 seq 45 deny 10.9.0.0 /16 seq 50 deny 10.10.0.
The following example shows a standard IP ACL in which Dell Networking OS assigns the sequence numbers. The filters were assigned sequence numbers based on the order in which they were configured (for example, the first filter was given the lowest sequence number). The show config command in IP ACCESS LIST mode displays the two filters with the sequence numbers 5 and 10.
CONFIG-EXT-NACL mode seq sequence-number {deny | permit} {ip-protocol-number | icmp | ip | tcp | udp} {source mask | any | host ip-address} {destination mask | any | host ip-address} [operator port [port]] [count [byte]] [order] [fragments] When you use the log keyword, the CP logs details about the packets that match. Depending on how many packets match the log entry and at what rate, the CP may become busy as it has to log these packets’ details.
! ip access-list extended dilling seq 5 permit tcp 12.1.0.0 0.0.255.255 any seq 15 deny ip host 112.45.0.0 any log Dell(config-ext-nacl)# Configuring Filters Without a Sequence Number If you are creating an extended ACL with only one or two filters, you can let Dell Networking OS assign a sequence number based on the order in which the filters are configured. Dell Networking OS assigns filters in multiples of five.
Configure Layer 2 and Layer 3 ACLs Both Layer 2 and Layer 3 ACLs may be configured on an interface in Layer 2 mode. If both L2 and L3 ACLs are applied to an interface, the following rules apply: • When Dell Networking OS routes the packets, only the L3 ACL governs them because they are not filtered against an L2 ACL. • When Dell Networking OS switches the packets, first the L3 ACL filters them, then the L2 ACL filters them.
• Configure Ingress ACLs • Configure Egress ACLs For more information about Layer-3 interfaces, refer to Interfaces. Applying an IP ACL To apply an IP ACL (standard or extended) to a physical or port channel interface, use the following commands. 1. Enter the interface number. CONFIGURATION mode interface interface slot/port 2. Configure an IP address for the interface, placing it in Layer-3 mode. INTERFACE mode ip address ip-address 3. Apply an IP ACL to traffic entering or exiting an interface.
Counting ACL Hits You can view the number of packets matching the ACL by using the count option when creating ACL entries. 1. Create an ACL that uses rules with the count option. Refer to Configure a Standard IP ACL Filter. 2. Apply the ACL as an inbound or outbound ACL on an interface. 3. show ip accounting access-list EXEC Privilege mode View the number of packets matching the ACL. Configure Ingress ACLs Ingress ACLs are applied to interfaces and to traffic entering the system.
Configure Egress ACLs Egress ACLs are applied to line cards and affect the traffic leaving the system. Configuring egress ACLs onto physical interfaces protects the system infrastructure from attack — malicious and incidental — by explicitly allowing only authorized traffic. These system-wide ACLs eliminate the need to apply ACLs onto each interface and achieves the same results. By localizing target traffic, it is a simpler implementation. To restrict egress traffic, use an egress ACL.
IP Prefix Lists IP prefix lists control routing policy. An IP prefix list is a series of sequential filters that contain a matching criterion (examine IP route prefix) and an action (permit or deny) to process routes. The filters are processed in sequence so that if a route prefix does not match the criterion in the first filter, the second filter (if configured) is applied. When the route prefix matches a filter, Dell Networking OS drops or forwards the packet based on the filter’s designated action.
For a complete listing of all commands related to prefix lists, refer to the Dell Networking OS Command Line Interface Reference Guide. Creating a Prefix List To create a prefix list, use the following commands. 1. Create a prefix list and assign it a unique name. You are in PREFIX LIST mode. CONFIGURATION mode ip prefix-list prefix-name 2. Create a prefix list with a sequence number and a deny or permit action.
Creating a Prefix List Without a Sequence Number To create a filter without a specified sequence number, use the following commands. 1. Create a prefix list and assign it a unique name. CONFIGURATION mode ip prefix-list prefix-name 2. Create a prefix list filter with a deny or permit action. CONFIG-NPREFIXL mode {deny | permit} ip-prefix [ge min-prefix-length] [le max-prefix-length] The optional parameters are: • ge min-prefix-length: is the minimum prefix length to be matched (0 to 32).
The following example shows the show ip prefix-list detail command. Dell>show ip prefix detail Prefix-list with the last deletion/insertion: filter_ospf ip prefix-list filter_in: count: 3, range entries: 3, sequences: 5 - 10 seq 5 deny 1.102.0.0/16 le 32 (hit count: 0) seq 6 deny 2.1.0.0/16 ge 23 (hit count: 0) seq 10 permit 0.0.0.0/0 le 32 (hit count: 0) ip prefix-list filter_ospf: count: 4, range entries: 1, sequences: 5 - 10 seq 5 deny 100.100.1.0/24 (hit count: 0) seq 6 deny 200.200.1.
Dell(conf-router_rip)#show config ! router rip distribute-list prefix juba out network 10.0.0.0 Dell(conf-router_rip)#router ospf 34 Applying a Filter to a Prefix List (OSPF) To apply a filter to routes in open shortest path first (OSPF), use the following commands. • Enter OSPF mode. CONFIGURATION mode • router ospf Apply a configured prefix list to incoming routes. You can specify an interface. If you enter the name of a non-existent prefix list, all routes are forwarded.
You can resequence IPv4 and IPv6 ACLs, prefixes, and MAC ACLs. No CAM writes happen as a result of resequencing, so there is no packet loss; the behavior is similar Hot-lock ACLs. NOTE: ACL resequencing does not affect the rules, remarks, or order in which they are applied. Resequencing merely renumbers the rules so that you can place new rules within the list as needed. Table 7. ACL Resequencing Rules Resquencing Rules Before Resequencing: seq 5 permit any host 1.1.1.1 seq 6 permit any host 1.1.1.
remark 9 ABC remark 10 this remark corresponds to permit ip any host 1.1.1.2 seq 10 permit ip any host 1.1.1.2 seq 15 permit ip any host 1.1.1.3 seq 20 permit ip any host 1.1.1.4 Dell# end Dell# resequence access-list ipv4 test 2 2 Dell# show running-config acl ! ip access-list extended test remark 2 XYZ remark 4 this remark corresponds to permit any host 1.1.1.1 seq 4 permit ip any host 1.1.1.1 remark 6 this remark has no corresponding rule remark 8 this remark corresponds to permit ip any host 1.1.1.
Route maps also have an “implicit deny.” Unlike ACLs and prefix lists; however, where the packet or traffic is dropped, in route maps, if a route does not match any of the route map conditions, the route is not redistributed. Implementation Information The Dell Networking OS implementation of route maps allows route maps with the no match or no set commands. When there is no match command, all traffic matches the route map and the set command applies.
CONFIG-STD-NACL mode seq sequence-number {deny | permit} {source [mask] | any | host ip-address} [count [byte]] [order] [fragments] [log [threshold-in-msgs count]] [monitor] If the number of monitoring sessions increases, inter-process communication (IPC) bandwidth utilization will be high. The ACL manager might require a large bandwidth when you assign an ACL, with many entries, to an interface.
Total cam count 1 seq 5 permit ip 192.168.20.0/24 173.168.20.0/24 monitor Dell#show ipv6 accounting access-list ! Ingress IPv6 access list kar on TenGigabitEthernet 1/1/1 Total cam count 1 seq 5 permit ipv6 22::/24 33::/24 monitor Enabling Flow-Based Monitoring Flow-based monitoring is supported on the platform. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead of all traffic on the interface. This feature is particularly useful when looking for malicious traffic.
Total cam count 4 seq 5 permit icmp any any monitor count bytes (0 packets 0 bytes) seq 10 permit ip 102.1.1.
7 Bidirectional Forwarding Detection (BFD) BFD is a protocol that is used to rapidly detect communication failures between two adjacent systems. It is a simple and lightweight replacement for existing routing protocol link state detection mechanisms. It also provides a failure detection solution for links on which no routing protocol is used. BFD is a simple hello mechanism. Two neighboring systems running BFD establish a session using a three-way handshake.
receiving interface is faulty). The BFD manager notifies the routing protocols that are registered with it (clients) that the forwarding path is down and a link state change is triggered in all protocols. NOTE: A session state change from Up to Down is the only state change that triggers a link state change in the routing protocol client. BFD Packet Format Control packets are encapsulated in user datagram protocol (UDP) packets.
Field Description Flag A bit that indicates packet function. If the poll bit is set, the receiving system must respond as soon as possible, without regard to its transmit interval. The responding system clears the poll bit and sets the final bit in its response. The poll and final bits are used during the handshake and in Demand mode (refer to BFD Sessions).
BFD Sessions BFD must be enabled on both sides of a link in order to establish a session. The two participating systems can assume either of two roles: Active The active system initiates the BFD session. Both systems can be active for the same session. Passive The passive system does not initiate a session. It only responds to a request for session initialization from the active system.
3. The active system receives the response from the passive system and changes its session state to Up. It then sends a control packet indicating this state change. This is the third and final part of the handshake. Now the discriminator values have been exchanged and the transmit intervals have been negotiated. 4. The passive system receives the control packet and changes its state to Up. Both systems agree that a session has been established.
receives a Down status notification from the remote system, the session state on the local system changes to Init. Figure 10. Session State Changes Important Points to Remember • • Enable BFD on both ends of a link. • Demand mode, authentication, and the Echo function are not supported. • BFD is not supported on multi-hop and virtual links. • Protocol Liveness is supported for routing protocols only. Configure BFD This section contains the following procedures.
• • • • • • Configure BFD for OSPFv3 Configure BFD for IS-IS Configure BFD for BGP Configure BFD for VRRP Configuring Protocol Liveness Troubleshooting BFD Configure BFD for Physical Ports Configuring BFD for physical ports is supported on the C-Series and E-Series platforms only. BFD on physical ports is useful when you do not enable the routing protocol. Without BFD, if the remote system fails, the local system does not remove the connected route until the first failed attempt to send a packet.
Establishing a Session on Physical Ports To establish a session, enable BFD at the interface level on both ends of the link, as shown in the following illustration. The configuration parameters do not need to match. Figure 11. Establishing a BFD Session on Physical Ports 1. Enter interface mode. CONFIGURATION mode interface 2. Assign an IP address to the interface if one is not already assigned. INTERFACE mode ip address ip-address 3.
Remote Addr: 2.2.2.
Number of state changes: 1 Number of messages from IFA about port state change: 0 Number of messages communicated b/w Manager and Agent: 7 Disabling and Re-Enabling BFD BFD is enabled on all interfaces by default, though sessions are not created unless explicitly configured. If you disable BFD, all of the sessions on that interface are placed in an Administratively Down state ( the first message example), and the remote systems are notified of the session state change (the second message example).
Establishing Sessions for Static Routes Sessions are established for all neighbors that are the next hop of a static route. Figure 12. Establishing Sessions for Static Routes To establish a BFD session, use the following command. • Establish BFD sessions for all neighbors that are the next hop of a static route. CONFIGURATION mode ip route bfd Example of the show bfd neighbors Command to Verify Static Routes To verify that sessions have been created for static routes, use the show bfd neighbors command.
• Change parameters for all static route sessions. CONFIGURATION mode ip route bfd interval milliseconds min_rx milliseconds multiplier value role [active | passive] To view session parameters, use the show bfd neighbors detail command, as shown in the examples in Disabling BFD for Static Routes If you disable BFD, all static route BFD sessions are torn down. A final Admin Down packet is sent to all neighbors on the remote systems, and those neighbors change to the Down state.
Establishing Sessions with OSPF Neighbors BFD sessions can be established with all OSPF neighbors at once or sessions can be established with all neighbors out of a specific interface. Sessions are only established when the OSPF adjacency is in the Full state. Figure 13. Establishing Sessions with OSPF Neighbors To establish BFD with all OSPF neighbors or with OSPF neighbors on a single interface, use the following commands. • Establish sessions with all OSPF neighbors.
ip ospf bfd all-neighbors Example of Verifying Sessions with OSPF Neighbors To view the established sessions, use the show bfd neighbors command. The bold line shows the OSPF BFD sessions. R2(conf-router_ospf)#bfd all-neighbors R2(conf-router_ospf)#do show bfd neighbors * - Active session role Ad Dn - Admin Down C - CLI I - ISIS O - OSPF R - Static Route (RTM) LocalAddr * 2.2.2.2 * 2.2.3.1 RemoteAddr Interface State Rx-int Tx-int Mult Clients 2.2.2.1 Te 2/1/1 Up 100 100 3 O 2.2.3.
• Disable BFD sessions with all OSPF neighbors. ROUTER-OSPF mode • no bfd all-neighbors Disable BFD sessions with all OSPF neighbors on an interface. INTERFACE mode ip ospf bfd all-neighbors disable Configure BFD for OSPFv3 BFD for OSPFv3 provides support for IPV6. Configuring BFD for OSPFv3 is a two-step process: 1. Enable BFD globally. 2. Establish sessions with OSPFv3 neighbors.
To view session parameters, use the show bfd neighbors detail command, as shown in the example in Displaying BFD for BGP Information. • Change parameters for all OSPFv3 sessions. ROUTER-OSPFv3 mode • bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Change parameters for OSPFv3 sessions on a single interface.
Establishing Sessions with IS-IS Neighbors BFD sessions can be established for all IS-IS neighbors at once or sessions can be established for all neighbors out of a specific interface. Figure 14. Establishing Sessions with IS-IS Neighbors To establish BFD with all IS-IS neighbors or with IS-IS neighbors on a single interface, use the following commands. • Establish sessions with all IS-IS neighbors. ROUTER-ISIS mode • bfd all-neighbors Establish sessions with IS-IS neighbors on a single interface.
Changing IS-IS Session Parameters BFD sessions are configured with default intervals and a default role. The parameters that you can configure are: Desired TX Interval, Required Min RX Interval, Detection Multiplier, and system role. These parameters are configured for all IS-IS sessions or all IS-IS sessions out of an interface. If you change a parameter globally, the change affects all IS-IS neighbors sessions.
Prerequisites Before configuring BFD for BGP, you must first configure the following settings: 1. Configure BGP on the routers that you want to interconnect, as described in Border Gateway Protocol IPv4 (BGPv4). 2. Enable fast fall-over for BGP neighbors to reduce convergence time (the neighbor fall-over command), as described in BGP Fast Fall-Over. Establishing Sessions with BGP Neighbors Before configuring BFD for BGP, you must first configure BGP on the routers that you want to interconnect.
• By establishing a BFD session with a specified BGP neighbor (the neighbor {ip-address | peergroup-name} bfd command) BFD packets originating from a router are assigned to the highest priority egress queue to minimize transmission delays. Incoming BFD control packets received from the BGP neighbor are assigned to the highest priority queue within the control plane policing (COPP) framework to avoid BFD packets drops due to queue congestion.
6. • When you establish a BFD session with a specified BGP neighbor or peer group using the neighbor bfd command, the default BFD session parameters are used (interval: 100 milliseconds, min_rx: 100 milliseconds, multiplier: 3 packets, and role: active).
Displaying BFD for BGP Information You can display related information for BFD for BGP. To display information about BFD for BGP sessions on a router, use the following commands and refer to the following examples. • Verify a BFD for BGP configuration. EXEC Privilege mode show running-config bgp • Verify that a BFD for BGP session has been successfully established with a BGP neighbor. A line-byline listing of established BFD adjacencies is displayed.
The following example shows viewing BFD neighbors with full detail. The bold lines show the BFD session parameters: TX (packet transmission), RX (packet reception), and multiplier (maximum number of missed packets). R2# show bfd neighbors detail Session Discriminator: 9 Neighbor Discriminator: 10 Local Addr: 1.1.1.3 Local MAC Addr: 00:01:e8:66:da:33 Remote Addr: 1.1.1.
Protocol BGP Messages: Registration De-registration Init Up Down Admin Down : : : : : : 5 4 0 6 0 2 Interface TenGigabitEthernet 6/2 Protocol BGP Messages: Registration De-registration Init Up Down Admin Down : : : : : : 5 4 0 6 0 2 Interface TenGigabitEthernet 6/3 Protocol BGP Messages: Registration De-registration Init Up Down Admin Down : : : : : : 1 0 0 1 0 2 The following example shows viewing BFD summary information.
Last read 00:00:30, last write 00:00:30 Hold time is 180, keepalive interval is 60 seconds Received 8 messages, 0 in queue 1 opens, 0 notifications, 0 updates 7 keepalives, 0 route refresh requests Sent 9 messages, 0 in queue 2 opens, 0 notifications, 0 updates 7 keepalives, 0 route refresh requests Minimum time between advertisement runs is 30 seconds Minimum time before advertisements start is 0 seconds Capabilities received from neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_R
neighboring interface fails, the BFD agent on the line card notifies the BFD manager, which in turn notifies the VRRP protocol that a link state change occurred. Configuring BFD for VRRP is a three-step process: 1. Enable BFD globally. Refer to Enabling BFD Globally. 2. Establish VRRP BFD sessions with all VRRP-participating neighbors. 3. On the master router, establish a VRRP BFD sessions with the backup routers. Refer to Establishing Sessions with All VRRP Neighbors.
Establishing VRRP Sessions on VRRP Neighbors The master router does not care about the state of the backup router, so it does not participate in any VRRP BFD sessions. VRRP BFD sessions on the backup router cannot change to the UP state. Configure the master router to establish an individual VRRP session the backup router. To establish a session with a particular VRRP neighbor, use the following command. • Establish a session with a particular VRRP neighbor.
To change parameters for all VRRP sessions or for a particular VRRP session, use the following commands. • Change parameters for all VRRP sessions. INTERFACE mode • vrrp bfd all-neighbors interval milliseconds min_rx milliseconds multiplier value role [active | passive] Change parameters for a particular VRRP session.
Troubleshooting BFD To troubleshoot BFD, use the following commands and examples. To control packet field values or to examine the control packets in hexadecimal format, use the following command. • Examine control packet field values. CONFIGURATION mode • debug bfd detail Examine the control packets in hexadecimal format. CONFIGURATION debug bfd packet Examples of Output from the debug bfd Commands The following example shows a three-way handshake using the debug bfd detail command.
The output for the debug bfd event command is the same as the log messages that appear on the console by default.
Border Gateway Protocol IPv4 (BGPv4) 8 This chapter provides a general description of BGPv4 as it is supported in the Dell Networking Operating System (OS). BGP protocol standards are listed in the Standards Compliance chapter. BGP is an external gateway protocol that transmits interdomain routing information within and between autonomous systems (AS). The primary function of the BGP is to exchange network reachability information with other BGP systems.
Figure 17. Internal BGP BGP version 4 (BGPv4) supports classless interdomain routing and aggregate routes and AS paths. BGP is a path vector protocol — a computer network in which BGP maintains the path that updated information takes as it diffuses through the network. Updates traveling through the network and returning to the same node are easily detected and discarded.
Figure 18. BGP Routers in Full Mesh The number of BGP speakers each BGP peer must maintain increases exponentially. Network management quickly becomes impossible. Sessions and Peers When two routers communicate using the BGP protocol, a BGP session is started. The two end-points of that session are Peers. A Peer is also called a Neighbor.
Establish a Session Information exchange between peers is driven by events and timers. The focus in BGP is on the traffic routing policies. In order to make decisions in its operations with other BGP peers, a BGP process uses a simple finite state machine that consists of six states: Idle, Connect, Active, OpenSent, OpenConfirm, and Established. For each peer-to-peer session, a BGP implementation tracks which of these six states the session is in.
Route Reflectors Route reflectors reorganize the iBGP core into a hierarchy and allow some route advertisement rules. NOTE: Do not use route reflectors (RRs) in the forwarding path. In iBGP, hierarchal RRs maintaining forwarding plane RRs could create routing loops. Route reflection divides iBGP peers into two groups: client peers and nonclient peers. A route reflector and its client peers form a route reflection cluster.
BGP Attributes Routes learned using BGP have associated properties that are used to determine the best route to a destination when multiple paths exist to a particular destination. These properties are referred to as BGP attributes, and an understanding of how BGP attributes influence route selection is required for the design of robust networks.
NOTE: The bgp bestpath as-path multipath-relax command is disabled by default, preventing BGP from load-balancing a learned route across two or more eBGP peers. To enable load-balancing across different eBGP peers, enable the bgp bestpath as-path multipathrelax command. A system error results if you configure the bgp bestpath as-path ignore command and the bgp bestpath as-path multipath-relax command at the same time. Only enable one command at a time.
d. AS_CONFED_SEQUENCE has a path length of 1, no matter how many ASs are in the AS_CONFED_SEQUENCE. 5. Prefer the path with the lowest ORIGIN type (IGP is lower than EGP, and EGP is lower than INCOMPLETE). 6. Prefer the path with the lowest multi-exit discriminator (MED) attribute. The following criteria apply: a. This comparison is only done if the first (neighboring) AS is the same in the two paths; the MEDs are compared only if the first AS in the AS_SEQUENCE is the same for both paths. b.
Local Preference Local preference (LOCAL_PREF) represents the degree of preference within the entire AS. The higher the number, the greater the preference for the route. Local preference (LOCAL_PREF) is one of the criteria used to determine the best path, so keep in mind that other criteria may impact selection, as shown in the illustration in Best Path Selection Criteria. For this example, assume that thelocal preference (LOCAL_PREF) is the only attribute applied.
connect in two places. Each connection is a BGP session. AS200 sets the MED for its T1 exit point to 100 and the MED for its OC3 exit point to 50. This sets up a path preference through the OC3 link. The MEDs are advertised to AS100 routers so they know which is the preferred path. MEDs are non-transitive attributes. If AS100 sends an MED to AS200, AS200 does not pass it on to AS300 or AS400. The MED is a locally relevant attribute to the two participating ASs (AS100 and AS200).
In Dell Networking OS, these origin codes appear as shown in the following example. The question mark (?) indicates an origin code of INCOMPLETE (shown in bold). The lower case letter (i) indicates an origin code of IGP (shown in bold). Example of Viewing Origin Codes Dell#show ip bgp BGP table version is 0, local router ID is 10.101.15.
waiting for a speaker to advertise. When a next-hop BGP neighbor is unreachable, then the connection to that BGP neighbor goes down after hold down timer expiry. The connection flap can also be obtained immediately with Fallover enabled. BGP routes that contain the next-hop as the neighbor address are not sent to the neighbor. You can enable this feature using the neighbor sender-side-loopdetect command.
Advertise IGP Cost as MED for Redistributed Routes When using multipath connectivity to an external AS, you can advertise the MED value selectively to each peer for redistributed routes. For some peers you can set the internal/IGP cost as the MED while setting others to a constant pre-defined metric as MED value. Dell Networking OS supports configuring the set metric-type internal command in a route-map to advertise the IGP cost as the MED to outbound EBGP peers when redistributing routes.
Ignore Router-ID for Some Best-Path Calculations Dell Networking OS allows you to avoid unnecessary BGP best-path transitions between external paths under certain conditions. The bgp bestpath router-id ignore command reduces network disruption caused by routing and forwarding plane changes and allows for faster convergence. Four-Byte AS Numbers Dell Networking OS supports 4-Byte (32-bit) format when configuring autonomous system numbers (ASNs).
ASDOT+ representation splits the full binary 4-byte AS number into two words of 16 bits separated by a decimal point (.): .. Some examples are shown in the following table. • All AS numbers between 0 and 65535 are represented as a decimal number, when entered in the CLI and when displayed in the show commands outputs. • AS Numbers larger than 65535 is represented using ASDOT notation as ..
Dell(conf-router_bgp)#do sho ip bgp BGP table version is 34558, local router ID is 172.30.1.57
Figure 23. Before and After AS Number Migration with Local-AS Enabled When you complete your migration, and you have reconfigured your network with the new information, disable this feature. If you use the “no prepend” option, the Local-AS does not prepend to the updates received from the eBGP peer. If you do not select “no prepend” (the default), the Local-AS is added to the first AS segment in the AS-PATH.
BGP4 Management Information Base (MIB) The FORCE10-BGP4-V2-MIB enhances Dell Networking OS BGP management information base (MIB) support with many new simple network management protocol (SNMP) objects and notifications (traps) defined in draft-ietf-idr-bgp4-mibv2-05. To see these enhancements, download the MIB from the Dell website. NOTE: For the Force10-BGP4-V2-MIB and other MIB documentation, refer to the Dell iSupport web page.
the BGP speaker acting as reflector advertises routes learned from one client to another client. If disabled, it is assumed that clients are in a full mesh and there is no need to advertise prefixes to the other clients. • High CPU utilization may be observed during an SNMP walk of a large BGP Loc-RIB.
By default, Dell Networking OS compares the MED attribute on different paths from within the same AS (the bgp always-compare-med command is not enabled). NOTE: In Dell Networking OS, all newly configured neighbors and peer groups are disabled. To enable a neighbor or peer group, enter the neighbor {ip-address | peer-group-name} no shutdown command. The following table displays the default values for BGP on Dell Networking OS. Table 9.
of the interface directly connected to the router. First, the BGP process determines if all internal BGP peers are reachable, then it determines which peers outside the AS are reachable. NOTE: Sample Configurations for enabling BGP routers are found at the end of this chapter. 1. Assign an AS number and enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number • as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte) or 0.1 to 65535.65535 (Dotted format).
3. Enable the BGP neighbor. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} no shutdown Examples of the show ip bgp Commands NOTE: When you change the configuration of a BGP neighbor, always reset it by entering the clear ip bgp * command in EXEC Privilege mode. To view the BGP configuration, enter show config in CONFIGURATION ROUTER BGP mode. To view the BGP status, use the show ip bgp summary command in EXEC Privilege mode.
For the router’s identifier, Dell Networking OS uses the highest IP address of the Loopback interfaces configured. Because Loopback interfaces are virtual, they cannot go down, thus preventing changes in the router ID. If you do not configure Loopback interfaces, the highest IP address of any interface is used as the router ID. To view the status of BGP neighbors, use the show ip bgp neighbors command in EXEC Privilege mode as shown in the first example.
Connections established 0; dropped 0 Last reset never No active TCP connection Dell# The following example shows verifying the BGP configuration using the show running-config bgp command.. Dell#show running-config bgp ! router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list ISP1in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.
CONFIG-ROUTER-BGP mode bgp asnotation asplain • NOTE: ASPLAIN is the default method Dell Networking OS uses and does not appear in the configuration display. Enable ASDOT AS Number representation. CONFIG-ROUTER-BGP mode • bgp asnotation asdot Enable ASDOT+ AS Number representation. CONFIG-ROUTER-BGP mode bgp asnotation asdot+ Examples of the bgp asnotation Commands The following example shows the bgp asnotation asplain command output.
neighbor 172.30.1.250 no shutdown 5332332 9911991 65057 18508 12182 7018 46164 i Configuring Peer Groups To configure multiple BGP neighbors at one time, create and populate a BGP peer group. An advantage of peer groups is that members of a peer group inherit the configuration properties of the group and share same update policy. A maximum of 256 peer groups are allowed on the system. Create a peer group by assigning it a name, then adding members to the peer group.
To add an external BGP (EBGP) neighbor, configure the as-number parameter with a number different from the BGP as-number configured in the router bgp as-number command. To add an internal BGP (IBGP) neighbor, configure the as-number parameter with the same BGP asnumber configured in the router bgp as-number command. Examples of Viewing and Configuring Peer Groups After you create a peer group, you can use any of the commands beginning with the keyword neighbor to configure that peer group.
neighbor zanzibar peer-group neighbor zanzibar no shutdown neighbor 10.1.1.1 remote-as 65535 neighbor 10.1.1.1 shutdown neighbor 10.14.8.60 remote-as 18505 neighbor 10.14.8.60 no shutdown Dell(conf-router_bgp)# To disable a peer group, use the neighbor peer-group-name shutdown command in CONFIGURATION ROUTER BGP mode. The configuration of the peer group is maintained, but it is not applied to the peer group members.
When you enable fall-over, BGP tracks IP reachability to the peer remote address and the peer local address. Whenever either address becomes unreachable (for example, no active route exists in the routing table for peer IPv6 destinations/local address), BGP brings down the session with the peer. The BGP fast fall-over feature is configured on a per-neighbor or peer-group basis and is disabled by default. To enable the BGP fast fall-over feature, use the following command.
Notification History 'Connection Reset' Sent : 5 Recv: 0 Local host: 200.200.200.200, Local port: 65519 Foreign host: 100.100.100.100, Foreign port: 179 Dell# To verify that fast fall-over is enabled on a peer-group, use the show ip bgp peer-group command (shown in bold).
Enter the limit keyword to restrict the number of sessions accepted. 2. Assign a subnet to the peer group. CONFIG-ROUTER-BGP mode neighbor peer-group-name subnet subnet-number mask The peer group responds to OPEN messages sent on this subnet. 3. Enable the peer group. CONFIG-ROUTER-BGP mode neighbor peer-group-name no shutdown 4. Create and specify a remote peer for BGP neighbor.
router bgp 65123 bgp router-id 192.168.10.2 network 10.10.21.0/24 network 10.10.32.0/24 network 100.10.92.0/24 network 192.168.10.0/24 bgp four-octet-as-support neighbor 10.10.21.1 remote-as 65123 neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.
neighbor 10.10.21.1 filter-list Laura in neighbor 10.10.21.1 no shutdown neighbor 10.10.32.3 remote-as 65123 neighbor 10.10.32.3 no shutdown neighbor 100.10.92.9 remote-as 65192 neighbor 100.10.92.9 local-as 6500 neighbor 100.10.92.9 no shutdown neighbor 192.168.10.1 remote-as 65123 neighbor 192.168.10.1 update-source Loopback 0 neighbor 192.168.10.1 no shutdown neighbor 192.168.12.2 remote-as 65123 neighbor 192.168.12.2 allowas-in 9 neighbor 192.168.12.2 update-source Loopback 0 neighbor 192.168.12.
bgp graceful-restart [restart-time time-in-seconds] • The default is 120 seconds. Set maximum time to retain the restarting peer’s stale paths. CONFIG-ROUTER-BGP mode bgp graceful-restart [stale-path-time time-in-seconds] • The default is 360 seconds. Local router supports graceful restart as a receiver only. CONFIG-ROUTER-BGP mode bgp graceful-restart [role receiver-only] Enabling Neighbor Graceful Restart BGP graceful restart is active only when the neighbor becomes established.
Filtering on an AS-Path Attribute You can use the BGP attribute, AS_PATH, to manipulate routing policies. The AS_PATH attribute contains a sequence of AS numbers representing the route’s path. As the route traverses an AS, the ASN is prepended to the route. You can manipulate routes based on their AS_PATH to affect interdomain routing. By identifying certain ASN in the AS_PATH, you can permit or deny routes based on the number in its AS_PATH. AS-PATH ACLs use regular expressions to search AS_PATH values.
Address 0x4014154 0x4013914 0x5166d6c 0x5e62df4 0x3a1814c 0x567ea9c 0x6cc1294 0x6cc18d4 0x5982e44 0x67d4a14 0x559972c 0x59cd3b4 0x7128114 0x536a914 0x2ffe884 0x2ff7284 0x2ff7ec4 0x2ff8544 0x736c144 0x3b8d224 0x5eb1e44 0x5cd891c --More-- Hash 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refcount 3 3 3 2 26 75 2 1 162 2 31 2 10 3 1 99 4 3 1 10 1 9 Metric Path 18508 701 3549 19421 i 18508 701 7018 14990 i 18508 209 4637 1221 9249 9249 i 18508 701 17302 i 18508 209 22291 i 18508 209 3356 2529 i 18508 209 1239
Regular Expression Definition _ (underscore) Matches a ^, a $, a comma, a space, or a {, or a }. Placed on either side of a string to specify a literal and disallow substring matching. You can precede or follow numerals enclosed by underscores by any of the characters listed. | (pipe) Matches characters on either side of the metacharacter; logical OR. As seen in the following example, the expressions are displayed when using the show commands.
Redistributing Routes In addition to filtering routes, you can add routes from other routing instances or protocols to the BGP process. With the redistribute command, you can include ISIS, OSPF, static, or directly connected routes in the BGP process. To add routes from other routing instances or protocols, use any of the following commands in ROUTER BGP mode. • Include, directly connected or user-configured (static) routes in BGP.
CONFIG-ROUTER-BGP mode bgp add-path [both|received|send] path-count count The range is from 2 to 64. 2. Allow the specified neighbor/peer group to send/ receive multiple path advertisements. CONFIG-ROUTER-BGP mode neighbor add-path NOTE: The path-count parameter controls the number of paths that are advertised, not the number of paths that are received. Configuring IP Community Lists Within Dell Networking OS, you have multiple methods of manipulating routing attributes.
• quote-regexp: then any number of regular expressions. The software applies all regular expressions in the list. • regexp: then a regular expression. Example of the show ip community-lists Command To view the configuration, use the show config command in CONFIGURATION COMMUNITY-LIST or CONFIGURATION EXTCOMMUNITY LIST mode or the show ip {community-lists | extcommunity-list} command in EXEC Privilege mode.
To view the configuration, use the show config command in CONFIGURATION COMMUNITY-LIST or CONFIGURATION EXTCOMMUNITY LIST mode or the show ip {community-lists | extcommunity-list} command in EXEC Privilege mode.
CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-map map-name {in | out} To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. To view a route map configuration, use the show route-map command in EXEC Privilege mode. To view which BGP routes meet an IP community or IP extended community list’s criteria, use the show ip bgp {community-list | extcommunity-list} command in EXEC Privilege mode.
3. • no-advertise: routes with the COMMUNITY attribute of NO_ADVERTISE and are not advertised. • no-export: routes with the COMMUNITY attribute of NO_EXPORT. • none: remove the COMMUNITY attribute. • additive: add the communities to already existing communities. Return to CONFIGURATION mode. CONFIG-ROUTE-MAP mode exit 4. Enter the ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Apply the route map to the neighbor or peer group’s incoming or outgoing routes.
Changing MED Attributes By default, Dell Networking OS uses the MULTI_EXIT_DISC or MED attribute when comparing EBGP paths from the same AS. To change how the MED attribute is used, enter any or all of the following commands. • Enable MED comparison in the paths from neighbors with different ASs. CONFIG-ROUTER-BGP mode bgp always-compare-med • By default, this comparison is not performed. Change the bestpath MED selection.
3. Return to CONFIGURATION mode. CONFIG-ROUTE-MAP mode exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Apply the route map to the neighbor or peer group’s incoming or outgoing routes. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} route-map map-name {in | out} To view the BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode. To view a route map configuration, use the show route-map command in EXEC Privilege mode.
set weight weight – weight: the range is from 0 to 65535. To view BGP configuration, use the show config command in CONFIGURATION ROUTER BGP mode or the show running-config bgp command in EXEC Privilege mode. Enabling Multipath By default, the software allows one path to a destination. You can enable multipath to allow up to 64 parallel paths to a destination. NOTE: Dell Networking recommends not using multipath and add path simultaneously in a route reflector.
To filter routes using prefix lists, use the following commands. 1. Create a prefix list and assign it a name. CONFIGURATION mode ip prefix-list prefix-name 2. Create multiple prefix list filters with a deny or permit action. CONFIG-PREFIX LIST mode seq sequence-number {deny | permit} {any | ip-prefix [ge | le] } • ge: minimum prefix length to be matched. • le: maximum prefix length to me matched. For information about configuring prefix lists, refer to Access Control Lists (ACLs). 3.
Filtering BGP Routes Using Route Maps To filter routes using a route map, use these commands. 1. Create a route map and assign it a name. CONFIGURATION mode route-map map-name [permit | deny] [sequence-number] 2. Create multiple route map filters with a match or set action. CONFIG-ROUTE-MAP mode {match | set} For information about configuring route maps, refer to Access Control Lists (ACLs). 3. Return to CONFIGURATION mode. CONFIG-ROUTE-MAP mode exit 4. Enter ROUTER BGP mode.
3. Return to CONFIGURATION mode. AS-PATH ACL exit 4. Enter ROUTER BGP mode. CONFIGURATION mode router bgp as-number 5. Filter routes based on the criteria in the configured route map. CONFIG-ROUTER-BGP mode neighbor {ip-address | peer-group-name} filter-list as-path-name {in | out} Configure the following parameters: • ip-address or peer-group-name: enter the neighbor’s IP address or the peer group’s name. • as-path-name: enter the name of a configured AS-PATH ACL.
When you enable a route reflector, Dell Networking OS automatically enables route reflection to all clients. To disable route reflection between all clients in this reflector, use the no bgp client-toclient reflection command in CONFIGURATION ROUTER BGP mode. All clients must be fully meshed before you disable route reflection. To view a route reflector configuration, use the show config command in CONFIGURATION ROUTER BGP mode or the show running-config bgp in EXEC Privilege mode.
bgp confederation identifier as-number • – as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte). Specifies which confederation sub-AS are peers. CONFIG-ROUTER-BGP mode bgp confederation peers as-number [... as-number] – as-number: from 0 to 65535 (2 Byte) or from 1 to 4294967295 (4 Byte). All Confederation routers must be either 4 Byte or 2 Byte. You cannot have a mix of router ASN support. To view the configuration, use the show config command in CONFIGURATION ROUTER BGP mode.
bgp dampening [half-life | reuse | suppress max-suppress-time] [route-map map-name] Enter the following optional parameters to configure route dampening parameters: – half-life: the range is from 1 to 45. Number of minutes after which the Penalty is decreased. After the router assigns a Penalty of 1024 to a route, the Penalty is decreased by half after the halflife period expires. The default is 15 minutes. – reuse: the range is from 1 to 20000. This number is compared to the flapping route’s Penalty value.
• Change the best path selection method to non-deterministic. Change the best path selection method to non-deterministic. CONFIG-ROUTER-BGP mode bgp non-deterministic-med NOTE: When you change the best path selection method, path selection for existing paths remains unchanged until you reset it by entering the clear ip bgp command in EXEC Privilege mode.
Changing BGP Timers To configure BGP timers, use either or both of the following commands. Timer values configured with the neighbor timers command override the timer values configured with the timers bgp command.
with the peer. If the request is indeed negotiated (after execution of clear ip bgp soft in), BGP sends a route-refresh request to the neighbor and receives all of the peer’s updates. To use soft reconfiguration (or soft reset) without preconfiguration, both BGP peers must support the soft route refresh capability, which is advertised in the open message sent when the peers establish a TCP session. To determine whether a BGP router supports this capability, use the show ip bgp neighbors command.
Match a Clause with a Continue Clause The continue feature can exist without a match clause. Without a match clause, the continue clause executes and jumps to the specified route-map entry. With a match clause and a continue clause, the match clause executes first and the continue clause next in a specified route map entry. The continue clause launches only after a successful match.
Most Dell Networking OS BGP IPv4 unicast commands are extended to support the IPv4 multicast RIB using extra options to the command. For a detailed description of the MBGP commands, refer to the Dell Networking OS Command Line Interface Reference Guide. • Enables support for the IPv4 multicast family on the BGP node. CONFIG-ROUTER-BGP mode • address family ipv4 multicast Enable IPv4 multicast support on a BGP neighbor/peer group.
• debug ip bgp [ip-address | peer-group peer-group-name] notifications [in | out] View information about BGP updates and filter by prefix name. EXEC Privilege mode • debug ip bgp [ip-address | peer-group peer-group-name] updates [in | out] [prefix-list name] Enable soft-reconfiguration debug.
Capabilities advertised to neighbor for IPv4 Unicast : MULTIPROTO_EXT(1) ROUTE_REFRESH(2) CISCO_ROUTE_REFRESH(128) For address family: IPv4 Unicast BGP table version 1395, neighbor version 1394 Prefixes accepted 1 (consume 4 bytes), 0 withdrawn by peer Prefixes advertised 0, rejected 0, 0 withdrawn from peer Connections established 3; dropped 2 Last reset 00:00:12, due to Missing well known attribute Notification History 'UPDATE error/Missing well-known attr' Sent : 1 Recv: 0 'Connection Reset' Sent : 1 Rec
419ef06c 00000000 00000000 00000000 00000000 00000000 0181a1e4 0181a25c 41af92c0 00000000 00000000 00000000 00000000 00000001 0181a1e4 0181a25c 41af9400 00000000 PDU[2] : len 19, captured 00:34:51 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[3] : len 19, captured 00:34:51 ago ffffffff ffffffff ffffffff ffffffff 00130400 PDU[4] : len 19, captured 00:34:22 ago ffffffff ffffffff ffffffff ffffffff 00130400 [. . .] Outgoing packet capture enabled for BGP neighbor 20.20.20.
Sample Configurations The following example configurations show how to enable BGP and set up some peer groups. These examples are not comprehensive directions. They are intended to give you some guidance with typical configurations. To support your own IP addresses, interfaces, names, and so on, you can copy and paste from these examples to your CLI. Be sure that you make the necessary changes. The following illustration shows the configurations described on the following examples.
ip address 192.168.128.1/24 no shutdown R1(conf-if-lo-0)#int te 1/21/1 R1(conf-if-te-1/21/1)#ip address 10.0.1.21/24 R1(conf-if-te-1/21/1)#no shutdown R1(conf-if-te-1/21/1)#show config ! interface TengigabitEthernet 1/21/1 ip address 10.0.1.21/24 no shutdown R1(conf-if-te-1/21)#int te 1/31/1 R1(conf-if-te-1/31)#ip address 10.0.3.31/24 R1(conf-if-te-1/31)#no shutdown R1(conf-if-te-1/31)#show config ! interface TengigabitEthernet 1/31/1 ip address 10.0.3.
R2(conf-if-te-2/31/1)#router bgp 99 R2(conf-router_bgp)#network 192.168.128.0/24 R2(conf-router_bgp)#neighbor 192.168.128.1 remote 99 R2(conf-router_bgp)#neighbor 192.168.128.1 no shut R2(conf-router_bgp)#neighbor 192.168.128.1 update-source loop 0 R2(conf-router_bgp)#neighbor 192.168.128.3 remote 100 R2(conf-router_bgp)#neighbor 192.168.128.3 no shut R2(conf-router_bgp)#neighbor 192.168.128.3 update loop 0 R2(conf-router_bgp)#show config ! router bgp 99 bgp router-id 192.168.128.2 network 192.168.128.
R1(conf-router_bgp)# neighbor 192.168.128.2 peer-group AAA R1(conf-router_bgp)# neighbor 192.168.128.3 peer-group BBB R1(conf-router_bgp)# R1(conf-router_bgp)#show config ! router bgp 99 network 192.168.128.0/24 neighbor AAA peer-group neighbor AAA no shutdown neighbor BBB peer-group neighbor BBB no shutdown neighbor 192.168.128.2 remote-as 99 neighbor 192.168.128.2 peer-group AAA neighbor 192.168.128.2 update-source Loopback 0 neighbor 192.168.128.2 no shutdown neighbor 192.168.128.
20 keepalives, 0 route refresh requests Minimum time between advertisement runs is 30 seconds Minimum time before advertisements start is 0 seconds Example of Enabling Peer Groups (Router 2) R2#conf R2(conf)#router bgp 99 R2(conf-router_bgp)# neighbor CCC peer-group R2(conf-router_bgp)# neighbor CC no shutdown R2(conf-router_bgp)# neighbor BBB peer-group R2(conf-router_bgp)# neighbor BBB no shutdown R2(conf-router_bgp)# neighbor 192.168.128.1 peer AAA R2(conf-router_bgp)# neighbor 192.168.128.
3 paths using 204 bytes of memory BGP-RIB over all using 207 bytes of memory 2 BGP path attribute entrie(s) using 128 bytes of memory 2 BGP AS-PATH entrie(s) using 90 bytes of memory 2 neighbor(s) using 9216 bytes of memory Neighbor AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/Pfx 192.168.128.1 99 93 99 1 0 (0) 00:00:15 1 192.168.128.2 99 122 120 1 0 (0) 00:00:11 1 R3#show ip bgp neighbor BGP neighbor is 192.168.128.
Content Addressable Memory (CAM) 9 CAM is a type of memory that stores information in the form of a lookup table. On Dell Networking systems, CAM stores Layer 2 (L2) and Layer 3 (L3) forwarding information, access-lists (ACLs), flows, and routing policies. CAM Allocation CAM Allocation for Ingress To allocate the space for regions such has L2 ingress ACL, IPV4 ingress ACL, IPV6 ingress ACL, IPV4 QoS, L2 QoS, PBR, VRF ACL, and so forth, use the cam-acl command in CONFIGURATION mode.
CAM Allocation Setting vrfv4Acl 0 Openflow 0 fedgovacl 0 NOTE: When you reconfigure CAM allocation, use the nlbclusteracl number command to change the number of NLB ARP entries. The range is from 0 to 2. The default value is 0. At the default value of 0, eight NLB ARP entries are available for use. This platform supports upto 256 CAM entries. Select 1 to configure 128 entries. Select 2 to configure 256 entries.
CONFIGURATION mode cam-acl [default | l2acl] NOTE: Selecting default resets the CAM entries to the default settings. Select l2acl to allocate the desired space for all other regions. 2. Enter the number of FP blocks for each region.
Example of the show cam-profile Command Dell#show cam-profile -- Chassis CAM Profile -CamSize Profile Name L2FIB L2ACL IPv4FIB IPv4ACL IPv4Flow EgL2ACL EgIPv4ACL Reserved FIB : ACL : Flow : EgACL : MicroCode Name --More-- : : : : : : : : : : : 0 0 0 0 : 18-Meg Current Settings Default 32K entries 1K entries 256K entries 12K entries 24K entries 1K entries 1K entries 8K entries entries : 0 entries : 0 entries : 0 entries : 0 Default : Next Boot : Default : 32K entries : 1K entries : 256K entries : 12K entr
ipv4pbr vrfv4Acl Openflow fedgovacl : : : : 0 0 0 0 2 2 0 0 -- Stack unit 0 -Current Settings(in block sizes) Next Boot(in block sizes) 1 block = 128 entries L2Acl : 6 4 Ipv4Acl : 4 2 Ipv6Acl : 0 0 Ipv4Qos : 2 2 L2Qos : 1 1 L2PT : 0 0 IpMacAcl : 0 0 VmanQos : 0 0 VmanDualQos : 0 0 EcfmAcl : 0 0 FcoeAcl : 0 0 iscsiOptAcl : 0 0 ipv4pbr : 0 2 vrfv4Acl : 0 2 Openflow : 0 0 fedgovacl : 0 0 Dell(conf)# Example of Viewing CAM-ACL Settings NOTE: If you change the cam-acl setting from CONFIGURATION mode, the out
Ipv4Qos L2Qos L2PT IpMacAcl VmanQos VmanDualQos EcfmAcl FcoeAcl iscsiOptAcl ipv4pbr vrfv4Acl Openflow fedgovacl : : : : : : : : : : : : : 2 1 0 0 0 0 0 0 0 0 0 0 0 -- Stack unit 7 -Current Settings(in block sizes) 1 block = 128 entries L2Acl : 6 Ipv4Acl : 4 Ipv6Acl : 0 Ipv4Qos : 2 L2Qos : 1 L2PT : 0 IpMacAcl : 0 VmanQos : 0 VmanDualQos : 0 EcfmAcl : 0 FcoeAcl : 0 iscsiOptAcl : 0 ipv4pbr : 0 vrfv4Acl : 0 Openflow : 0 fedgovacl : 0 Dell# View CAM Usage View the amount of CAM space available, used, and rem
CAM Optimization When you enable the CAM optimization, if a Policy Map containing classification rules (ACL and/or DSCP/ ip-precedence rules) is applied to more than one physical interface on the same port-pipe, only a single copy of the policy is written (only one FP entry is used). Troubleshoot CAM Profiling The following section describes CAM profiling troubleshooting. CAM Profile Mismatches The CAM profile on all cards must match the system profile.
Dell Networking OS supports the ability to view the actual CAM usage before applying a service-policy. The test cam-usage service-policy command provides this test framework. For more information, refer to Pre-Calculating Available QoS CAM Space. Syslog Error When the Table is Full In the Dell Networking OS, the table full condition is displayed as CAM full only for LPM. But now the LPM is split into two tables. There are two syslog errors that are displayed: 1. /65 to /128 Table full. 2.
Configuring UFT Modes To configure the Unified Forwarding Table (UFT) modes, follow these steps. 1. Select a mode to initialize the maximum scalability size for L2 MAC table or L3 Host table or L3 Route table.
Control Plane Policing (CoPP) 10 Control plane policing (CoPP) uses access control list (ACL) rules and quality of service (QoS) policies to create filters for a system’s control plane. That filter prevents traffic not specifically identified as legitimate from reaching the system control plane, rate-limits, traffic to an acceptable level.
Figure 26. CoPP Implemented Versus CoPP Not Implemented Configure Control Plane Policing The system can process a maximum of 4200 packets per second (PPS). Protocols that share a single queue may experience flaps if one of the protocols receives a high rate of control traffic even though per protocol CoPP is applied. This happens because queue-based rate limiting is applied first.
same queue. If you are not aware of the incoming protocol traffic rate, you cannot set the required queue rate limit value. You must complete queue bandwidth tuning carefully because the system cannot open up to handle any rate, including traffic coming at the line rate. CoPP policies are assigned on a per-protocol or a per-queue basis, and are assigned in CONTROLPLANE mode to each port-pipe. CoPP policies are configured by creating extended ACL rules and specifying rate-limits through QoS policies.
8. Assign the protocol based the service policy on the control plane. Enabling this command on a portpipe automatically enables the ACL and QoS rules creates with the cpu-qos keyword. CONTROL-PLANE mode service-policy rate-limit-protocols Examples of Configuring CoPP for Different Protocols The following example shows creating the IP/IPv6/MAC extended ACL.
The following example shows matching the QoS class map to the QoS policy.
Dell(conf-qos-policy-in)#rate-police 5000 80 peak 600 50 Dell(conf-qos-policy-in)#exit The following example shows assigning the QoS policy to the queues. Dell(conf)#policy-map-input cpuq_rate_policy cpu-qos Dell(conf-qos-policy-in)#service-queue 5 qos-policy cpuq_1 Dell(conf-qos-policy-in)#service-queue 6 qos-policy cpuq_2 Dell(conf-qos-policy-in)#service-queue 7 qos-policy cpuq_1 The following example shows creating the control plane service policy.
To view the queue mapping for the MAC protocols, use the show mac protocol-queue-mapping command.
11 Data Center Bridging (DCB) Ethernet Enhancements in Data Center Bridging The following section describes DCB. The device supports the following DCB features: • Data center bridging exchange protocol (DCBx) • Priority-based flow control (PFC) • Enhanced transmission selection (ETS) To configure PFC, ETS, and DCBx for DCB, refer to Sample DCB Configuration for the CLI configurations.
transport protocols (for example, TCP) for reliable data transmission with the associated cost of greater processing overhead and performance impact. Storage traffic Storage traffic based on Fibre Channel media uses the Small Computer System Interface (SCSI) protocol for data transfer. This traffic typically consists of large data packets with a payload of 2K bytes that cannot recover from frame loss.
The system supports loading two DCB_Config files: • FCoE converged traffic with priority 3. • iSCSI storage traffic with priority 4. In the Dell Networking OS, PFC is implemented as follows: • PFC is supported on specified 802.1p priority traffic (dot1p 0 to 7) and is configured per interface. However, only two lossless queues are supported on an interface: one for FCoE converged traffic with priority 3 and one for iSCSI storage traffic with priority 4.
• By default, PFC is enabled when you enable DCB. If you have not loaded FCoE_DCB_Config and iSCSI_DCB_Config, DCB is disabled. When you enable DCB globally, you cannot simultaneously enable link-level flow control. • Buffer space is allocated and de-allocated only when you configure a PFC priority on the port. Enhanced Transmission Selection Enhanced transmission selection (ETS) supports optimized bandwidth allocation between traffic types in multiprotocol (Ethernet, FCoE, SCSI) links.
– PFC enabled or disabled – No bandwidth limit or no ETS processing • ETS uses the DCB MIB IEEE 802.1azd2.5. Data Center Bridging Exchange Protocol (DCBx) The data center bridging exchange (DCBx) protocol is disabled by default on the S4810; ETS is also disabled. DCBx allows a switch to automatically discover DCB-enabled peers and exchange configuration information. PFC and ETS use DCBx to exchange and negotiate parameters with peer devices.
Enabling Data Center Bridging DCB is automatically configured when you configure FCoE or iSCSI optimization. Data center bridging supports converged enhanced Ethernet (CEE) in a data center network. DCB is disabled by default. It must be enabled to support CEE. • Priority-based flow control • Enhanced transmission selection • Data center bridging exchange protocol • FCoE initialization protocol (FIP) snooping DCB processes virtual local area network (VLAN)-tagged packets and dot1p priority values.
• Configure the PFC setting (on or off) and the ETS bandwidth percentage allocated to traffic in each priority group, or whether the priority group traffic should be handled with strict priority scheduling. You can enable PFC on a maximum of two priority queues on an interface. Enabling PFC for dot1p priorities makes the corresponding port queue lossless. The sum of all allocated bandwidth percentages in all groups in the DCB map must be 100%. Strict-priority traffic is serviced first.
NOTE: In Egress queue assignment (8 queues in S6000 and Z9500, 4 against in S5000 and S4810. PFC is not applied on specific dot1p priorities. ETS: Equal bandwidth is assigned to each port queue and each dot1p priority in a priority group. To configure PFC and ETS parameters on an S6000 interface, you must specify the PFC mode, the ETS bandwidth allocation for a priority group, and the 802.1p priority-to-priority group mapping in a DCB map. No default PFC and ETS settings are applied to Ethernet interfaces.
Priority group range is from 0 to 7. All priorities that map to the same queue must be in the same priority group. Leave a space between each priority group number. For example: priority-pgid 0 0 0 1 2 4 4 4 in which priority group 0 maps to dot1p priorities 0, 1, and 2; priority group 1 maps to dot1p priority 3; priority group 2 maps to dot1p priority 4; priority group 4 maps to dot1p priorities 5, 6, and 7.
Lossless traffic egresses out the no-drop queues. Ingress dot1p traffic from PFC-enabled interfaces is automatically mapped to the no-drop egress queues. 1. Enter INTERFACE Configuration mode. CONFIGURATION mode interface type slot/port/subport 2. Configure the port queues that will still function as no-drop queues for lossless traffic. INTERFACE mode pfc no-drop queues queue-range For the dot1p-queue assignments, refer to the dot1p Priority-Queue Assignment table.
On switch, PFC is enabled by default on Ethernet ports (pfc mode on command). You can configure PFC parameters using a DCB map or the pfc priority command in Interface configuration mode. For more information, see Configuring Priority-Based Flow Control. As soon as you apply a DCB map with PFC enabled on an interface, DCBx starts exchanging information with a peer. The IEEE802.1Qbb, CEE and CIN versions of PFC TLV are supported.
PFC Prerequisites and Restrictions On an S6000 switch, PFC is globally enabled by default, but not applied on specific 802.1p priorities. To enable PFC on 802.1p priorities, create a DCB map. The following prerequisites and restrictions apply when you configure PFC in a DCB map: • You can enable PFC on a maximum of two priority queues on an interface. Enabling PFC for dot1p priorities configures the corresponding port queue as lossless.
DCB map. This type of DCB configuration is useful on interfaces that require PFC for lossless traffic, but do not transmit converged Ethernet traffic. Step Task Command Command Mode 1 Enter interface configuration mode on an Ethernet port. CONFIGURATION interface {tengigabitEthernet slot/ port /subport | fortygigabitEthernet slot/port} 2 Enable PFC on specified priorities. Range: 0-7. Default: None.
If the traffic congestion is on PORT B , Egress DROP is on PORT A or C, as the PFC is not enabled on PORT B. Refer the following configuration for queue to dot1p mapping: Dell(conf)#do show qos dot1p-queue-mapping Dot1p Priority : 0 1 2 3 4 5 6 7 -> On ingress interfaces[Port A and C] we used the PFC on priority level. Queue : 0 0 0 1 2 3 3 3 -> On Egress interface[Port B] we used no-drop queues. Lossless traffic egresses out the no-drop queues. Ingress 802.
Step Task Command Command Mode Range: 0-3. Separate queue values with a comma; specify a priority range with a dash; for example: pfc no-drop queues 1,3 or pfc no-drop queues 2-3 Default: No lossless queues are configured. Priority-Based Flow Control Using Dynamic Buffer Method Priority-based flow control using dynamic buffer spaces is supported on the platform.
guaranteed buffer reduces the total available shared buffer to . This shared buffer can be used for lossy and lossless traffic. The default behavior causes up to a maximum of 6.6 MB to be used for PFC-related traffic. The remaining approximate space of 1 MB can be used by lossy traffic. You can allocate all the remaining 1 MB to lossless PFC queues. If you allocate in such a way, the performance of lossy traffic is reduced and degraded.
Configuration Example for DSCP and PFC Priorities Consider a scenario in which the following DSCP and PFC priorities are necessary: DSCP 0 – 5, 10 - 15 Expected PFC Priority 1 20 – 25, 30 – 35 2 To configure the aforementioned DSCP and PFC priority values, perform the following tasks: 1. Create class-maps to group the DSCP subsets class-map match ip ! class-map match ip 2.
The SNMP support for monitoring PFC and BST counters and statistics is introduced in Dell Networking OS 9.3(0.1). The enhancement is made on F10-FPSTATS MIB with additional tables to display the PFC and BST counters and statistics. The following new tables are added in F10-FPSTATS MIB in Dell Networking OS 9.3(0.
these mappings are identical. This section discusses the Dell Networking OS configurations needed for above PFC generation and honoring mechanism to work for the untagged packets. PRIORITY to PG mapping (PRIO2PG) is on the ingress for each port. By default, all priorities are mapped to PG7. A priority for which PFC has to be generated is assigned to a PG other than PG7 (say PG6) and buffer watermark is set on PG6 so as to generate PFC.
The internal Priority assigned for the packet by Ingress FP is used by the memory management unit (MMU) to assign the packet to right queue by indexing the internal-priority to queue map table (TABLE 1) in hardware. PRIO2COS setting for honoring the PFC protocol packets from the Peer switches is as per above PacketDot1p->queue table (Table 2). The packets that come in with packet-dot1p 2 alone will be assigned to PG6 on ingress.
• When allocating bandwidth or configuring a queue scheduler for dot1p priorities in a priority group on a DCBx CIN interface, take into account the CIN bandwidth allocation (refer to Configuring Bandwidth Allocation for DCBx CIN) and dot1p-queue mapping. NOTE: The IEEE 802.1Qaz, CEE, and CIN versions of ETS are supported. Creating an ETS Priority Group An ETS priority group specifies the range of 802.1p priority traffic to which a QoS output policy with ETS settings is applied on an egress interface. 1.
Leave a space between each priority group number. For example: priority-pgid 0 0 0 1 2 4 4 4 in which priority group 0 maps to dot1p priorities 0, 1, and 2; priority group 1 maps to dot1p priority 3; priority group 2 maps to dot1p priority 4; priority group 4 maps to dot1p priorities 5, 6, and 7. Dell Networking OS Behavior: A priority group consists of 802.1p priority values that are grouped for similar bandwidth allocation and scheduling, and that share latency and loss requirements. All 802.
Configuring Bandwidth Allocation for DCBx CIN After you apply an ETS output policy to an interface, if the DCBx version used in your data center network is CIN, you may need to configure a QoS output policy to overwrite the default CIN bandwidth allocation. This default setting divides the bandwidth allocated to each port queue equally between the dot1p priority traffic assigned to the queue.
Configuring ETS in a DCB Map An S6000–ON switch supports the use of a DCB map in which you configure enhanced transmission selection (ETS) setting. To configure ETS parameters, you must apply a DCB map on an S6000–ON interface. This functionality is supported on the S6000–ON platform. ETS Configuration Notes ETS provides a way to optimize bandwidth allocation to outbound 802.1p classes of converged Ethernet traffic. Different traffic types have different service needs.
ETS Prerequisites and Restrictions On an S6000 switch, ETS is enabled by default on Ethernet ports with equal bandwidth assigned to each 802.1p priority. You can change the default ETS configuration only by using a DCB map.
Unused bandwidth usage: Normally, if there is no traffic or unused bandwidth for a priority group, the bandwidth allocated to the group is distributed to the other priority groups according to the bandwidth percentage allocated to each group.
DCBx is a prerequisite for using DCB features, such as priority-based flow control (PFC) and enhanced traffic selection (ETS), to exchange link-level configurations in a converged Ethernet environment. DCBx is also deployed in topologies that support lossless operation for FCoE or iSCSI traffic. In these scenarios, all network devices are DCBx-enabled (DCBx is enabled end-to-end).
– On a DCBx port in an auto-upstream role, the PFC and application priority TLVs are enabled. ETS recommend TLVs are disabled and ETS configuration TLVs are enabled. Autodownstream The port advertises its own configuration to DCBx peers but is not willing to receive remote peer configuration. The port always accepts internally propagated configurations from a configuration source.
The default for the DCBx port role is manual. NOTE: On a DCBx port, application priority TLV advertisements are handled as follows: • The application priority TLV is transmitted only if the priorities in the advertisement match the configured PFC priorities on the port. • On auto-upstream and auto-downstream ports: – If a configuration source is elected, the ports send an application priority TLV based on the application priority TLV received on the configuration-source port.
– The port has performed a DCBx exchange with a DCBx peer. – The switch is capable of supporting the received DCB configuration values through either a symmetric or asymmetric parameter exchange. A newly elected configuration source propagates configuration changes received from a peer to the other auto-configuration ports. Ports receiving auto-configuration information from the configuration source ignore their current settings and use the configuration source information.
NOTE: Because DCBx TLV processing is best effort, it is possible that CIN frames may be processed when DCBx is configured to operate in CEE mode and vice versa. In this case, the unrecognized TLVs cause the unrecognized TLV counter to increment, but the frame is processed and is not discarded. Legacy DCBx (CIN and CEE) supports the DCBx control state machine that is defined to maintain the sequence number and acknowledge the number sent in the DCBx control TLVs.
Configuring DCBx To configure DCBx, follow these steps. For DCBx, to advertise DCBx TLVs to peers, enable LLDP. For more information, refer to Link Layer Discovery Protocol (LLDP). 1. Configure ToR- and FCF-facing interfaces as auto-upstream ports. 2. Configure server-facing interfaces as auto-downstream ports. 3. Configure a port to operate in a configuration-source role. 4. Configure ports to operate in a manual role. 1. Enter INTERFACE Configuration mode.
[no] advertise DCBx-tlv {ets-conf | ets-reco | pfc} [ets-conf | ets-reco | pfc] [ets-conf | ets-reco | pfc] • ets-conf: enables the advertisement of ETS Configuration TLVs. • ets-reco: enables the advertisement of ETS Recommend TLVs. • pfc enables: the advertisement of PFC TLVs. The default is All PFC and ETS TLVs are advertised. NOTE: You can configure the transmission of more than one TLV type at a time; for example, advertise DCBx-tlv ets-conf ets-reco.
• cee: configures a port to use CEE (Intel 1.01). cin configures a port to use Cisco-Intel-Nuova (DCBx 1.0). • ieee-v2.5: configures a port to use IEEE 802.1Qaz (Draft 2.5). The default is Auto. NOTE: To configure the DCBx port role the interfaces use to exchange DCB information, use the DCBx port-role command in INTERFACE Configuration mode (Step 3). 4. Configure the PFC and ETS TLVs that advertise on unconfigured interfaces with a manual port-role.
The default is 0x10. DCBx Error Messages The following syslog messages appear when an error in DCBx operation occurs. LLDP_MULTIPLE_PEER_DETECTED: DCBx is operationally disabled after detecting more than one DCBx peer on the port interface. LLDP_PEER_AGE_OUT: DCBx is disabled as a result of LLDP timing out on a DCBx peer interface.
Verifying the DCB Configuration To display DCB configurations, use the following show commands. Table 17. Displaying DCB Configurations Command Output show qos dot1p-queue mapping Displays the current 802.1p priority-queue mapping. show dcb [stack-unit unit-number] Displays the data center bridging status, number of PFC-enabled ports, and number of PFC-enabled queues. On the master switch in a stack, you can specify a stack-unit number. The range is from 0 to 5.
The following example shows the show dcb command. Dell# show dcb stack-unit 2 port-set 0 DCB Status : Enabled PFC Port Count : 56 (current), 56 (configured) PFC Queue Count : 2 (current), 2 (configured) The following example shows the show qos priority-groups command. Dell#show qos priority-groups priority-group ipc priority-list 4 set-pgid 2 The following example shows the output of the show qos dcb-map test command.
TLV Tx Status is enabled PFC Link Delay 45556 pause quanta Application Priority TLV Parameters : -------------------------------------FCOE TLV Tx Status is disabled ISCSI TLV Tx Status is disabled Local FCOE PriorityMap is 0x8 Local ISCSI PriorityMap is 0x10 Remote FCOE PriorityMap is 0x8 Remote ISCSI PriorityMap is 0x8 0 Input TLV pkts, 1 Output TLV pkts, 0 Error pkts, 0 Pause Tx pkts, 0 Pause Rx pkts The following table describes the show interface pfc summary command fields. Table 18.
Fields Description • • Feature: for legacy DCBx versions Symmetric: for an IEEE version TLV Tx Status Status of PFC TLV advertisements: enabled or disabled. PFC Link Delay Link delay (in quanta) used to pause specified priority traffic. Application Priority TLV: FCOE TLV Tx Status Status of FCoE advertisements in application priority TLVs from local DCBx port: enabled or disabled.
The following example shows the show interface ets summary command.
3 0% ETS 4 0% ETS 5 0% ETS 6 0% ETS 7 0% ETS Priority# Bandwidth TSA 0 13% ETS 1 13% ETS 2 13% ETS 3 13% ETS 4 12% ETS 5 12% ETS 6 12% ETS 7 12% ETS Remote Parameters: ------------------Remote is disabled Local Parameters : -----------------Local is enabled TC-grp Priority# Bandwidth TSA 0 0,1,2,3,4,5,6,7 100% ETS 1 0% ETS 2 0% ETS 3 0% ETS 4 0% ETS 5 0% ETS 6 0% ETS 7 0% ETS Priority# Bandwidth TSA 0 13% ETS 1 13% ETS 2 13% ETS 3 13% ETS 4 12% ETS 5 12% ETS 6 12% ETS 7 12% ETS Oper status is init Conf TLV
6 7 Priority# Bandwidth TSA 0 1 2 3 4 5 6 7 Remote Parameters: ------------------Remote is disabled Local Parameters : -----------------Local is enabled TC-grp Priority# 0 0,1,2,3,4,5,6,7 1 2 3 4 5 6 7 0% 0% ETS ETS 13% 13% 13% 13% 12% 12% 12% 12% ETS ETS ETS ETS ETS ETS ETS ETS Bandwidth 100% 0% 0% 0% 0% 0% 0% 0% TSA ETS ETS ETS ETS ETS ETS ETS ETS Priority# Bandwidth 0 13% 1 13% 2 13% 3 13% 4 12% 5 12% 6 12% 7 12% Oper status is init Conf TLV Tx Status is disabled Traffic Class TLV Tx Status is dis
Field Description Remote Parameters ETS configuration on remote peer port, including Admin mode (enabled if a valid TLV was received or disabled), priority groups, assigned dot1p priorities, and bandwidth allocation. If the ETS Admin mode is enabled on the remote port for DCBx exchange, the Willing bit received in ETS TLVs from the remote peer is included.
Link Delay 45556 pause quantum 0 Pause Tx pkts, 0 Pause Rx pkts The following example shows the show stack-unit all stack-ports all ets details command.
DCBx Operational Status is Enabled Is Configuration Source? FALSE Local DCBx Compatibility mode is IEEEv2.5 Local DCBx Configured mode is IEEEv2.5 Peer Operating version is IEEEv2.
Table 20. show interface DCBx detail Command Description Field Description Interface Interface type with chassis slot and port number. Port-Role Configured DCBx port role: auto-upstream, autodownstream, config-source, or manual. DCBx Operational Status Operational status (enabled or disabled) used to elect a configuration source and internally propagate a DCB configuration. The DCBx operational status is the combination of PFC and ETS operational status.
Field Description Total DCBx Frames received Number of DCBx frames received from remote peer port. Total DCBx Frame errors Number of DCBx frames with errors received. Total DCBx Frames unrecognized Number of unrecognizable DCBx frames received. QoS dot1p Traffic Classification and Queue Assignment The following section describes QoS dot1P traffic classification and assignments.
Configuring the Dynamic Buffer Method Priority-based flow control using dynamic buffer spaces is supported on the platform. To configure the dynamic buffer capability, perform the following steps: 1. Enable the DCB application. By default, DCB is enabled and link-level flow control is disabled on all interfaces. CONFIGURATION mode dcb enable 2. Configure the shared PFC buffer size and the total buffer size. A maximum of 4 lossless queues are supported.
INTERFACE mode (conf-if-te) dcb-policy buffer-threshold buffer-threshold Sample DCB Configuration The following shows examples of using PFC and ETS to manage your data center traffic. In the following example: • • • Incoming SAN traffic is configured for priority-based flow control. Outbound LAN, IPC, and SAN traffic is mapped into three ETS priority groups and configured for enhanced traffic selection (bandwidth allocation and scheduling). One lossless queue is used. Figure 30.
QoS Traffic Classification: The service-class dynamic dot1p command has been used in Global Configuration mode to map ingress dot1p frames to the queues shown in the following table. For more information, refer to QoS dot1p Traffic Classification and Queue Assignment.
Dynamic Host Configuration Protocol (DHCP) 12 DHCP is an application layer protocol that dynamically assigns IP addresses and other configuration parameters to network end-stations (hosts) based on configuration policies determined by network administrators.
The following table lists common DHCP options. Option Number and Description Subnet Mask Option 1 Specifies the client’s subnet mask. Router Option 3 Specifies the router IP addresses that may serve as the client’s default gateway. Domain Name Server Option 6 Domain Name Option 15 Specifies the domain name servers (DNSs) that are available to the client. Specifies the domain name that clients should use when resolving hostnames via DNS.
Option Number and Description Vendor Class Identifer Option 60 L2 DHCP Snooping Option 82 User Port Stacking Option 230 Identifiers a user-defined string used by the Relay Agent to forward DHCP client packets to a specific server. Specifies IP addresses for DHCP messages received from the client that are to be monitored to build a DHCP snooping database. Set the stacking option variable to provide DHCP server stack-port detail when the DHCP offer is set.
DHCPNAK A server sends this message to the client if it is not able to fulfill a DHCPREQUEST; for example, if the requested address is already in use. In this case, the client starts the configuration process over by sending a DHCPDISCOVER. Figure 32. Client and Server Messaging Implementation Information The following describes DHCP implementation. • Dell Networking implements DHCP based on RFC 2131 and RFC 3046.
Configure the System to be a DHCP Server A DHCP server is a network device that has been programmed to provide network configuration parameters to clients upon request. Servers typically serve many clients, making host management much more organized and efficient. The following table lists the key responsibilities of DHCP servers. Table 21. DHCP Server Responsibilities DHCP Server Responsibility Description Address Storage and Management DHCP servers are the owners of the addresses used by DHCP clients.
pool name 3. Specify the range of IP addresses from which the DHCP server may assign addresses. DHCP mode network network/prefix-length • network: the subnet address. • prefix-length: specifies the number of bits used for the network portion of the address you specify. The prefix-length range is from 17 to 31. 4. Display the current pool configuration. DHCP mode show config After an IP address is leased to a client, only that client may release the address.
Specifying an Address Lease Time To specify an address lease time, use the following command. • Specify an address lease time for the addresses in a pool. DHCP lease {days [hours] [minutes] | infinite} The default is 24 hours. Specifying a Default Gateway The IP address of the default router should be on the same subnet as the client. To specify a default gateway, follow this step. • Specify default gateway(s) for the clients on the subnet, in order of preference.
netbios-name-server address 2. Specify the NetBIOS node type for a Microsoft DHCP client. Dell Networking recommends specifying clients as hybrid. DHCP mode netbios-node-type type Creating Manual Binding Entries An address binding is a mapping between the IP address and the media access control (MAC) address of a client. The DHCP server assigns the client an available IP address automatically, and then creates an entry in the binding table.
• Clear DHCP binding entries for the entire binding table. EXEC Privilege mode. • clear ip dhcp binding Clear a DHCP binding entry for an individual IP address. EXEC Privilege mode. clear ip dhcp binding ip address Configure the System to be a DHCP Client A DHCP client is a network device that requests an IP address and configuration parameters from a DHCP server. Implement the DHCP client functionality as follows: • The switch can obtain a dynamically assigned IP address from a DHCP server.
and save the dynamically acquired IP address, use the shutdown command on the interface. To display the dynamic IP address and show DHCP as the mode of IP address assignment, use the show interface type slot/port[/subport] command. To unconfigure the IP address, use the no shutdown command when the lease timer for the dynamic IP address is expired. The interface acquires a new dynamic IP address from the DHCP server.
3. Manually acquire a new IP address from the DHCP server by releasing a dynamically acquired IP address while retaining the DHCP client configuration on the interface. EXEC Privilege mode release dhcp interface type slot/port[/subport] 4. Acquire a new IP address with renewed lease time from a DHCP server. EXEC Privilege mode renew dhcp interface type slot/port[/subport] To display DHCP client information, use the following show commands in EXEC Privilege mode.
DHCP Client Operation with Other Features The DHCP client operates with other Dell Networking OS features, as the following describes. Stacking The DHCP client daemon runs only on the master unit and handles all DHCP packet transactions. It periodically synchronizes the lease file with the standby unit. When a stack failover occurs, the new master requires the same DHCP server-assigned IP address on DHCP client interfaces.
Configure the System for User Port Stacking (Option 230) Set the stacking-option variable to provide stack-port detail on the DHCP server when you set the DHCP offer. A stack can be formed when the units are connected. Option 230 is the option for user port stacking. Use it to create up to eight stack groups. Define the configuration parameters on the DHCP server for each chassis based on the chassis MAC address.
The server echoes the option back to the relay agent in its response, and the relay agent can use the information in the option to forward a reply out the interface on which the request was received rather than flooding it on the entire VLAN. The relay agent strips Option 82 from DHCP responses before forwarding them to the client. To insert Option 82 into DHCP packets, follow this step. • Insert Option 82 into DHCP packets.
decrease in size. After the table usage falls below the maximum limit of 4000 entries, new IP address assignments are allowed. NOTE: DHCP server packets are dropped on all not trusted interfaces of a system configured for DHCP snooping. To prevent these packets from being dropped, configure ip dhcp snooping trust on the server-connected port. Enabling DHCP Snooping To enable DHCP snooping, use the following commands. 1. Enable DHCP snooping globally. CONFIGURATION mode ip dhcp snooping 2.
Adding a Static IPV6 DHCP Snooping Binding Table To add a static entry in the snooping database, use the following command. • Add a static entry in the snooping binding table. EXEC Privilege mode ipv6 dhcp snooping binding mac address vlan-id vlan-id ipv6 ipv6-address interface interface-type | interface-number lease value Clearing the Binding Table To clear the binding table, use the following command. • Delete all of the entries in the binding table.
Relay Trust downstream packets Snooping packets : 0 : 0 Packets received on snooping disabled L3 Ports Snooping packets processed on L2 vlans : 0 : 142 DHCP Binding File Details Invalid File Invalid Binding Entry Binding Entry lease expired List of Trust Ports List of DHCP Snooping Enabled Vlans List of DAI Trust ports : 0 : 0 : 0 :Te 1/4/1 :Vl 10 :Te 1/4/1 Displaying the Contents of the DHCPv6 Binding Table To display the contents of the DHCP IPv6 binding table, use the following command.
Drop DHCP Packets on Snooped VLANs Only Binding table entries are deleted when a lease expires or the relay agent encounters a DHCPRELEASE. Line cards maintain a list of snooped VLANs. When the binding table fills, DHCP packets are dropped only on snooped VLANs, while such packets are forwarded across non-snooped VLANs. Because DHCP packets are dropped, no new IP address assignments are made. However, DHCP release and decline packets are allowed so that the DHCP snooping table can decrease in size.
MAC flooding An attacker can send fraudulent ARP messages to the gateway until the ARP cache is exhausted, after which, traffic from the gateway is broadcast. Denial of service An attacker can send a fraudulent ARP messages to a client to associate a false MAC address with the gateway address, which would blackhole all internet-bound packets from the client. NOTE: Dynamic ARP inspection (DAI) uses entries in the L2SysFlow CAM region, a sub-region of SystemFlow.
To see how many valid and invalid ARP packets have been processed, use the show arp inspection statistics command. Dell#show arp inspection statistics Dynamic ARP Inspection (DAI) Statistics --------------------------------------Valid ARP Requests : 0 Valid ARP Replies : 1000 Invalid ARP Requests : 1000 Invalid ARP Replies : 0 Dell# Bypassing the ARP Inspection You can configure a port to skip ARP inspection by defining the interface as trusted, which is useful in multi-switch environments.
Enabling IP Source Address Validation IP source address validation (SAV) prevents IP spoofing by forwarding only IP packets that have been validated against the DHCP binding table. A spoofed IP packet is one in which the IP source address is strategically chosen to disguise the attacker. For example, using ARP spoofing, an attacker can assume a legitimate client’s identity and receive traffic addressed to it. Then the attacker can spoof the client’s IP address to interact with other clients.
Enabling IP+MAC Source Address Validation IP source address validation (SAV) validates the IP source address of an incoming packet and optionally the VLAN ID of the client against the DHCP snooping binding table. IP+MAC SAV ensures that the IP source address and MAC source address are a legitimate pair, rather than validating each attribute individually. You cannot configure IP+MAC SAV with IP SAV. 1. Allocate at least one FP block to the ipmacacl CAM region. CONFIGURATION mode cam-acl l2acl 2.
The following output of the show ip dhcp snooping source-address-validation discardcounters interface interface command displays the number of SAV dropped packets on a particular interface.
Equal Cost Multi-Path (ECMP) 13 This chapter describes configuring ECMP. ECMP for Flow-Based Affinity Flow-based affinity includes the following: • Link Bundle Monitoring Configuring the Hash Algorithm TeraScale has one algorithm that is used for link aggregation groups (LAGs), ECMP, and NH-ECMP, and ExaScale can use three different algorithms for each of these features. To adjust the ExaScale behavior to match TeraScale, use the following command.
• Enable IPv6 Deterministic ECMP next hop. CONFIGURATION mode. ipv6 ecmp-deterministic Configuring the Hash Algorithm Seed Deterministic ECMP sorts ECMPs in order even though RTM provides them in a random order. However, the hash algorithm uses as a seed the lower 12 bits of the chassis MAC, which yields a different hash result for every chassis. This behavior means that for a given flow, even though the prefixes are sorted, two unrelated chassis can select different hops.
Enable link bundle monitoring using the ecmp-group command. NOTE: An ecmp-group index is generated automatically for each unique ecmp-group when you configure multipath routes to the same network. The system can generate a maximum of 512 unique ecmp-groups. The ecmp-group indexes are generated in even numbers (0, 2, 4, 6... 1022) and are for information only. For link bundle monitoring with ECMP, to enable the link bundle monitoring feature, use the ecmpgroup command.
Creating an ECMP Group Bundle Within each ECMP group, you can specify an interface. If you enable monitoring for the ECMP group, utilization calculation performs when the average utilization of the link-bundle (as opposed to a single link within the bundle) exceeds 60%. 1. Create a user-defined ECMP group bundle. CONFIGURATION mode ecmp-group ecmp-group-id The range is from 1 to 64. 2. Add interfaces to the ECMP group bundle.
Viewing an ECMP Group NOTE: An ecmp-group index generates automatically for each unique ecmp-group when you configure multipath routes to the same network. The system can generate a maximum of 512 unique ecmp-groups. The ecmp-group indices are generated in even numbers (0, 2, 4, 6... 1022) and are for information only. You can configure ecmp-group with id 2 for link bundle monitoring.
The output of show IPv6 cam command has been enhanced to include the ECMP field in the Neighbor table of Ipv6 CAM. The sample output is displayed as follows, which is similar to the prefix table. The following is the portion of the example output: Neighbor Port VId -----------------------------------------------[ 132] 20::1 1/4 0 Mac-Addr ----------------00:00:20:d5:ec:a0 Fo The following is the portion of the example output from Release 9.3(0.
FCoE Transit 14 The Fibre Channel over Ethernet (FCoE) Transit feature is supported on Ethernet interfaces. When you enable the switch for FCoE transit, the switch functions as a FIP snooping bridge. NOTE: FIP snooping is not supported on Fibre Channel interfaces or in a Fibre Channel over Ethernet FCoE provides a converged Ethernet network that allows the combination of storage-area network (SAN) and LAN traffic on a Layer 2 link by encapsulating Fibre Channel data into Ethernet frames.
• Allow transit Ethernet bridges to efficiently monitor FIP frames passing between FCoE end-devices and an FCF. To dynamically configure ACLs on the bridge to only permit traffic authorized by the FCF, use the FIP snooping data. FIP enables FCoE devices to discover one another, initialize and maintain virtual links over an Ethernet network, and access storage devices in a storage area network (SAN).
Figure 33. FIP Discovery and Login Between an ENode and an FCF FIP Snooping on Ethernet Bridges In a converged Ethernet network, intermediate Ethernet bridges can snoop on FIP packets during the login process on an FCF. Then, using ACLs, a transit bridge can permit only authorized FCoE traffic to be transmitted between an FCoE end-device and an FCF. An Ethernet bridge that provides these functions is called a FIP snooping bridge (FSB).
FCoEgenerated ACLs These take precedence over user-configured ACLs. A user-configured ACL entry cannot deny FCoE and FIP snooping frames. The following illustration shows a switch used as a FIP snooping bridge in a converged Ethernet network. The top-of-rack (ToR) switch operates as an FCF for FCoE traffic. The switch operates as a lossless FIP snooping bridge to transparently forward FCoE frames between the ENode servers and the FCF switch. Figure 34.
• Perform FIP snooping (allowing and parsing FIP frames) globally on all VLANs or on a per-VLAN basis. • To assign a MAC address to an FCoE end-device (server ENode or storage device) after a server successfully logs in, set the FCoE MAC address prefix (FC-MAP) value an FCF uses. The FC-MAP value is used in the ACLs installed in bridge-to-bridge links on the switch.
For VLAN membership, you must: • create the VLANs on the switch which handles FCoE traffic (use the interface vlan command). • configure each FIP snooping port to operate in Hybrid mode so that it accepts both tagged and untagged VLAN frames (use the portmode hybrid command). • configure tagged VLAN membership on each FIP snooping port that sends and receives FCoE traffic and has links with an FCF, ENode server, or another FIP snooping bridge (use the tagged port-type slot/port command).
iscsiOptAcl : ipv4pbr : vrfv4Acl : Openflow : fedgovacl : nlbclusteracl: 0 0 0 0 0 0 st-sjc-s5000-29# Enabling the FCoE Transit Feature The following sections describe how to enable FCoE transit. NOTE: FCoE transit is disabled by default. To enable this feature, you must follow the Configure FIP Snooping. As soon as you enable the FCoE transit feature on a switch-bridge, existing VLAN-specific and FIP snooping configurations are applied.
Configure a Port for a Bridge-to-Bridge Link If a switch port is connected to another FIP snooping bridge, configure the FCoE-Trusted Port mode for bridge-bridge links. Initially, all FCoE traffic is blocked. Only FIP frames with the ALL_FCF_MAC and ALL_ENODE_MAC values in their headers are allowed to pass. After the switch learns the MAC address of a connected FCF, it allows FIP frames destined to or received from the FCF MAC address.
FIP Snooping Restrictions The following restrictions apply when you configure FIP snooping. • The maximum number of FCoE VLANs supported on the switch is eight. • The maximum number of FIP snooping sessions supported per ENode server is 32. To increase the maximum number of sessions to 64, use the fip-snooping max-sessions-per-enodemac command. • The maximum number of FCFs supported per FIP snooping-enabled VLAN is twelve.
NOTE: To disable the FCoE transit feature or FIP snooping on VLANs, use the no version of a command; for example, no feature fip-snooping or no fip-snooping enable. Displaying FIP Snooping Information Use the following show commands to display information on FIP snooping, . Table 25.
Examples of the show fip-snooping Commands The following example shows the show fip-snooping sessions command.
The following table describes the show fip-snooping enode command fields. Table 27. show fip-snooping enode Command Description Field Description ENode MAC MAC address of the ENode. ENode Interface Slot/port number of the interface connected to the ENode. FCF MAC MAC address of the FCF. VLAN VLAN ID number used by the session. FC-ID Fibre Channel session ID assigned by the FCF. The following example shows the show fip-snooping fcf command.
Number of Unicast Discovery Advertisement Number of FLOGI Accepts Number of FLOGI Rejects Number of FDISC Accepts Number of FDISC Rejects Number of FLOGO Accepts Number of FLOGO Rejects Number of CVL Number of FCF Discovery Timeouts Number of VN Port Session Timeouts Number of Session failures due to Hardware Config Dell(conf)# :2 :2 :0 :16 :0 :0 :0 :0 :0 :0 :0 Dell# show fip-snooping statistics int tengigabitethernet 1/11/1 Number of Vlan Requests :1 Number of Vlan Notifications :0 Number of Multicast Di
Table 29. show fip-snooping statistics Command Descriptions Field Description Number of VLAN Requests Number of FIP-snooped VLAN request frames received on the interface. Number of VLAN Notifications Number of FIP-snooped VLAN notification frames received on the interface. Number of Multicast Discovery Solicits Number of FIP-snooped multicast discovery solicit frames received on the interface.
Field Description Number of VN Port Session Timeouts Number of VN port session timeouts that occurred on the interface. Number of Session failures due to Hardware Config Number of session failures due to hardware configuration that occurred on the interface. The following example shows the show fip-snooping system command.
FCoE Transit Configuration Example The following illustration shows a switch used as a FIP snooping bridge for FCoE traffic between an ENode (server blade) and an FCF (ToR switch). The ToR switch operates as an FCF and FCoE gateway. Figure 35. Configuration Example: FIP Snooping on a Switch In this example, DCBx and PFC are enabled on the FIP snooping bridge and on the FCF ToR switch.
Example of Enabling an FC-MAP Value on a VLAN Dell(conf-if-vl-10)# fip-snooping fc-map 0xOEFC01 NOTE: Configuring an FC-MAP value is only required if you do not use the default FC-MAP value (0x0EFC00).
Flex Hash and Optimized Boot-Up 15 This chapter describes the Flex Hash and fast-boot enhancements. Flex Hash Capability Overview This functionality is supported on the platform. The flex hash functionality enables you to configure a packet search key and matches packets based on the search key. When a packet matches the search key, two 16-bit hash fields are extracted from the start of the L4 header and provided as inputs (bins 2 and 3) for RTAG7 hash computation.
CONFIGURATION mode S6000-109-FTOS(conf)# load-balance ingress-port enable When load balancing RRoCE packets using flex hash is enabled, the show ip flow command is disabled. Similarly, when the show ip flow command is in use (ingress port-based load balancing is disabled), the hashing of RRoCE packets is disabled. Flex hash APIs do not mask out unwanted byte values after extraction of the data from the Layer 4 headers for the offset value. 2.
this optimization method while booting the device. By reducing the duration of traffic loss, the subscriber sessions are processed and preserved in an effective and seamless way. You can configure this capability on an S6000 switch that is deployed as a top-of-rack (ToR) switch. The ToR switch is the single point of connection to the network for servers in that rack.
7. BGP graceful restart must be configured with GR time left to default (120 seconds) or higher. The BGP hold timer should be configured as 10 seconds. 8. You must configure the LACP long timeout, which is the amount of time that a LAG interface waits for a PDU from the remote system before bringing the LACP session down, to be higher than the default value. 9. Traffic from North-South and South-North nodes are of line rate type. 10.
• The system ensures that local routes known to BGP are imported into BGP and advertised to peers as quickly as possible. In this process, any advertisement-interval configuration is not considered (only during the initial period when the peer comes up).
When the system comes up, it is expected that there will be no dynamic ARP or ND database to restore. The system boot up mode will not be fast boot and Unexpected Reload of the System When an unexpected or unplanned reload occurs, such as a reset caused by the software, the system performs the regular boot sequence even if it is configured for fast boot. When the system comes up, dynamic ARP or ND database entries are not present or required to be restored.
only if the system comes up through a fast boot reload. The BGP route selection algorithm only selects one best path to each destination and delays installation of additional ECMP paths until a minimum of 30 seconds has elapsed from the time the first BGP peer is established. Once this time has elapsed, all routes in the BGP RIB are processed for additional paths.
A normal Layer 3 physical interface processes only untagged packets and makes routing decisions based on the default Layer 3 VLAN ID (4095). To enable routing of RRoCE packets, the VLAN ID is mapped to the default VLAN ID of 4095 using VLAN translation. After the VLAN translation, the RRoCE packets are processed in the same way as normal IP packets that a Layer 3 interface receives and routes in the egress direction.
16 Force10 Resilient Ring Protocol (FRRP) FRRP provides fast network convergence to Layer 2 switches interconnected in a ring topology, such as a metropolitan area network (MAN) or large campuses. FRRP is similar to what can be achieved with the spanning tree protocol (STP), though even with optimizations, STP can take up to 50 seconds to converge (depending on the size of network and node of failure) may require 4 to 5 seconds to reconverge.
A virtual LAN (VLAN) is configured on all node ports in the ring. All ring ports must be members of the Member VLAN and the Control VLAN. The Member VLAN is the VLAN used to transmit data as described earlier. The Control VLAN is used to perform the health checks on the ring. The Control VLAN can always pass through all ports in the ring, including the secondary port of the Master node.
unblocks the previously blocked ring ports on the newly restored port. Then the Transit node returns to the Normal state. Multiple FRRP Rings Up to 255 rings are allowed per system and multiple rings can be run on one system. More than the recommended number of rings may cause interface instability. You can configure multiple rings with a single switch connection; a single ring can have multiple FRRP groups; multiple rings can be connected with a common link.
Important FRRP Concepts The following table lists some important FRRP concepts. Concept Explanation Ring ID Each ring has a unique 8-bit ring ID through which the ring is identified (for example, FRRP 101 and FRRP 202, as shown in the illustration in Member VLAN Spanning Two Rings Connected by One Switch. Control VLAN Each ring has a unique Control VLAN through which tagged ring health frames (RHF) are sent. Control VLANs are used only for sending RHF, and cannot be used for any other purpose.
Concept Explanation Ring Health-Check The Master node generates two types of RHFs. RHFs never loop the ring because Frame (RHF) they terminate at the Master node’s secondary port. • Hello RHF (HRHF) — These frames are processed only on the Master node’s Secondary port. The Transit nodes pass the HRHF through without processing it. An HRHF is sent at every Hello interval. • Topology Change RHF (TCRHF) — These frames contains ring status, keepalive, and the control and member VLAN hash.
• Viewing the FRRP Information Creating the FRRP Group Create the FRRP group on each switch in the ring. To create the FRRP group, use the command. • Create the FRRP group with this Ring ID. CONFIGURATION mode protocol frrp ring-id Ring ID: the range is from 1 to 255. Configuring the Control VLAN Control and member VLANS are configured normally for Layer 2. Their status as control or member is determined at the FRRP group commands.
Slot/Port/subport, Range: Slot and Port ID for the interface. Range is entered Slot/Port/ subport-Slot/Port/subport. 3. Assign the Primary and Secondary ports and the control VLAN for the ports on the ring. CONFIG-FRRP mode. interface primary interface slot/port/subport secondary int slot/port/ subport control-vlan vlan id Interface: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/ subport information.
interface vlan vlan-id VLAN ID: the range is from 1 to 4094. 2. Tag the specified interface or range of interfaces to this VLAN. CONFIG-INT-VLAN mode. tagged interface slot/port/subport {range} Interface: • Slot/Port/subport: Slot and Port ID for the interface. Range is entered Slot/Port/subport-Slot/ Port/subport. • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/ subport information. • 3.
Setting the FRRP Timers To set the FRRP timers, use the following command. NOTE: Set the Dead-Interval time 3 times the Hello-Interval. • Enter the desired intervals for Hello-Interval or Dead-Interval times. CONFIG-FRRP mode. timer {hello-interval|dead-interval} milliseconds – Hello-Interval: the range is from 50 to 2000, in increments of 50 (default is 500). – Dead-Interval: the range is from 50 to 6000, in increments of 50 (default is 1500).
• Show the state of all FRRP groups. EXEC or EXEC PRIVELEGED mode. show frrp summary Ring ID: the range is from 1 to 255. Troubleshooting FRRP To troubleshoot FRRP, use the following information. Configuration Checks • • • • • • Each Control Ring must use a unique VLAN ID. Only two interfaces on a switch can be Members of the same control VLAN. There can be only one Master node for any FRRP group. You can configure FRRP on Layer 2 interfaces only.
mode master no disable Example of R2 TRANSIT interface TenGigabitEthernet 2/14/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 2/31/1 no ip address switchport no shutdown ! interface Vlan 101 no ip address tagged TenGigabitEthernet 2/14/1,31/1 no shutdown ! interface Vlan 201 no ip address tagged TenGigabitEthernet 2/14/1,31/1 no shutdown ! protocol frrp 101 interface primary TenGigabitEthernet 2/14/1 secondary TenGigabitEthernet 2/31/1 control-vlan 101 member-vlan 201 mode transit no
17 GARP VLAN Registration Protocol (GVRP) GARP VLAN registration protocol (GVRP) is supported on Dell Networking OS. Typical virtual local area network (VLAN) implementation involves manually configuring each Layer 2 switch that participates in a given VLAN. GVRP, defined by the IEEE 802.1q specification, is a Layer 2 network protocol that provides for automatic VLAN configuration of switches. GVRP-compliant switches use GARP to register and de-register attribute values, such as VLAN IDs, with each other.
Configure GVRP To begin, enable GVRP. To facilitate GVRP communications, enable GVRP globally on each switch. Then, GVRP configuration is per interface on a switch-by-switch basis. Enable GVRP on each port that connects to a switch where you want GVRP information exchanged. In the following example, that type of port is referred to as a VLAN trunk port, but it is not necessary to specifically identify to the Dell Networking OS that the port is a trunk port. Figure 36.
Related Configuration Tasks • Configure GVRP Registration • Configure a GARP Timer Enabling GVRP Globally To configure GVRP globally, use the following command. • Enable GVRP for the entire switch. CONFIGURATION mode gvrp enable Example of Configuring GVRP Dell(conf)#protocol gvrp Dell(config-gvrp)#no disable Dell(config-gvrp)#show config ! protocol gvrp no disable Dell(config-gvrp)# To inspect the global configuration, use the show gvrp brief command.
Configure GVRP Registration Configure GVRP registration. There are two GVRP registration modes: • • Fixed Registration Mode — figuring a port in fixed registration mode allows for manual creation and registration of VLANs, prevents VLAN deregistration, and registers all VLANs known on other ports on the port. For example, if an interface is statically configured via the CLI to belong to a VLAN, it should not be unconfigured when it receives a Leave PDU.
Example of the garp timer Command Dell(conf)#garp timer leav 1000 Dell(conf)#garp timers leave-all 5000 Dell(conf)#garp timer join 300 Verification: Dell(conf)#do show garp timer GARP Timers Value (milliseconds) ---------------------------------------Join Timer 300 Leave Timer 1000 LeaveAll Timer 5000 Dell(conf)# Dell Networking OS displays this message if an attempt is made to configure an invalid GARP timer: Dell(conf)#garp timers join 300 % Error: Leave timer should be >= 3*Join timer.
Internet Group Management Protocol (IGMP) 18 Internet group management protocol (IGMP) is supported on Dell Networking OS. Multicast is premised on identifying many hosts by a single destination IP address; hosts represented by the same IP address are a multicast group. IGMP is a Layer 3 multicast protocol that hosts use to join or leave a multicast group.
an IGMP message to its IGMP Querier. The querier is the router that surveys a subnet for multicast receivers and processes survey responses to populate the multicast routing table. IGMP messages are encapsulated in IP packets, as shown in the following illustration. Figure 37. IGMP Messages in IP Packets Join a Multicast Group There are two ways that a host may join a multicast group: it may respond to a general query from its querier or it may send an unsolicited report to its querier.
2. The querier sends a Group-Specific Query to determine whether there are any remaining hosts in the group. There must be at least one receiver in a group on a subnet for a router to forward multicast traffic for that group to the subnet. 3. Any remaining hosts respond to the query according to the delay timer mechanism (refer to Adjusting Query and Response Timers). If no hosts respond (because there are none remaining in the group), the querier waits a specified period and sends another query.
Figure 39. IGMP Version 3–Capable Multicast Routers Address Structure Joining and Filtering Groups and Sources The following illustration shows how multicast routers maintain the group and source information from unsolicited reports. 1. The first unsolicited report from the host indicates that it wants to receive traffic for group 224.1.1.1. 2. The host’s second report indicates that it is only interested in traffic from group 224.1.1.1, source 10.11.1.1.
Figure 40. Membership Reports: Joining and Filtering Leaving and Staying in Groups The following illustration shows how multicast routers track and refresh state changes in response to group-and-specific and general queries. 1. Host 1 sends a message indicating it is leaving group 224.1.1.1 and that the included filter for 10.11.1.1 and 10.11.1.2 are no longer necessary. 2.
Figure 41. Membership Queries: Leaving and Staying Configure IGMP Configuring IGMP is a two-step process. 1. Enable multicast routing using the ip multicast-routing command. 2. Enable a multicast routing protocol.
• Fast Convergence after MSTP Topology Changes • Designating a Multicast Router Interface Viewing IGMP Enabled Interfaces Interfaces that are enabled with PIM-SM are automatically enabled with IGMP. To view IGMP-enabled interfaces, use the following command. • View IGMP-enabled interfaces. EXEC Privilege mode show ip igmp interface Example of the show ip igmp interface Command Dell#show ip igmp interface TenGigabitEthernet 3/10/1 Inbound IGMP access group is not set Internet address is 165.87.34.
IGMP IGMP IGMP IGMP IGMP last member query response interval is 1000 ms immediate-leave is disabled activity: 0 joins, 0 leaves, 0 channel joins, 0 channel leaves querying router is 1.1.1.1 (this system) version is 3 Viewing IGMP Groups To view both learned and statically configured IGMP groups, use the following command. • View both learned and statically configured IGMP groups.
membership reports must be sent before the maximum response time expires. Inversely, increasing this value decreases burstiness at the expense of leave latency. When the querier receives a leave message from a host, it sends a group-specific query to the subnet. If no response is received, it sends another. The amount of time that the querier waits to receive a response to the initial query before sending a second one is the last member query interval (LMQI).
If you enable IGMP snooping on a VLT unit, IGMP snooping dynamically learned groups and multicast router ports are made to learn on the peer by explicitly tunneling the received IGMP control packets. IGMP Snooping Implementation Information • IGMP snooping on Dell Networking OS uses IP multicast addresses not MAC addresses.
• ip igmp fast-leave View the configuration. INTERFACE VLAN mode show config Example of Configuration Output After Removing a Group-Port Association Dell(conf-if-vl-100)#show config ! interface Vlan 100 no ip address ip igmp snooping fast-leave shutdown Dell(conf-if-vl-100)# Disabling Multicast Flooding If the switch receives a multicast packet that has an IP address of a group it has not learned (unregistered frame), the switch floods that packet out of all ports on the VLAN.
• Configure the switch to be the querier for a VLAN by first assigning an IP address to the VLAN interface. INTERFACE VLAN mode ip igmp snooping querier IGMP snooping querier does not start if there is a statically configured multicast router interface in the VLAN. The switch may lose the querier election if it does not have the lowest IP address of all potential queriers on the subnet.
The management EIS feature is applicable only for the out-of-band (OOB) management port. References in this section to the management default route or static route denote the routes configured using the management route command. The management default route can be either configured statically or returned dynamically by the DHCP client. A static route points to the management interface or a forwarding router.
Application Name Port Number Client Server FTP 20/21 Supported Supported Syslog 514 Supported Telnet 23 Supported TFTP 69 Supported Radius 1812,1813 Supported Tacacs 49 Supported HTTP 80 for httpd Supported Supported 443 for secure httpd 8008 HTTP server port for confd application 8888 secure HTTP server port for confd application If you configure a source interface is for any EIS management application, EIS might not coexist with that interface and the behavior is undefined in su
• Applications can be configured or unconfigured as management applications using the application or no application command. All configured applications are considered as management applications and the rest of them as non-management applications. • All the management routes (connected, static and default) are duplicated and added to the management EIS routing table. • Any new management route added is installed to both the EIS routing table and default routing table.
• In the netstat output, the prefix “mgmt” is added to routes in the EIS table so that the user can distinguish between routes in the EIS Routing table and default routing table. • If the management port IP address is removed, the corresponding connected route is removed from both the EIS routing table and default routing table. • If a management route is deleted, then the route is removed from both the EIS routing table and default routing table.
Handling of Switch-Destined Traffic • The switch processes all traffic received on the management port destined to the management port IP address or the front-end port destined to the front-end IP address. • If the source TCP/UDP port number matches a configured EIS or non-EIS management application and the source IP address is a management Port IP address, then the EIS route lookup is done for the response traffic and hence is sent out of the management port.
Mapping of Management Applications and Traffic Type The following table summarizes the behavior of applications for various types of traffic when the management egress interface selection feature is enabled. Table 31. Mapping of Management Applications and Traffic Type Traffic type / Application type Switch initiated traffic Switch-destined traffic Transit Traffic EIS Management Application Management is the preferred egress port selected based on route lookup in EIS table.
This phenomenon occurs where traffic is originating from the switch. 1. Management Applications (Applications that are configured as management applications): The management port is an egress port for management applications. If the management port is down or the destination is not reachable through the management port (next hop ARP is not resolved, and so on), and if the destination is reachable through a data port, then the management application traffic is sent out through the front-end data port.
Protocol Behavior when EIS is Enabled Behavior when EIS is Disabled telnet EIS Behavior Default Behavior tftp EIS Behavior Default Behavior icmp (ping and traceroute) EIS Behavior for ICMP Default Behavior Behavior of Various Applications for Switch-Destined Traffic This section describes the different system behaviors that occur when traffic is terminated on the switch. Traffic has not originated from the switch and is not transiting the switch.
Interworking of EIS With Various Applications Stacking • The management EIS is enabled on the master and the standby unit. • Because traffic can be initiated from the Master unit only, the preference to management EIS table for switch-initiated traffic and all its related ARP processing is done in the Master unit only. • ARP-related processing for switch-destined traffic is done by both master and standby units. VLT VLT feature is for the front-end port only.
Interfaces 19 This chapter describes interface types, both physical and logical, and how to configure them with Dell Networking Operating System (OS). • 10 Gigabit Ethernet / 40 Gigabit Ethernet interfaces are supported on the S6000–ON platform.
Interface Types The following table describes different interface types.
NOTE: The CLI output may be incorrectly displayed as 0 (zero) for the Rx/Tx power values. To obtain the correct power information, perform a simple network management protocol (SNMP) query. Examples of the show Commands The following example shows the configuration and status information for one interface.
To view only configured interfaces, use the show interfaces configured command in the EXEC Privilege mode. In the previous example, TenGigabitEthernet interface 1/6/1 is in Layer 3 mode because an IP address has been assigned to it and the interface’s status is operationally up. To determine which physical interfaces are available, use the show running-config command in EXEC mode. This command displays all physical interfaces available on the line cards. Dell#show running Current Configuration ...
Physical Interfaces The Management Ethernet interface is a single RJ-45 Fast Ethernet port on each unit of the S6000–ON The interface provides dedicated management access to the system. Stack—unit interfaces support Layer 2 and Layer 3 traffic over the 10/100/1000 and 10-Gigabit Ethernet interfaces. Synchronous optical network technologies interfaces with point-to-point protocol (PPP) encapsulation support Layer 3 traffic.
0 Yes 91 QSFP 4x1000BASE-T US0XJYD04162059 show interface transceiver QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP QSFP 0 0 0 0 0 0 0 0 0 0 0 0 Serial ID Base Fields Id Ext Id Connector Transceiver Code Encoding Length(SFM) Km Length(OM3) 2m Length(OM2) 1m Length(OM1) 1m Length(Copper) 1m Vendor Rev = = = = = = = = = = = 0x0d 0x00 0x0c 0x04 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x05 0x00 0x32 0x00 0x00 0x00 0 Overview of Layer Modes On all systems running Dell Networking OS, you can place p
Example of a Basic Layer 2 Interface Configuration Dell(conf-if)#show config ! interface Port-channel 1 no ip address switchport no shutdown Dell(conf-if)# Configuring Layer 2 (Interface) Mode To configure an interface in Layer 2 mode, use the following commands. • Enable the interface. INTERFACE mode • no shutdown Place the interface in Layer 2 (switching) mode. INTERFACE mode switchport To view the interfaces in Layer 2 mode, use the show interfaces switchport command in EXEC mode.
switchport no shutdown Dell(conf-if)#ip address 10.10.1.1 /24 % Error: Port is in Layer 2 mode Te 1/2/1. Dell(conf-if)# To determine the configuration of an interface, use the show config command in INTERFACE mode or the various show interface commands in EXEC mode. Configuring Layer 3 (Interface) Mode To assign an IP address, use the following commands. • Enable the interface. INTERFACE mode • no shutdown Configure a primary IP address and mask on the interface.
attacks on front-end ports. The following protocols support EIS: DNS, FTP, NTP, RADIUS, sFlow, SNMP, SSH, Syslog, TACACS, Telnet, and TFTP. This feature does not support sFlow on stacked units. When you enable this feature, all management routes (connected, static, and default) are copied to the management EIS routing table. Use the management route command to add new management routes to the default and EIS routing tables. Use the show ip management-eis-route command to view the EIS routes.
To configure a management interface, use the following commands. • Enter the slot and the port (1) to configure a Management interface. CONFIGURATION mode interface managementethernet interface The slot range is 1. • The port range is from 1 to 6. Configure an IP address and mask on a Management interface. INTERFACE mode ip address ip-address mask – ip-address mask: enter an address in dotted-decimal format (A.B.C.D). The mask must be in / prefix format (/x).
O - OSPF, IA - OSPF inter area, N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is 10.11.131.254 to network 0.0.0.0 Destination ----------*S 0.0.0.0/0 C 10.11.130.0/23 Dell# Gateway Dist/Metric Last Change ----------------- ----------via 10.11.131.
! ip ospf hello-interval 15 no shutdown Loopback Interfaces A Loopback interface is a virtual interface in which the software emulates an interface. Packets routed to it are processed locally. Because this interface is not a physical interface, you can configure routing protocols on this interface to provide protocol stability. You can place Loopback interfaces in default Layer 3 mode. To configure, view, or delete a Loopback interface, use the following commands.
• • • • Port Channel Definition and Standards Port Channel Benefits Port Channel Implementation Configuration Tasks for Port Channel Interfaces Port Channel Definition and Standards Link aggregation is defined by IEEE 802.3ad as a method of grouping multiple physical interfaces into a single logical interface—a link aggregation group (LAG) or port channel. A LAG is “a group of links that appear to a MAC client as if they were a single link” according to IEEE 802.3ad.
Port channels can contain a mix of 10, 100, or 1000 Mbps Ethernet interfaces and Gigabit Ethernet interfaces. The interface speed (10, 100, or 1000 Mbps) the port channel uses is determined by the first port channel member that is physically up. Dell Networking OS disables the interfaces that do match the interface speed that the first channel member sets. That first interface may be the first interface that is physically brought up or was physically operating when interfaces were added to the port channel.
• • • • Adding or Removing a Port Channel from a VLAN (optional) Assigning an IP Address to a Port Channel (optional) Deleting or Disabling a Port Channel (optional) Load Balancing Through Port Channels (optional) Creating a Port Channel You can create up to 512 port channels with up to 16 port members per group on the platform. To configure a port channel, use the following commands. 1. Create a port channel. CONFIGURATION mode interface port-channel id-number 2.
When an interface is added to a port channel, Dell Networking OS recalculates the hash algorithm. To add a physical interface to a port, use the following commands. 1. Add the interface to a port channel. INTERFACE PORT-CHANNEL mode channel-member interface The interface variable is the physical interface type and slot/port information. 2. Double check that the interface was added to the port channel.
Dell> When more than one interface is added to a Layer 2-port channel, Dell Networking OS selects one of the active interfaces in the port channel to be the primary port. The primary port replies to flooding and sends protocol data units (PDUs). An asterisk in the show interfaces port-channel brief command indicates the primary port. As soon as a physical interface is added to a port channel, the properties of the port channel determine the properties of the physical interface.
channel-member TenGigabitEthernet 1/8/1 no shutdown Dell(conf-if-po-4)#no chann tengi 1/8/1 Dell(conf-if-po-4)#int port 3 Dell(conf-if-po-3)#channel tengi 1/8/1 Dell(conf-if-po-3)#sho conf ! interface Port-channel 3 no ip address channel-member TenGigabitEthernet 1/8/1 shutdown Dell(conf-if-po-3)# Configuring the Minimum Oper Up Links in a Port Channel You can configure the minimum links in a port channel (LAG) that must be in “oper up” status to consider the port channel to be in “oper up” status.
Dell(conf-if-te-1/1/1)# vlan tagged 2-5,100,4010 Dell#show interfaces switchport te 1/1/1 Codes: U x G i VLT tagged Untagged, T - Tagged Dot1x untagged, X - Dot1x tagged GVRP tagged, M - Trunk, H - VSN tagged Internal untagged, I - Internal tagged, v - VLT untagged, V - Name: TenGigabitEthernet 1/1/1 802.1QTagged: True Vlan membership: Q Vlans T 2-5,100,4010 Dell# Assigning an IP Address to a Port Channel You can assign an IP address to a port channel and use port channels in Layer 3 routing protocols.
Packet based hashing is used to load balance traffic across a port-channel based on the IP Identifier field within the packet. Load balancing uses source and destination packet information to get the greatest advantage of resources by distributing traffic over multiple paths when transferring data to a destination. Dell Networking OS allows you to modify the hashing algorithms used for flows and for fragments.
• Change the default (0) to another algorithm and apply it to ECMP, LAG hashing, or a particular line card. CONFIGURATION mode hash-algorithm | [ecmp{crc16|crc16cc|crc32LSB|crc32MSB|crc-upper|dest-ip |lsb |xor1| xor2| xor4| xor8| xor16}|lag{crc16|crc16cc|crc32LSB|crc32MSB|xor1| xor2|xor4|xor8|xor16}| seed ] • For more information about algorithm choices, refer to the command details in the IP Routing chapter of the Dell Networking OS Command Reference Guide.
Bulk Configuration Bulk configuration allows you to determine if interfaces are present for physical interfaces or configured for logical interfaces. Interface Range An interface range is a set of interfaces to which other commands may be applied and may be created if there is at least one valid interface within the range. Bulk configuration excludes from configuration any non-existing interfaces from an interface range.
Create a Single-Range The following is an example of a single range. Example of the interface range Command (Single Range) Dell(config)# interface range tengigabitethernet 1/1/1 - 1/2/3 Dell(config-if-range-te-1/1/1-1/2/3)# no shutdown Dell(config-if-range-te-1/1/1-1/2/3)# Create a Multiple-Range The following is an example of multiple range.
Commas The following is an example of how to use commas to add different interface types to the range, enabling all TenGigabitEthernet interfaces in the range 5/1/1 to 5/4/4 and both TenGigabitEthernet interfaces 1/1/1 and 1/1/2.
CONFIGURATION mode interface range macro name Example of Using a Macro to Change the Interface Range Configuration Mode The following example shows how to change to the interface-range configuration mode using the interface-range macro named “test.” Dell(config)# interface range macro test Dell(config-if)# Monitoring and Maintaining Interfaces Monitor interface statistics with the monitor interface command.
64B packets: Over 64B packets: Over 127B packets: Over 255B packets: Over 511B packets: Over 1023B packets: Error statistics: Input underruns: Input giants: Input throttles: Input CRC: Input IP checksum: Input overrun: Output underruns: Output throttles: m l T q - 0 0 0 0 0 0 0 0 0 0 0 0 pps pps pps pps pps pps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pps pps pps pps pps pps pps pps 0 0 0 0 0 0 0 0 Change mode Page up Increase refresh interval Quit c - Clear screen a - Page down t - Decrease r
Fanning out 40G Ports Dynamically Splitting QSFP Ports to SFP+ Ports The platform supports splitting a single 40G QSFP port into four 10G SFP+ ports using one of the supported breakout cables (for a list of supported cables, refer to the Installation Guide or the Release Notes). NOTE: You can split the 40G ports to 10G ports and vice —versa without reloading the device. To split a single 40G port into four 10G ports, use the following command. • Split a single 40G port into four 10G ports.
data transfer. As a result, only the first fanned-out port is identified as the active 10 Gigabit port with a speed of 10G or 1G depending on whether you insert an SFP+ or SFP cable respectively. NOTE: Although it is possible to configure the remaining three 10 Gigabit ports, the Link UP event does not occur for these ports leaving the lanes unusable. Dell Networking OS perceives these ports to be in a Link Down state.
For these configurations, the following examples show the command output that the show interfaces tengigbitethernet transceiver, show interfaces tengigbitethernet, and show inventory media commands displays: Dell#show interfaces tengigabitethernet 1/1/1 transceiver SFP+ 1/1 Serial ID Base Fields SFP+ 1/1 Id = 0x0d SFP+ 1/1 Ext Id = 0x00 SFP+ 1/1 Connector = 0x23 SFP+ 1/1 Transceiver Code = 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00 SFP+ 1/1 Encoding = 0x00 ……………… ……………… SFP+ 1/1 Diagnostic Information ========
=================================== SFP 4/1 Temp High Alarm threshold SFP 4/1 Voltage High Alarm threshold SFP 4/1 Bias High Alarm threshold = 0.000C = 0.000V = 0.000mA Link Dampening Interface state changes occur when interfaces are administratively brought up or down or if an interface state changes. Every time an interface changes a state or flaps, routing protocols are notified of the status of the routes that are affected by the change in state.
To view dampening information on all or specific dampened interfaces, use the show interfaces dampening command from EXEC Privilege mode. Dell# show interfaces dampening InterfaceStateFlapsPenaltyHalf-LifeReuseSuppressMax-Sup Te 1/1/1Up005750250020 Te 1/2/1Up21200205001500300 Te 1/3/1Down4850306002000120 To view a dampening summary for the entire system, use the show interfaces dampening summary command from EXEC Privilege mode.
The following table lists the range for each transmission media. Transmission Media MTU Range (in bytes) Ethernet 594-12000 = link MTU 576-9234 = IP MTU Link Bundle Monitoring Monitoring linked LAG bundles allows traffic distribution amounts in a link to be monitored for unfair distribution at any given time. A threshold of 60% is defined as an acceptable amount of traffic on a member link. Links are monitored in 15-second intervals for three consecutive instances.
Restriction: Ethernet Pause Frame flow control is not supported if PFC is enabled on an interface. Control how the system responds to and generates 802.3x pause frames on Ethernet interfaces. The default is rx off tx off. INTERFACE mode. flowcontrol rx [off | on] tx [off | on] Where: rx on: Processes the received flow control frames on this port. rx off: Ignores the received flow control frames on this port.
Configure the MTU Size on an Interface If a packet includes a Layer 2 header, the difference in bytes between the link MTU and IP MTU must be enough to include the Layer 2 header. For example, for VLAN packets, if the IP MTU is 1400, the Link MTU must be no less than 1422: 1400-byte IP MTU + 22-byte VLAN Tag = 1422-byte link MTU The MTU range is from 592 to 12000, with a default of 1500. IP MTU automatically configures.
Port-Pipes A port pipe is a Dell Networking-specific term for the hardware path that packets follow through a system. Port pipes travel through a collection of circuits (ASICs) built into line cards and RPMs on which various processing events for the packets occur. One or two port pipes process traffic for a given set of physical interfaces or a port-set. Auto-Negotiation on Ethernet Interfaces By default, auto-negotiation of speed and duplex mode is enabled on 10/100/1000 Base-T Ethernet interfaces.
config 4. Access the port. CONFIGURATION mode interface interface slot/port/subport 5. Set the local port speed. INTERFACE mode speed {10 | 100 | 1000 | auto} 6. Optionally, set full- or half-duplex. INTERFACE mode duplex {half | full} 7. Disable auto-negotiation on the port. INTERFACE mode no negotiation auto If the speed was set to 1000, do not disable auto-negotiation. 8. Verify configuration changes.
no ip address speed 100 duplex full no shutdown Set Auto-Negotiation Options The negotiation auto command provides a mode option for configuring an individual port to forced master/ forced slave once auto-negotiation is enabled. CAUTION: Ensure that only one end of the node is configured as forced-master and the other is configured as forced-slave.
View Advanced Interface Information The following options have been implemented for the show [ip | running-config] interfaces commands for (only) stack-unit interfaces. When you use the configured keyword, only interfaces that have non-default configurations are displayed. Dummy stack-unit interfaces (created with the stack-unit command) are treated like any other physical interface.
Configuring the Interface Sampling Size Although you can enter any value between 30 and 299 seconds (the default), software polling is done once every 15 seconds. So, for example, if you enter “19”, you actually get a sample of the past 15 seconds. All LAG members inherit the rate interval configuration from the LAG. The following example shows how to configure rate interval when changing the default value.
Input 0 IP Packets, 0 Vlans 0 MPLS 0 64-byte pkts, 0 over 64-byte pkts, 0 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts Received 0 input symbol errors, 0 runts, 0 giants, 0 throttles 0 CRC, 0 IP Checksum, 0 overrun, 0 discarded 0 packets output, 0 bytes, 0 underruns Output 0 Multicasts, 0 Broadcasts, 0 Unicasts 0 IP Packets, 0 Vlans, 0 MPLS 0 throttles, 0 discarded Rate info (interval 100 seconds): Input 00.00 Mbits/sec, 0 packets/sec, 0.00% of line-rate Output 00.
– For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/ subport information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a Loopback interface, enter the keyword loopback then a number from 0 to 16383. – For the Management interface on the stack-unit, enter the keyword ManagementEthernet then the slot/port information. The slot range is from 1 to 6. The port range is 1.
show running-config compressed and write memory compressed The compressed configuration will group all the similar looking configuration thereby reducing the size of the configuration.
no ip address no ip address shutdown no shutdown ! ! interface TenGigabitEthernet 1/10/1 interface group Vlan 3 – 5 no ip address tagged te 1/1/1 shutdown no ip address ! shutdown interface TenGigabitEthernet 1/34/1 ! ip address 2.1.1.1/16 interface Vlan 1000 shutdown ip address 1.1.1.1/16 ! no shutdown interface Vlan 2 ! no ip address no shutdown Compressed config size – 27 lines.
interface Vlan 100 no ip address no shutdown ! interface Vlan 1000 ip address 1.1.1.1/16 no shutdown Uncompressed config size – 52 lines write memory compressed The write memory compressed CLI will write the operating configuration to the startup-config file in the compressed mode. In stacking scenario, it will also take care of syncing it to all the standby and member units.
IPv4 Routing 20 The Dell Networking Operating System (OS) supports various IP addressing features. This chapter describes the basics of domain name service (DNS), address resolution protocol (ARP), and routing principles and their implementation in the Dell Networking OS. IP Feature Default DNS Disabled Directed Broadcast Disabled Proxy ARP Enabled ICMP Unreachable Disabled ICMP Redirect Disabled IP Addresses Dell Networking OS supports IP version 4, as described in RFC 791.
Configuration Tasks for IP Addresses The following describes the tasks associated with IP address configuration. Configuration tasks for IP addresses includes: • Assigning IP Addresses to an Interface (mandatory) • Configuring Static Routes (optional) • Configure Static Routes for the Management Interface (optional) For a complete listing of all commands related to IP addressing, refer to the Dell Networking OS Command Line Interface Reference Guide.
• secondary: add the keyword secondary if the IP address is the interface’s backup IP address. You can configure up to eight secondary IP addresses. Example the show config Command To view the configuration, use the show config command in INTERFACE mode or use the show ip interface command in EXEC privilege mode, as shown in the second example. Dell(conf-if)#show conf ! interface TenGigabitEthernet 1/1/1 ip address 10.11.1.
S 6.1.2.2/32 S 6.1.2.3/32 S 6.1.2.4/32 S 6.1.2.5/32 S 6.1.2.6/32 S 6.1.2.7/32 S 6.1.2.8/32 S 6.1.2.9/32 S 6.1.2.10/32 S 6.1.2.11/32 S 6.1.2.12/32 S 6.1.2.13/32 S 6.1.2.14/32 S 6.1.2.15/32 S 6.1.2.16/32 S 6.1.2.17/32 S 11.1.1.0/24 Direct, Lo 0 --More-- via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.2, via 6.1.20.
Configure Static Routes for the Management Interface When an IP address that a protocol uses and a static management route exists for the same prefix, the protocol route takes precedence over the static management route. To configure a static route for the management port, use the following command. • Assign a static route to point to the management interface or forwarding router.
fragmented packets are not supported for tunnel interfaces. The traceroute utilities for IPv4 and IPv6 list the IP addresses of the devices in the hops of the path for which ICMP source interface is configured. Configuring the Duration to Establish a TCP Connection This functionality is supported on the platform. You can configure the amount of time for which the device must wait before it attempts to establish a TCP connection.
Resolution of Host Names Domain name service (DNS) maps host names to IP addresses. This feature simplifies such commands as Telnet and FTP by allowing you to enter a name instead of an IP address. Dynamic resolution of host names is disabled by default. Unless you enable the feature, the system resolves only host names entered into the host table with the ip host command. The following sections describe DNS and the resolution of host names.
Specifying the Local System Domain and a List of Domains If you enter a partial domain, Dell Networking OS can search different domains to finish or fully qualify that partial domain. A fully qualified domain name (FQDN) is any name that is terminated with a period/dot. Dell Networking OS searches the host table first to resolve the partial domain. The host table contains both statically configured and dynamically learnt host and IP addresses.
Example of the traceroute Command The following text is example output of DNS using the traceroute command. Dell#traceroute www.force10networks.com Translating "www.force10networks.com"...domain server (10.11.0.1) [OK] Type Ctrl-C to abort. ---------------------------------------------------------------------Tracing the route to www.force10networks.com (10.11.84.18), 30 hops max, 40 byte packets ---------------------------------------------------------------------TTL Hostname Probe1 Probe2 Probe3 1 10.11.
• ARP Learning via ARP Request • Configuring ARP Retries Configuring Static ARP Entries ARP dynamically maps the MAC and IP addresses, and while most network host support dynamic mapping, you can configure an ARP entry (called a static ARP) for the ARP cache. To configure a static ARP entry, use the following command. • Configure an IP address and MAC address mapping for an interface.
Clearing ARP Cache To clear the ARP cache of dynamically learnt ARP information, use the following command. • Clear the ARP caches for all interfaces or for a specific interface by entering the following information. EXEC privilege clear arp-cache [interface | ip ip-address] [no-refresh] – ip ip-address (OPTIONAL): enter the keyword ip then the IP address of the ARP entry you wish to clear. – no-refresh (OPTIONAL): enter the keywords no-refresh to delete the ARP entry from CAM.
Beginning with Dell Networking OS version 8.3.1.0, when a gratuitous ARP is received, Dell Networking OS installs an ARP entry on all three CPUs. Enabling ARP Learning via Gratuitous ARP To enable ARP learning via gratuitous ARP, use the following command. • Enable ARP learning via gratuitous ARP. CONFIGURATION mode arp learn-enable ARP Learning via ARP Request In Dell Networking OS versions prior to 8.3.1.
Figure 43. ARP Learning via ARP Request with ARP Learning via Gratuitous ARP Enabled Whether you enable or disable ARP learning via gratuitous ARP, the system does not look up the target IP. It only updates the ARP entry for the Layer 3 interface with the source IP of the request. Configuring ARP Retries In Dell Networking OS versions prior to 8.3.1.0, the number of ARP retries is set to five and is not configurable.
ICMP For diagnostics, the internet control message protocol (ICMP) provides routing information to end stations by choosing the best route (ICMP redirect messages) or determining if a router is reachable (ICMP Echo or Echo Reply). ICMP error messages inform the router of problems in a particular packet. These messages are sent only on unicast traffic. Configuration Tasks for ICMP The following lists the configuration tasks for ICMP.
1. Enable UDP helper and specify the UDP ports for which traffic is forwarded. Refer to Enabling UDP Helper. 2. Configure a broadcast address on interfaces that will receive UDP broadcast traffic. Refer to Configuring a Broadcast Address. Important Points to Remember • • • • The existing ip directed broadcast command is rendered meaningless if you enable UDP helper on the same interface. The broadcast traffic rate should not exceed 200 packets per second when you enable UDP helper.
! interface Vlan 100 ip address 1.1.0.1/24 ip udp-broadcast-address 1.1.255.255 untagged GigabitEthernet 1/2 no shutdown To view the configured broadcast address for an interface, use show interfaces command. R1_E600(conf)#do show interfaces vlan 100 Vlan 100 is up, line protocol is down Address is 00:01:e8:0d:b9:7a, Current address is 00:01:e8:0d:b9:7a Interface index is 1107787876 Internet address is 1.1.0.1/24 IP UDP-Broadcast address is 1.1.255.
2. If you enabled UDP helper, the system changes the destination IP address to the configured broadcast address 1.1.255.255 and forwards the packet to VLAN 100. 3. Packet 2 is also forwarded to the ingress interface with an unchanged destination address because it does not have broadcast address configured. Figure 44.
UDP Helper with Configured Broadcast Addresses Incoming packets with a destination IP address matching the configured broadcast address of any interface are forwarded to the matching interfaces. In the following illustration, Packet 1 has a destination IP address that matches the configured broadcast address of VLAN 100 and 101. If you enabled UDP helper and the UDP port number matches, the packet is flooded on both VLANs with an unchanged destination address. Packet 2 is sent from a host on VLAN 101.
Troubleshooting UDP Helper To display debugging information for troubleshooting, use the debug ip udp-helper command. Example of the debug ip udp-helper Command Dell(conf)# debug ip udp-helper 01:20:22: Pkt rcvd on Te 5/1/1 with IP DA (0xffffffff) will be sent on Te 5/1/2 Te 5/1/3 Vlan 3 01:44:54: Pkt rcvd on Te 7/1/1 is handed over for DHCP processing. When using the IP helper and UDP helper on the same interface, use the debug ip dhcp command. Example Output from the debug ip dhcp Command Packet 0.0.0.
IPv6 Routing 21 Internet protocol version 6 (IPv6) routing is the successor to IPv4. Due to the rapid growth in internet users and IP addresses, IPv4 is reaching its maximum usage. IPv6 will eventually replace IPv4 usage to allow for the constant expansion. This chapter provides a brief description of the differences between IPv4 and IPv6, and the Dell Networking support of IPv6. This chapter is not intended to be a comprehensive description of IPv6.
• Duplicate Address Detection (DAD) — Before configuring its IPv6 address, an IPv6 host node device checks whether that address is used anywhere on the network using this mechanism. • Prefix Renumbering — Useful in transparent renumbering of hosts in the network when an organization changes its service provider. NOTE: As an alternative to stateless autoconfiguration, network hosts can obtain their IPv6 addresses using the dynamic host control protocol (DHCP) servers via stateful auto-configuration.
Longest Prefix Match (LPM) Table and IPv6 /65 – /128 support Two partitions are available. • Partition I with IPv6 /65 – /128 route prefix. Doesn’t support IPv4 entries in the current release. • Partition II with IPv6 0/0 – /64 route prefix and IPv4 0/0 -0/32 route prefix entries. • Number of entries in Partition II will be reduced based on the number of entries configured in Partition I. • Partitioning will be applied well before the system initialization. This will be done using the NVRAM.
The optimized booting functionality does not use Openflow and therefore SDN support is not available. LPM partitioning might have a slight impact on the number of SDN-programmed L3 entries because the LPM space becomes reduced. IPv6 Header Fields The 40 bytes of the IPv6 header are ordered, as shown in the following illustration. Figure 47. IPv6 Header Fields Version (4 bits) The Version field always contains the number 6, referring to the packet’s IP version.
Next Header (8 bits) The Next Header field identifies the next header’s type. If an Extension header is used, this field contains the type of Extension header (as shown in the following table). If the next header is a transmission control protocol (TCP) or user datagram protocol (UDP) header, the value in this field is the same as for IPv4. The Extension header is located between the IP header and the TCP or UDP header. The following lists the Next Header field values.
Destination Address (128 bits) The Destination Address field contains the intended recipient’s IPv6 address. This can be either the ultimate destination or the address of the next hop router. Extension Header Fields Extension headers are used only when necessary. Due to the streamlined nature of the IPv6 header, adding extension headers do not severely impact performance. Each Extension headers’s lengths vary, but they are always a multiple of 8 bytes.
11 Discard the packet and send an ICMP Parameter Problem, Code 2 message to the packet’s Source IP Address only if the Destination IP Address is not a multicast address. The second byte contains the Option Data Length. The third byte specifies whether the information can change en route to the destination. The value is 1 if it can change; the value is 0 if it cannot change.
Static and Dynamic Addressing Static IPv6 addresses are manually assigned to a computer by an administrator. Dynamic IPv6 addresses are assigned either randomly or by a server using dynamic host configuration protocol (DHCP). Even though IPv6 addresses assigned using DHCP may stay the same for long periods of time, they can change. In some cases, a network administrator may implement dynamically assigned static IPv6 addresses.
Feature and Functionality Documentation and Chapter Location Route redistribution OSPF, IS-IS, and IPv6 BGP chapters in the Dell Networking OS Command Line Reference Guide. Multiprotocol BGP extensions for IPv6 IPv6 BGP in the Dell Networking OS Command Line Reference Guide. IPv6 BGP MD5 Authentication IPv6 BGP in the Dell Networking OS Command Line Reference Guide. IS-IS for IPv6 Intermediate System to Intermediate System IPv6 IS-IS in the Dell Networking OS Command Line Reference Guide.
Feature and Functionality Documentation and Chapter Location Control and Monitoring in the Dell Networking OS Command Line Reference Guide. Telnet server over IPv6 (inbound Telnet) Configuring Telnet with IPv6 Control and Monitoring in the Dell Networking OS Command Line Reference Guide.
The Dell Networking OS ping and traceroute commands extend to support IPv6 addresses. These commands use ICMPv6 Type-2 messages. Path MTU Discovery Path MTU, in accordance with RFC 1981, defines the largest packet size that can traverse a transmission path without suffering fragmentation. Path MTU for IPv6 uses ICMPv6 Type-2 messages to discover the largest MTU along the path from source to destination and avoid the need to fragment the packet. The recommended MTU for IPv6 is 1280.
With ARP, each node broadcasts ARP requests on the entire link. This approach causes unnecessary processing by uninterested nodes. With NDP, each node sends a request only to the intended destination via a multicast address with the unicast address used as the last 24 bits. Other hosts on the link do not participate in the process, greatly increasing network bandwidth efficiency. Figure 49.
• loopback addresses • prefix addresses • multicast addresses • invalid host addresses If you specify this information in the IPv6 RDNSS configuration, a DNS error is displayed. Example for Configuring an IPv6 Recursive DNS Server The following example configures a RDNNS server with an IPv6 address of 1000::1 and a lifetime of 1 second.
Displaying IPv6 RDNSS Information To display IPv6 interface information, including IPv6 RDNSS information, use the show ipv6 interface command in EXEC or EXEC Privilege mode. Examples of Displaying IPv6 RDNSS Information The following example displays IPv6 RDNSS information. The output in the last 3 lines indicates that the IPv6 RDNSS was correctly configured on interface te 1/1/1.
Secure Shell (SSH) Over an IPv6 Transport Dell Networking OS supports both inbound and outbound SSH sessions using IPv6 addressing. Inbound SSH supports accessing the system through the management interface as well as through a physical Layer 3 interface. For SSH configuration details, refer to the Security chapter in the Dell Networking OS Command Line Interface Reference Guide. Configuration Tasks for IPv6 The following are configuration tasks for the IPv6 protocol.
When not selecting the default option, enter all of the profiles listed and a range for each. The total space allocated must equal 13. • The ipv6acl range must be a factor of 2. Show the current CAM settings. EXEC mode or EXEC Privilege mode • show cam-acl Provides information on FP groups allocated for the egress acl. CONFIGURATION mode show cam-acl-egress Allocate at least one group for L2ACL and IPv4 ACL. The total number of groups is 4.
CONFIGURATION mode ipv6 route prefix type {slot/port/subport} forwarding router tag – prefix: IPv6 route prefix – type {slot/port/subport}: interface type and slot/port/subport – forwarding router: forwarding router’s address – tag: route tag Enter the keyword interface then the type of interface and slot/port information: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/ subport information.
• snmp-server group access-list-name ipv6 Showing IPv6 Information View specific IPv6 configuration with the following commands. • List the IPv6 show options.
Link Local address: fe80::201:e8ff:fe8b:386e Global Unicast address(es): Actual address is 400::201:e8ff:fe8b:386e, subnet is 400::/64 Actual address is 412::201:e8ff:fe8b:386e, subnet is 412::/64 Virtual-IP IPv6 address is not set Received Prefix(es): 400::/64 onlink autoconfig Valid lifetime: 2592000, Preferred lifetime: 604800 Advertised by: fe80::201:e8ff:fe8b:3166 412::/64 onlink autoconfig Valid lifetime: 2592000, Preferred lifetime: 604800 Advertised by: fe80::201:e8ff:fe8b:3166 Global Anycast addres
Route Source Active Routes Non-active Routes connected 5 0 static 0 0 Total 5 0 The following example shows the show ipv6 route command.
interface TenGigabitEthernet 2/2/1 no ip address ipv6 address 3:4:5:6::8/24 shutdown Dell# Clearing IPv6 Routes To clear routes from the IPv6 routing table, use the following command. • Clear (refresh) all or a specific route from the IPv6 routing table. EXEC mode clear ipv6 route {* | ipv6 address prefix-length} – *: all routes. – ipv6 address: the format is x:x:x:x::x. – mask: the prefix length is from 0 to 128.
hop-limit {maximum | minimum limit} The hop limit range is from 0 to 254. 6. Set the managed address configuration flag. POLICY LIST CONFIGURATION mode managed-config-flag {on | off} 7. Enable verification of the sender IPv6 address in inspected messages from the authorized device source access list. POLICY LIST CONFIGURATION mode match ra{ipv6-access-list name | ipv6-prefix-list name | mac-access-list name} 8. Enable verification of the advertised other configuration parameter.
15. Display the configurations applied on the RA guard policy mode. POLICY LIST CONFIGURATION mode show config Example of the show config Command Dell(conf-ra_guard_policy_list)#show config ! ipv6 nd ra-guard policy test device-role router hop-limit maximum 251 mtu 1350 other-config-flag on reachable-time 540 retrans-timer 101 router-preference maximum medium trusted-port Dell(conf-ra_guard_policy_list)# Configuring IPv6 RA Guard on an Interface 1. Configure the terminal to enter the Interface mode.
Monitoring IPv6 RA Guard To debug IPv6 RA guard, use the following command. EXEC Privilege mode debug ipv6 nd ra-guard [interface_type slot/port/subport | count value] The count range is from 1 to 65534. The default is infinity. For a complete listing of all commands related to IPv6 RA Guard, refer to Dell Networking OS Command Line Reference Guide.
iSCSI Optimization 22 iSCSI optimization is supported on Dell Networking OS. This chapter describes how to configure internet small computer system interface (iSCSI) optimization, which enables quality-of-service (QoS) treatment for iSCSI traffic.
• Automatic configuration of switch ports after detection of storage arrays. • If you configure flow-control, iSCSI uses the current configuration. If you do not configure flowcontrol, iSCSI auto-configures flow control settings so that receive-only is enabled and transmit-only is disabled. . • iSCSI monitoring sessions — the switch monitors and tracks active iSCSI sessions in connections on the switch, including port information and iSCSI session information.
Figure 50. iSCSI Optimization Example Monitoring iSCSI Traffic Flows The switch snoops iSCSI session-establishment and termination packets by installing classifier rules that trap iSCSI protocol packets to the CPU for examination. Devices that initiate iSCSI sessions usually use well-known TCP ports 3260 or 860 to contact targets. When you enable iSCSI optimization, by default the switch identifies IP packets to or from these ports as iSCSI traffic.
Application of Quality of Service to iSCSI Traffic Flows You can configure iSCSI CoS mode. This mode controls whether CoS (dot1p priority) queue assignment and/or packet marking is performed on iSCSI traffic. When you enable iSCSI CoS mode, the CoS policy is applied to iSCSI traffic. When you disable iSCSI CoS mode, iSCSI sessions and connections are still detected and displayed in the status tables, but no CoS policy is applied to iSCSI traffic.
NOTE: If you are using EqualLogic or Compellent storage arrays, more than 256 simultaneous iSCSI sessions are possible. However, iSCSI session monitoring is not capable of monitoring more than 256 simultaneous iSCSI sessions. If this number is exceeded, sessions may display as unknown in session monitoring output. Dell Networking recommends that you disable iSCSI session monitoring for EqualLogic and Compellent storage arrays or for installations with more than 256 simultaneous iSCSI sessions.
iscsi profile-compellent The command configures a port for the best iSCSI traffic conditions.
• Link-level flow control is globally enabled, if it is not already enabled, and PFC is disabled. • iSCSI session snooping is enabled. • iSCSI LLDP monitoring starts to automatically detect EqualLogic arrays. The following message displays when you enable iSCSI on a switch and describes the configuration changes that are automatically performed: %STKUNIT0-M:CP %IFMGR-5-IFM_ISCSI_ENABLE: iSCSI has been enabled causing flow control to be enabled on all interfaces.
iSCSI Optimization Prerequisites The following are iSCSI optimization prerequisites. • iSCSI optimization requires LLDP on the switch. LLDP is enabled by default (refer to Link Layer Discovery Protocol (LLDP)). • iSCSI optimization requires configuring two ingress ACL groups The ACL groups are allocated after iSCSI Optimization is configured. Configuring iSCSI Optimization To configure iSCSI optimization, use the following commands. 1. For a non-DCB environment: Enable session monitoring.
EXEC Privilege mode reload After the switch is reloaded, DCB/ DCBx and iSCSI monitoring are enabled. 6. (Optional) Configure the iSCSI target ports and optionally the IP addresses on which iSCSI communication is monitored. CONFIGURATION mode [no] iscsi target port tcp-port-1 [tcp-port-2...tcp-port-16] [ip-address address] • tcp-port-n is the TCP port number or a list of TCP port numbers on which the iSCSI target listens to requests.
The range is from 5 to 43,200 minutes. The default is 10 minutes. 9. (Optional) Configures DCBX to send iSCSI TLV advertisements. LLDP CONFIGURATION mode or INTERFACE LLDP CONFIGURATION mode [no] advertise dcbx-app-tlv iscsi. You can send iSCSI TLVs either globally or on a specified interface. The interface configuration takes priority over global configuration. The default is Enabled. 10. (Optional) Configures the advertised priority bitmap in iSCSI application TLVs.
TCP Port Target IP Address 3260 860 The following example shows the show iscsi session command. VLT PEER1 Dell#show iscsi session Session 0: ---------------------------------------------------------------------------------Target: iqn.2001-05.com.equallogic:0-8a0906-0e70c2002-10a0018426a48c94-iom010 Initiator: iqn.1991-05.com.microsoft:win-x9l8v27yajg ISID: 400001370000 VLT PEER2 Session 0: ----------------------------------------------------------------------------------Target: iqn.2001-05.com.
Intermediate System to Intermediate System 23 Intermediate system to intermediate system (Is-IS) is supported on Dell Networking OS. • • • The IS-IS protocol is an interior gateway protocol (IGP) that uses a shortest-path-first algorithm. Dell Networking supports both IPv4 and IPv6 versions of IS-IS. • The IS-IS protocol standards are listed in the Standards Compliance chapter.
IS area address, system ID, and N-selector. The last byte is the N-selector. All routers within an area have the same area portion. Level 1 routers route based on the system address portion of the address, while the Level 2 routers route based on the area address. The NET length is variable, with a maximum of 20 bytes and a minimum of 8 bytes. It is composed of the following: • area address — within your routing domain or area, each area must have a unique area value.
Transition Mode All routers in the area or domain must use the same type of IPv6 support, either single-topology or multitopology. A router operating in multi-topology mode does not recognize the ability of the singletopology mode router to support IPv6 traffic, which leads to holes in the IPv6 topology.
For packets that have existing FIB/content addressable memory (CAM) entries, forwarding between ingress and egress ports can continue uninterrupted while the control plane IS-IS process comes back to full functionality and rebuilds its routing tables. A new TLV (the Restart TLV) is introduced in the IIH PDUs, indicating that the router supports graceful restart. Timers Three timers are used to support IS-IS graceful restart functionality.
• Advertises IPv6 information in the PDUs. • Processes IPv6 information received in the PDUs. • Computes routes to IPv6 destinations. • Downloads IPv6 routes to the RTM for installing in the FIB. • Accepts external IPv6 information and advertises this information in the PDUs. The following table lists the default IS-IS values. Table 34.
• Changing the IS-Type • Controlling Routing Updates • Configuring Authentication Passwords • Setting the Overload Bit • Debuging IS-IS Enabling IS-IS By default, IS-IS is not enabled. The system supports one instance of IS-IS. To enable IS-IS globally, create an IS-IS routing process and assign a NET address. To exchange protocol information with neighbors, enable IS-IS on an interface, instead of on a network as with other routing protocols.
ip address ip-address mask Assign an IP address and mask to the interface. The IP address must be on the same subnet as other IS-IS neighbors, but the IP address does not need to relate to the NET address. 5. Enter an IPv6 Address. INTERFACE mode ipv6 address ipv6-address mask • ipv6 address: x:x:x:x::x • mask: The prefix length is from 0 to 128. The IPv6 address must be on the same subnet as other IS-IS neighbors, but the IP address does not need to relate to the NET address. 6.
To view IS-IS protocol statistics, use the show isis traffic command in EXEC Privilege mode.
spf-interval [level-l | level-2 | interval] [initial_wait_interval [second_wait_interval]] Use this command for IPv6 route computation only when you enable multi-topology. If using singletopology mode, to apply to both IPv4 and IPv6 route computations, use the spf-interval command in CONFIG ROUTER ISIS mode. 4. Implement a wide metric-style globally.
ROUTER-ISIS mode graceful-restart t2 {level-1 | level-2} seconds – level-1, level-2: identifies the database instance type to which the wait interval applies. The range is from 5 to 120 seconds. • The default is 30 seconds. Configure graceful restart timer T3 to set the time used by the restarting router as an overall maximum time to wait for database synchronization to complete.
L2: Send/Receive: RR:0/0, RA: 0/0, SA:0/0 T1 time left: 0, retry count left:0 Dell# To view all interfaces configured with IS-IS routing along with the defaults, use the show isis interface command in EXEC Privilege mode. Dell#show isis interface TenGigabitEthernet 1/34/1 TenGigabitEthernet 1/34/1 is up, line protocol is up MTU 1497, Encapsulation SAP Routing Protocol: IS-IS Circuit Type: Level-1-2 Interface Index 0x62cc03a, Local circuit ID 1 Level-1 Metric: 10, Priority: 64, Circuit ID: 0000.0000.000B.
• Set the maximum time LSPs lifetime. ROUTER ISIS mode max-lsp-lifetime seconds – seconds: the range is from 1 to 65535. The default is 1200 seconds. Example of Viewing IS-IS Configuration (ROUTER ISIS Mode) To view the configuration, use the show config command in ROUTER ISIS mode or the show running-config isis command in EXEC Privilege mode. Dell#show running-config isis ! router isis lsp-refresh-interval 902 net 47.0005.0001.000C.000A.4321.00 net 51.0005.0001.000C.000A.4321.
Metric Style Characteristics Cost Range Supported on IS-IS Interfaces wide transition Sends wide (new) TLVs and accepts both narrow (old) and wide (new) TLVs. 0 to 16777215 To change the IS-IS metric style of the IS-IS process, use the following command. • Set the metric style for the IS-IS process. ROUTER ISIS mode metric-style {narrow [transition] | transition | wide [transition]} [level-1 | level-2] The default is narrow.
– default-metric: the range is from 0 to 63 if the metric-style is narrow, narrow-transition, or transition. • The range is from 0 to 16777215 if the metric style is wide or wide transition. Assign a metric for an IPv6 link or interface. INTERFACE mode isis ipv6 metric default-metric [level-1 | level-2] – default-metric: the range is from 0 to 63 for narrow and transition metric styles. The range is from 0 to 16777215 for wide metric styles. The default is 10. The default level is level-1.
• Default is level-1-2. Change the IS-type for the IS-IS process. ROUTER ISIS mode is-type {level-1 | level-1-2 | level-2} Example of the show isis database Command to View Level 1-2 Link State Databases To view which IS-type is configured, use the show isis protocol command in EXEC Privilege mode. The show config command in ROUTER ISIS mode displays only non-default information. If you do not change the IS-type, the default value (level-1-2) is not displayed. The default is Level 1-2 router.
Distribute Routes Another method of controlling routing information is to filter the information through a prefix list. Prefix lists are applied to incoming or outgoing routes and routes must meet the conditions of the prefix lists or Dell Networking OS does not install the route in the routing table. The prefix lists are globally applied on all interfaces running IS-IS. Configure the prefix list in PREFIX LIST mode prior to assigning it to the IS-IS process.
Applying IPv6 Routes To apply prefix lists to incoming or outgoing IPv6 routes, use the following commands. NOTE: These commands apply to IPv6 IS-IS only. To apply prefix lists to IPv4 routes, use ROUTER ISIS mode, previously shown. • Apply a configured prefix list to all incoming IPv6 IS-IS routes.
• Include BGP, directly connected, RIP, or user-configured (static) routes in IS-IS. ROUTER ISIS mode redistribute {bgp as-number | connected | rip | static} [level-1 level-1-2 | level-2] [metric metric-value] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: – level-1, level-1-2, or level-2: assign all redistributed routes to a level. The default is level-2. – metric-value the range is from 0 to 16777215. The default is 0.
redistribute ospf process-id [level-1| level-1-2 | level-2] [metric value] [match external {1 | 2} | match internal] [metric-type {external | internal}] [route-map map-name] Configure the following parameters: – process-id: the range is from 1 to 65535. – level-1, level-1-2, or level-2: assign all redistributed routes to a level. The default is level-2. – metric value: the range is from 0 to 16777215. The default is 0. – metric value: the range is from 0 to 16777215. The default is 0.
Setting the Overload Bit Another use for the overload bit is to prevent other routers from using this router as an intermediate hop in their shortest path first (SPF) calculations. For example, if the IS-IS routing database is out of memory and cannot accept new LSPs, Dell Networking OS sets the overload bit and IS-IS traffic continues to transit the system. To set or remove the overload bit manually, use the following commands. • Set the overload bit in LSPs.
EXEC Privilege mode debug isis adj-packets [interface] To view specific information, enter the following optional parameter: • – interface: Enter the type of interface and slot/port information to view IS-IS information on that interface only. View information about IS-IS local update packets.
IS-IS Metric Styles The following sections provide additional information about the IS-IS metric styles.
Table 36. Metric Value When the Metric Style Changes Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value wide narrow default value (10) if the original value is greater than 63. A message is sent to the console. wide transition truncated value (the truncated value appears in the LSP only). The original isis metric value is displayed in the show config and show running-config commands and is used if you change back to transition metric style.
Beginning Metric Style Final Metric Style Resulting IS-IS Metric Value wide transition narrow transition default value (10) if the original value is greater than 63. A message is sent to the console. wide transition transition truncated value (the truncated value appears in the LSP only). The original isis metric value is displayed in the show config and show running-config commands and is used if you change back to transition metric style.
Level-1 Metric Style Level-2 Metric Style Resulting Metric Value narrow transition wide original value narrow transition narrow original value narrow transition wide transition original value narrow transition transition original value transition wide original value transition narrow original value transition wide transition original value transition narrow transition original value wide transition wide original value wide transition narrow truncated value wide transition n
Figure 52. IPv6 IS-IS Sample Topography IS-IS Sample Configuration — Congruent Topology IS-IS Sample Configuration — Multi-topology IS-IS Sample Configuration — Multi-topology Transition The following is a sample configuration for enabling IPv6 IS-IS. Dell(conf-if-te-3/17/1)#show config ! interface TenGigabitEthernet 3/17/1 ip address 24.3.1.
router isis net 34.0000.0000.AAAA.00 ! address-family ipv6 unicast multi-topology exit-address-family Dell (conf-router_isis)# Dell (conf-if-te-3/17/1)#show config ! interface TenGigabitEthernet 3/17/1 ipv6 address 24:3::1/76 ipv6 router isis no shutdown Dell (conf-if-te-3/17/1)# Dell (conf-router_isis)#show config ! router isis net 34.0000.0000.AAAA.
24 Link Aggregation Control Protocol (LACP) Link aggregation control protocol (LACP) is supported on Dell Networking OS. Introduction to Dynamic LAGs and LACP A link aggregation group (LAG), referred to as a port channel by Dell Networking OS, can provide both load-sharing and port redundancy across line cards. You can enable LAGs as static or dynamic. The benefits and constraints are basically the same, as described in Port Channel Interfaces in the Interfaces chapter.
– If a physical interface is a part of a dynamic LAG, it cannot be added as a member of a static LAG. The channel-member tengigabitethernet x/y command is rejected in the static LAG interface for that physical interface. • A dynamic LAG can be created with any type of configuration. • There is a difference between the shutdown and no interface port-channel commands: – The shutdown command on LAG “xyz” disables the LAG and retains the user commands.
[no] port-channel-protocol lacp The default is LACP disabled. • This command creates context. Configure LACP mode. LACP mode [no] port-channel number mode [active | passive | off] – number: cannot statically contain any links. • The default is LACP active. Configure port priority. LACP mode [no] lacp port-priority priority-value The range is from 1 to 65535 (the higher the number, the lower the priority). The default is 32768. LACP Configuration Tasks The following are LACP configuration tasks.
The LAG is in the default VLAN. To place the LAG into a non-default VLAN, use the tagged command on the LAG. Dell(conf)#interface vlan 10 Dell(conf-if-vl-10)#tagged port-channel 32 Configuring the LAG Interfaces as Dynamic After creating a LAG, configure the dynamic LAG interfaces. To configure the dynamic LAG interfaces, use the following command. • Configure the dynamic LAG interfaces.
CONFIG-INT-PO mode lacp long-timeout Example of the lacp long-timeout and show lacp Commands Dell(conf)# interface port-channel 32 Dell(conf-if-po-32)#no shutdown Dell(conf-if-po-32)#switchport Dell(conf-if-po-32)#lacp long-timeout Dell(conf-if-po-32)#end Dell# show lacp 32 Port-channel 32 admin up, oper up, mode lacp Actor System ID: Priority 32768, Address 0001.e800.a12b Partner System ID: Priority 32768, Address 0001.e801.
Figure 53. Shared LAG State Tracking To avoid packet loss, redirect traffic through the next lowest-cost link (R3 to R4). Dell Networking OS has the ability to bring LAG 2 down if LAG 1 fails, so that traffic can be redirected. This redirection is what is meant by shared LAG state tracking. To achieve this functionality, you must group LAG 1 and LAG 2 into a single entity, called a failover group. Configuring Shared LAG State Tracking To configure shared LAG state tracking, you configure a failover group.
As shown in the following illustration, LAGs 1 and 2 are members of a failover group. LAG 1 fails and LAG 2 is brought down after the failure. This effect is logged by Message 1, in which a console message declares both LAGs down at the same time. Figure 54.
• You can configure shared LAG state tracking on one side of a link or on both sides. • If a LAG that is part of a failover group is deleted, the failover group is deleted. • If a LAG moves to the Down state due to this feature, its members may still be in the Up state. LACP Basic Configuration Example The screenshots in this section are based on the following example topology. Two routers are named ALPHA and BRAVO, and their hostname prompts reflect those names. Figure 55.
Internet address is not set MTU 1554 bytes, IP MTU 1500 bytes LineSpeed 40000 Mbit, Mode full duplex, Slave Flowcontrol rx on tx on ARP type: ARPA, ARP Timeout 04:00:00 Last clearing of "show interface" counters 00:02:11 Queueing strategy: fifo Input statistics: 132 packets, 163668 bytes 0 Vlans 0 64-byte pkts, 12 over 64-byte pkts, 120 over 127-byte pkts 0 over 255-byte pkts, 0 over 511-byte pkts, 0 over 1023-byte pkts 132 Multicasts, 0 Broadcasts 0 runts, 0 giants, 0 throttles 0 CRC, 0 overrun, 0 discarde
Figure 57.
Figure 58.
interface GigabitEthernet 2/31 no ip address Summary of the LAG Configuration on Bravo Bravo(conf-if-gi-3/21)#int port-channel 10 Bravo(conf-if-po-10)#no ip add Bravo(conf-if-po-10)#switch Bravo(conf-if-po-10)#no shut Bravo(conf-if-po-10)#show config ! interface Port-channel 10 no ip address switchport no shutdown ! Bravo(conf-if-po-10)#exit Bravo(conf)#int gig 3/21 Bravo(conf)#no ip address Bravo(conf)#no switchport Bravo(conf)#shutdown Bravo(conf-if-gi-3/21)#port-channel-protocol lacp Bravo(conf-if-gi-3/2
Figure 59.
Figure 60.
Figure 61. Inspecting the LAG Status Using the show lacp command The point-to-point protocol (PPP) is a connection-oriented protocol that enables layer two links over various different physical layer connections. It is supported on both synchronous and asynchronous lines, and can operate in Half-Duplex or Full-Duplex mode. It was designed to carry IP traffic but is general enough to allow any type of network layer datagram to be sent over a PPP connection.
Layer 2 25 Layer 2 features are supported on Dell Networking OS. Manage the MAC Address Table Dell Networking OS provides the following management activities for the MAC address table. • Clearing the MAC Address Table • Setting the Aging Time for Dynamic Entries • Configuring a Static MAC Address • Displaying the MAC Address Table Clearing the MAC Address Table You may clear the MAC address table of dynamic entries. To clear a MAC address table, use the following command.
CONFIGURATION mode mac-address-table aging-time seconds The range is from 10 to 1000000. Configuring a Static MAC Address A static entry is one that is not subject to aging. Enter static entries manually. To create a static MAC address entry, use the following command. • Create a static MAC address entry in the MAC address table. CONFIGURATION mode mac-address-table static Displaying the MAC Address Table To display the MAC address table, use the following command.
• Learning Limit Violation Actions • Setting Station Move Violation Actions • Recovering from Learning Limit and Station Move Violations Dell Networking OS Behavior: When configuring the MAC learning limit on a port or VLAN, the configuration is accepted (becomes part of running-config and show mac learning-limit interface) before the system verifies that sufficient CAM space exists.
action. When a MAC address is relearned on any other line card (any line card except the one to which the original MAC-limited port belongs), the station-move is detected and the system takes the configured the violation action. mac learning-limit mac-address-sticky Using sticky MAC addresses allows you to associate a specific port with MAC addresses from trusted devices.
violation only when you configure mac learning-limit dynamic and logs the violation only when you configure the mac learning-limit station-move-violation log, as shown in the following example.
• Display a list of all of the interfaces configured with MAC learning limit or station move violation. CONFIGURATION mode show mac learning-limit violate-action NOTE: When the MAC learning limit (MLL) is configured as no-station-move, the MLL will be processed as static entries internally. For static entries, the MAC address will be installed in all port-pipes, irrespective of the VLAN membership.
Figure 62. Redundant NICs with NIC Teaming When you use NIC teaming, consider that the server MAC address is originally learned on Port 0/1 of the switch (shown in the following) and Port 0/5 is the failover port. When the NIC fails, the system automatically sends an ARP request for the gateway or host NIC to resolve the ARP and refresh the egress interface.
Configure Redundant Pairs Networks that employ switches that do not support the spanning tree protocol (STP) — for example, networks with digital subscriber line access multiplexers (DSLAM) — cannot have redundant links between switches because they create switching loops (as shown in the following illustration). The redundant pairs feature allows you to create redundant links in networks that do not use STP by configuring backup interfaces for the interfaces on either side of the primary link.
You configure a redundant pair by assigning a backup interface to a primary interface with the switchport backup interface command. Initially, the primary interface is active and transmits traffic and the backup interface remains down. If the primary fails for any reason, the backup transitions to an active Up state. If the primary interface fails and later comes back up, it remains as the backup interface for the redundant pair.
no ip address switchport switchport backup interface TenGigabitEthernet 3/11/2 no shutdown ! interface TenGigabitEthernet 3/11/2 no ip address switchport no shutdown Dell(conf-if-range-te-3/11/1-3/11/2)# Dell(conf-if-range-te-3/11/1-3/11/2)#do show ip int brief | find 3/11/1 TenGigabitEthernet 3/11/1 unassigned YES Manual up up TenGigabitEthernet 3/11/2 unassigned NO Manual up down [output omitted] Dell(conf-if-range-te-3/11/1-3/11/2)#interface TenGigabitEthernet 3/11/1 Dell(conf-if-te-3/11/1)#shutdown 00:
protocols on Po 1 and Te 1/2 Dell(conf-if-po-1)# Far-End Failure Detection FEFD is a protocol that senses remote data link errors in a network. FEFD responds by sending a unidirectional report that triggers an echoed response after a specified time interval. You can enable FEFD globally or locally on an interface basis. Disabling the global FEFD configuration does not disable the interface configuration. Figure 65.
FEFD State Changes FEFD has two operational modes, Normal and Aggressive. When you enable Normal mode on an interface and a far-end failure is detected, no intervention is required to reset the interface to bring it back to an FEFD operational state. When you enable Aggressive mode on an interface in the same state, manual intervention is required to reset the interface.
Important Points to Remember • FEFD enabled ports are subject to an 8 to 10 second delay during an RPM failover before becoming operational. • You can enable FEFD globally or on a per-interface basis. Interface FEFD configurations override global FEFD configurations. • Dell Networking OS supports FEFD on physical Ethernet interfaces only, excluding the management interface.
Enabling FEFD on an Interface To enable, change, or disable FEFD on an interface, use the following commands. • Enable FEFD on a per interface basis. INTERFACE mode fefd • Change the FEFD mode. INTERFACE mode fefd [mode {aggressive | normal}] • Disable FEFD protocol on one interface. INTERFACE mode fefd disable Disabling an interface shuts down all protocols working on that interface’s connected line. It does not delete your previous FEFD configuration which you can enable again at any time.
Debugging FEFD To debug FEFD, use the first command. To provide output for each packet transmission over the FEFD enabled connection, use the second command. • Display output whenever events occur that initiate or disrupt an FEFD enabled connection. EXEC Privilege mode • debug fefd events Provide output for each packet transmission over the FEFD enabled connection.
bidirectional link with its peer 542 Layer 2
Link Layer Discovery Protocol (LLDP) 26 The link layer discovery protocol (LLDP) is supported on Dell Networking OS. 802.1AB (LLDP) Overview LLDP — defined by IEEE 802.1AB — is a protocol that enables a local area network (LAN) device to advertise its configuration and receive configuration information from adjacent LLDP-enabled LAN infrastructure devices.
Table 40. Type, Length, Value (TLV) Types Type TLV Description 0 End of LLDPDU Marks the end of an LLDPDU. 1 Chassis ID An administratively assigned name that identifies the LLDP agent. 2 Port ID An administratively assigned name that identifies a port through which TLVs are sent and received. 3 Time to Live An administratively assigned name that identifies a port through which TLVs are sent and received.
Management TLVs A management TLV is an optional TLVs sub-type. This kind of TLV contains essential management information about the sender. Organizationally Specific TLVs A professional organization or a vendor can define organizationally specific TLVs. They have two mandatory fields (as shown in the following illustration) in addition to the basic TLV fields. Figure 68. Organizationally Specific TLV IEEE Organizationally Specific TLVs Eight TLV types have been defined by the IEEE 802.1 and 802.
Type TLV Description 127 Port-VLAN ID On Dell Networking systems, indicates the untagged VLAN to which a port belongs. 127 Port and Protocol VLAN ID On Dell Networking systems, indicates the tagged VLAN to which a port belongs (and the untagged VLAN to which a port belongs if the port is in Hybrid mode). 127 Protocol Identity Indicates the protocols that the port can process. Dell Networking OS does not currently support this TLV.
TIA-1057 (LLDP-MED) Overview Link layer discovery protocol — media endpoint discovery (LLDP-MED) as defined by ANSI/ TIA-1057— provides additional organizationally specific TLVs so that endpoint devices and network connectivity devices can advertise their characteristics and configuration information; the OUI for the Telecommunications Industry Association (TIA) is 00-12-BB.
Type SubType TLV Description device expressed in one of three possible formats: • • • 127 4 Inventory Management TLVs Implementation of this set of TLVs is optional in LLDP-MED devices. None or all TLVs must be supported. Dell Networking OS does not currently support these TLVs. 127 Coordinate Based LCI Civic Address LCI Emergency Call Services ELIN Location Identification Indicates power requirements, priority, and power status.
LLDP-MED Capabilities TLV The LLDP-MED capabilities TLV communicates the types of TLVs that the endpoint device and the network connectivity device support. LLDP-MED network connectivity devices must transmit the Network Policies TLV. • The value of the LLDP-MED capabilities field in the TLV is a 2–octet bitmap, each bit represents an LLDP-MED capability (as shown in the following table). • The possible values of the LLDP-MED device type are shown in the following.
LLDP-MED Network Policies TLV A network policy in the context of LLDP-MED is a device’s VLAN configuration and associated Layer 2 and Layer 3 configurations. LLDP-MED network policies TLV include: • VLAN ID • VLAN tagged or untagged status • Layer 2 priority • DSCP value An integer represents the application type (the Type integer shown in the following table), which indicates a device function for which a unique network policy is defined.
Type Application Description 8 Video Signaling Specify this application type only if video control packets use a separate network policy than video data. 9–255 Reserved — Figure 70. LLDP-MED Policies TLV Extended Power via MDI TLV The extended power via MDI TLV enables advanced PoE management between LLDP-MED endpoints and network connectivity devices. Advertise the extended power via MDI on all ports that are connected to an 802.3af powered, LLDP-MED endpoint device.
Configure LLDP Configuring LLDP is a two-step process. 1. Enable LLDP globally. 2. Advertise TLVs out of an interface. Related Configuration Tasks • Viewing the LLDP Configuration • Viewing Information Advertised by Adjacent LLDP Agents • Configuring LLDPDU Intervals • Configuring Transmit and Receive Mode • Configuring a Time to Live • Debugging LLDP Important Points to Remember • LLDP is enabled by default. • Dell Networking systems support up to eight neighbors per interface.
hello mode multiplier no show LLDP hello configuration LLDP mode configuration (default = rx and tx) LLDP multiplier configuration Negate a command or set its defaults Show LLDP configuration Dell(conf-lldp)#exit Dell(conf)#interface tengigabitethernet 1/3/1 Dell(conf-if-te-1/3/1)#protocol lldp Dell(conf-if-te-1/3/1-lldp)#? advertise Advertise TLVs disable Disable LLDP protocol on this interface end Exit from configuration mode exit Exit from LLDP configuration mode hello LLDP hello configuration mode LLD
CONFIGURATION mode protocol lldp 2. Enable LLDP. PROTOCOL LLDP mode no disable Disabling and Undoing LLDP on Management Ports To disable or undo LLDP on management ports, use the following command. 1. Enter Protocol LLDP mode. CONFIGURATION mode. protocol lldp 2. Enter LLDP management-interface mode. LLDP-MANAGEMENT-INTERFACE mode. management-interface 3. Enter the disable command. LLDP-MANAGEMENT-INTERFACE mode.
• For 802.1 TLVs: port-protocol-vlan-id, port-vlan-id . • For 802.3 TLVs: max-frame-size. • For TIA-1057 TLVs: – guest-voice – guest-voice-signaling – location-identification – power-via-mdi – softphone-voice – streaming-video – video-conferencing – video-signaling – voice – voice-signaling In the following example, LLDP is enabled globally. R1 and R2 are transmitting periodic LLDPDUs that contain management, 802.1, and 802.3 TLVs. Figure 72.
advertise dot3-tlv max-frame-size advertise management-tlv system-capabilities system-description hello 10 no disable Dell(conf-lldp)# Dell(conf-lldp)#exit Dell(conf)#interface tengigabitethernet 1/31/1 Dell(conf-if-te-1/31/1)#show config ! interface TenGigabitEthernet 1/31/1 no ip address switchport no shutdown Dell(conf-if-te-1/31/1)#protocol lldp Dell(conf-if-te-1/31/1-lldp)#show config ! protocol lldp Dell(conf-if-te-1/31/1-lldp)# Viewing Information Advertised by Adjacent LLDP Agents To view brief inf
Remote Port ID: TeGigabitEthernet 2/11/1 Local Port ID: TeGigabitEthernet 1/21/1 Locally assigned remote Neighbor Index: 4 Remote TTL: 120 Information valid for next 120 seconds Time since last information change of this neighbor: 01:50:16 Remote MTU: 1554 Remote System Desc: Dell Networks Real Time Operating System Software Dell Operating System Version: 1.0. Dell Application Software Version: 9.4.0.0.
no disable R1(conf-lldp)# Configuring Transmit and Receive Mode After you enable LLDP, Dell Networking systems transmit and receive LLDPDUs by default. To configure the system to transmit or receive only and return to the default, use the following commands. • Transmit only. CONFIGURATION mode or INTERFACE mode • mode tx Receive only. CONFIGURATION mode or INTERFACE mode • mode rx Return to the default setting.
Configuring a Time to Live The information received from a neighbor expires after a specific amount of time (measured in seconds) called a time to live (TTL). The TTL is the product of the LLDPDU transmit interval (hello) and an integer called a multiplier. The default multiplier is 4, which results in a default TTL of 120 seconds. • Adjust the TTL value. CONFIGURATION mode or INTERFACE mode. • multiplier Return to the default multiplier value. CONFIGURATION mode or INTERFACE mode.
• View a readable version of the TLVs plus a hexadecimal version of the entire LLDPDU. debug lldp detail Figure 73. The debug lldp detail Command — LLDPDU Packet Dissection Relevant Management Objects Dell Networking OS supports all IEEE 802.1AB MIB objects. The following tables list the objects associated with: • received and transmitted TLVs • the LLDP configuration on the local agent • IEEE 802.
Table 46. LLDP Configuration MIB Objects MIB Object Category LLDP Variable LLDP adminStatus Configuration Basic TLV Selection LLDP MIB Object Description lldpPortConfigAdminStatus Whether you enable the local LLDP agent for transmit, receive, or both. msgTxHold lldpMessageTxHoldMultiplie Multiplier value. r msgTxInterval lldpMessageTxInterval Transmit Interval value. rxInfoTTL lldpRxInfoTTL Time to live for received TLVs. txInfoTTL lldpTxInfoTTL Time to live for transmitted TLVs.
MIB Object Category LLDP Variable LLDP MIB Object Description statsTLVsUnrecognizedTota lldpStatsRxPortTLVsUnreco l gnizedTotal Total number of all TLVs the local agent does not recognize. Table 47.
TLV Type TLV Name TLV Variable management address System LLDP MIB Object Remote lldpRemManAddrSu btype Local lldpLocManAddr Remote lldpRemManAddr interface numbering Local subtype interface number OID lldpLocManAddrIfSu btype Remote lldpRemManAddrIfS ubtype Local lldpLocManAddrIfId Remote lldpRemManAddrIfId Local lldpLocManAddrOID Remote lldpRemManAddrOI D Table 48. LLDP 802.
TLV Type TLV Name TLV Variable VLAN name System LLDP MIB Object Remote lldpXdot1RemVlanN ame Local lldpXdot1LocVlanNa me Remote lldpXdot1RemVlanN ame Table 49.
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object L2 Priority Local lldpXMedLocMediaP olicyPriority Remote lldpXMedRemMedia PolicyPriority Local lldpXMedLocMediaP olicyDscp Remote lldpXMedRemMedia PolicyDscp Local lldpXMedLocLocatio nSubtype Remote lldpXMedRemLocati onSubtype Local lldpXMedLocLocatio nInfo Remote lldpXMedRemLocati onInfo Local lldpXMedLocXPoED eviceType Remote lldpXMedRemXPoED eviceType Local lldpXMedLocXPoEPS EPowerSource DSCP Value 3 Location Ident
TLV Sub-Type TLV Name TLV Variable System LLDP-MED MIB Object Power Value Local lldpXMedLocXPoEPS EPortPowerAv lldpXMedLocXPoEP DPowerReq Remote lldpXMedRemXPoEP SEPowerAv lldpXMedRemXPoEP DPowerReq 566 Link Layer Discovery Protocol (LLDP)
Microsoft Network Load Balancing 27 Network load balancing (NLB) is a clustering functionality that is implemented by Microsoft on Windows 2000 Server and Windows Server 2003 operating systems (OSs). NLB uses a distributed methodology or pattern to equally split and balance the network traffic load across a set of servers that are part of the cluster or group.
With NLB, the data frame forwards to all the servers for them to perform load-balancing. NLB Multicast Mode Scenario Consider a sample topology in which you configure four servers, S1 through S4, as a cluster or a farm. This set of servers connects to a Layer 3 switch, which connects to the end-clients. They contain a single multicast MAC address (MAC-Cluster: 03-00-5E-11-11-11).
Enable and Disable VLAN Flooding • The older ARP entries are overwritten whenever newer NLB entries are learned. • All ARP entries, learned after you enable VLAN flooding, are deleted when you disable VLAN flooding, and RP2 triggers an ARP resolution. Disable VLAN flooding with the no ip vlan-flooding command. • When you add a port to the VLAN, the port automatically receives traffic if you enabled VLAN flooding. Old ARP entries are not deleted or updated.
mac-address-table static multicast-mac-address vlan vlan-id output-range interface 570 Microsoft Network Load Balancing
Multicast Source Discovery Protocol (MSDP) 28 Multicast source discovery protocol (MSDP) is supported on Dell Networking OS. Protocol Overview MSDP is a Layer 3 protocol that connects IPv4 protocol-independent multicast-sparse mode (PIM-SM) domains. A domain in the context of MSDP is a contiguous set of routers operating PIM within a common boundary defined by an exterior gateway protocol, such as border gateway protocol (BGP).
Figure 74. Multicast Source Discovery Protocol (MSDP) RPs advertise each (S,G) in its domain in type, length, value (TLV) format. The total number of TLVs contained in the SA is indicated in the “Entry Count” field. SA messages are transmitted every 60 seconds, and immediately when a new source is detected. Figure 75.
Anycast RP Using MSDP, anycast RP provides load sharing and redundancy in PIM-SM networks. Anycast RP allows two or more rendezvous points (RPs) to share the load for source registration and the ability to act as hot backup routers for each other. Anycast RP allows you to configure two or more RPs with the same IP address on Loopback interfaces. The Anycast RP Loopback address are configured with a 32-bit mask, making it a host address.
Related Configuration Tasks The following lists related MSDP configuration tasks.
Figure 76.
Figure 77.
Figure 78.
Figure 79. Configuring MSDP Enable MSDP Enable MSDP by peering RPs in different administrative domains. 1. Enable MSDP. CONFIGURATION mode ip multicast-msdp 2. Peer PIM systems in different administrative domains.
ip msdp peer connect-source Examples of Configuring and Viewing MSDP R3_E600(conf)#ip multicast-msdp R3_E600(conf)#ip msdp peer 192.168.0.1 connect-source Loopback 0 R3_E600(conf)#do show ip msdp summary Peer Addr Description Local Addr State Source SA Up/Down To view details about a peer, use the show ip msdp peer command in EXEC privilege mode. Multicast sources in remote domains are stored on the RP in the source-active cache (SA cache).
Limiting the Source-Active Cache Set the upper limit of the number of active sources that the Dell Networking OS caches. The default active source limit is 500K messages. When the total number of active sources reaches the specified limit, subsequent active sources are dropped even if they pass the reverse path forwarding (RPF) and policy check. To limit the number of sources that SA cache stores, use the following command. • Limit the number of sources that can be stored in the SA cache.
• In Scenario 4, RP1 has a default peer plus an access list. The list permits RP4 so the RPF check is disregarded for active sources from it, but RP5 (and all others because of the implicit deny all) are subject to the RPF check and fail, so those active sources are rejected. Figure 80.
Figure 81.
Figure 82.
Figure 83. MSDP Default Peer, Scenario 4 Specifying Source-Active Messages To specify messages, use the following command. • Specify the forwarding-peer and originating-RP from which all active sources are accepted without regard for the RPF check. CONFIGURATION mode ip msdp default-peer ip-address list If you do not specify an access list, the peer accepts all sources that peer advertises. All sources from RPs that the ACL denies are subject to the normal RPF check.
Example of the ip msdp default-peer Command and Viewing Denied Sources Dell(conf)#ip msdp peer 10.0.50.2 connect-source Vlan 50 Dell(conf)#ip msdp default-peer 10.0.50.2 list fifty Dell(conf)#ip access-list standard fifty Dell(conf)#seq 5 permit host 200.0.0.50 Dell#ip msdp sa-cache MSDP Source-Active Cache - 3 entries GroupAddr SourceAddr RPAddr LearnedFrom 229.0.50.2 24.0.50.2 200.0.0.50 10.0.50.2 229.0.50.3 24.0.50.3 200.0.0.50 10.0.50.2 229.0.50.4 24.0.50.4 200.0.0.50 10.0.50.
CONFIGURATION mode ip msdp redistribute list Example of Verifying the System is not Caching Local Sources When you apply this filter, the SA cache is not affected immediately. When sources that are denied by the ACL time out, they are not refreshed. Until they time out, they continue to reside in the cache. To apply the redistribute filter to entries already present in the SA cache, first clear the SA cache. You may optionally store denied sources in the rejected SA cache.
! ip access-list extended myremotefilter seq 5 deny ip host 239.0.0.1 host 10.11.4.2 R3_E600(conf)#do show ip msdp sa-cache MSDP Source-Active Cache - 1 entries GroupAddr SourceAddr RPAddr LearnedFrom 239.0.0.1 10.11.4.2 192.168.0.1 192.168.0.1 R3_E600(conf)#do show ip msdp sa-cache R3_E600(conf)# R3_E600(conf)#do show ip msdp peer Expire 1 UpTime 00:03:59 Peer Addr: 192.168.0.1 Local Addr: 0.0.0.
To display the configured SA filters for a peer, use the show ip msdp peer command from EXEC Privilege mode. Logging Changes in Peership States To log changes in peership states, use the following command. • Log peership state changes. CONFIGURATION mode ip msdp log-adjacency-changes Terminating a Peership MSDP uses TCP as its transport protocol. In a peering relationship, the peer with the lower IP address initiates the TCP session, while the peer with the higher IP address listens on port 639.
Clearing Peer Statistics To clear the peer statistics, use the following command. • Reset the TCP connection to the peer and clear all peer statistics. CONFIGURATION mode clear ip msdp peer peer-address Example of the clear ip msdp peer Command and Verifying Statistics are Cleared R3_E600(conf)#do show ip msdp peer Peer Addr: 192.168.0.1 Local Addr: 192.168.0.
03:17:10 : MSDP-0: Peer 192.168.0.3, 03:17:27 : MSDP-0: Peer 192.168.0.3, Input (S,G) filter: none Output (S,G) filter: none rcvd Keepalive msg sent Source Active msg MSDP with Anycast RP Anycast RP uses MSDP with PIM-SM to allow more than one active group to use RP mapping.
Figure 84. MSDP with Anycast RP Configuring Anycast RP To configure anycast RP, use the following commands. 1. In each routing domain that has multiple RPs serving a group, create a Loopback interface on each RP serving the group with the same IP address. CONFIGURATION mode interface loopback 2. Make this address the RP for the group.
3. In each routing domain that has multiple RPs serving a group, create another Loopback interface on each RP serving the group with a unique IP address. CONFIGURATION mode interface loopback 4. Peer each RP with every other RP using MSDP, specifying the unique Loopback address as the connect-source. CONFIGURATION mode ip msdp peer 5. Advertise the network of each of the unique Loopback addresses throughout the network.
ip address 10.11.2.1/24 no shutdown ! interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.1.12/24 no shutdown ! interface Loopback 0 ip pim sparse-mode ip address 192.168.0.1/32 no shutdown ! interface Loopback 1 ip address 192.168.0.11/32 no shutdown ! router ospf 1 network 10.11.2.0/24 area 0 network 10.11.1.0/24 area 0 network 10.11.3.0/24 area 0 network 192.168.0.11/32 area 0 ! ip multicast-msdp ip msdp peer 192.168.0.3 connect-source Loopback 1 ip msdp peer 192.168.0.
redistribute static redistribute connected redistribute bgp 100 ! router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.3 ebgp-multihop 255 neighbor 192.168.0.3 no shutdown ! ip multicast-msdp ip msdp peer 192.168.0.3 connect-source Loopback 1 ip msdp peer 192.168.0.11 connect-source Loopback 1 ip msdp mesh-group AS100 192.168.0.11 ip msdp originator-id Loopback 1 ! ip route 192.168.0.3/32 10.11.0.32 ! ip pim rp-address 192.168.0.1 group-address 224.0.0.
MSDP Sample Configurations The following examples show the running-configurations described in this chapter. For more information, refer to the illustrations in the Related Configuration Tasks section. MSDP Sample Configuration: R1 Running-Config MSDP Sample Configuration: R2 Running-Config MSDP Sample Configuration: R3 Running-Config MSDP Sample Configuration: R4 Running-Config ip multicast-routing ! interface TenGigabitEthernet 1/1/1 ip pim sparse-mode ip address 10.11.3.
ip pim sparse-mode ip address 10.11.0.23/24 no shutdown ! interface Loopback 0 ip address 192.168.0.2/32 no shutdown ! router ospf 1 network 10.11.1.0/24 area 0 network 10.11.4.0/24 area 0 network 192.168.0.2/32 area 0 redistribute static redistribute connected redistribute bgp 100 ! router bgp 100 redistribute ospf 1 neighbor 192.168.0.3 remote-as 200 neighbor 192.168.0.3 ebgp-multihop 255 neighbor 192.168.0.3 update-source Loopback 0 neighbor 192.168.0.3 no shutdown ! ip route 192.168.0.3/32 10.11.0.
ip msdp peer 192.168.0.1 connect-source Loopback 0 ! ip route 192.168.0.2/32 10.11.0.23 ip multicast-routing ! interface TenGigabitEthernet 4/1/1 ip pim sparse-mode ip address 10.11.5.1/24 no shutdown ! interface TenGigabitEthernet 4/22/1 ip address 10.10.42.1/24 no shutdown ! interface TenGigabitEthernet 4/31/1 ip pim sparse-mode ip address 10.11.6.43/24 no shutdown ! interface Loopback 0 ip address 192.168.0.4/32 no shutdown ! router ospf 1 network 10.11.5.0/24 area 0 network 10.11.6.
29 Multiple Spanning Tree Protocol (MSTP) Multiple spanning tree protocol (MSTP) is supported on Dell Networking OS. Protocol Overview MSTP — specified in IEEE 802.1Q-2003 — is a rapid spanning tree protocol (RSTP)-based spanning tree variation that improves on per-VLAN spanning tree plus (PVST+). MSTP allows multiple spanning tree instances and allows you to map many VLANs to one spanning tree instance to reduce the total number of required instances.
Spanning Tree Variations The Dell Networking OS supports four variations of spanning tree, as shown in the following table. Table 50. Spanning Tree Variations Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information The following describes the MSTP implementation information.
• Flush MAC Addresses after a Topology Change • Debugging and Verifying MSTP Configurations • Prevent Network Disruptions with BPDU Guard • Enabling SNMP Traps for Root Elections and Topology Changes • Configuring Spanning Trees as Hitless Enable Multiple Spanning Tree Globally MSTP is not enabled by default. To enable MSTP globally, use the following commands.
Creating Multiple Spanning Tree Instances To create multiple spanning tree instances, use the following command. A single MSTI provides no more benefit than RSTP. To take full advantage of MSTP, create multiple MSTIs and map VLANs to them. • Create an MSTI. PROTOCOL MSTP mode msti Specify the keyword vlan then the VLANs that you want to participate in the MSTI. Examples of Configuring and Viewing MSTI The following examples shows the msti command.
Designated port id is 128.374, designated path cost 20000 Number of transitions to forwarding state 1 BPDU (MRecords): sent 93671, received 46843 The port is not in the Edge port mode Port 384 (TenGigabitEthernet 1/31/1) is alternate Discarding Port path cost 20000, Port priority 128, Port Identifier 128.384 Designated root has priority 32768, address 0001.e806.953e Designated bridge has priority 32768, address 0001.e809.c24a Designated port id is 128.
Interoperate with Non-Dell Networking OS Bridges Dell Networking OS supports only one MSTP region. A region is a combination of three unique qualities: • Name is a mnemonic string you assign to the region. The default region name on Dell Networking OS is null. • Revision is a 2-byte number. The default revision number on Dell Networking OS is 0. • VLAN-to-instance mapping is the placement of a VLAN in an MSTI.
Modifying Global Parameters The root bridge sets the values for forward-delay, hello-time, max-age, and max-hops and overwrites the values set on other MSTP bridges. • • • • Forward-delay — the amount of time an interface waits in the Listening state and the Learning state before it transitions to the Forwarding state. Hello-time — the time interval in which the bridge sends MSTP bridge protocol data units (BPDUs).
The default is 20. Example of the forward-delay Parameter To view the current values for MSTP parameters, use the show running-config spanning-tree mstp command from EXEC privilege mode.
For the default, refer to the default values shown in the table.. 2. Change the port priority of an interface. INTERFACE mode spanning-tree msti number priority priority The range is from 0 to 240, in increments of 16. The default is 128. To view the current values for these interface parameters, use the show config command from INTERFACE mode. Configuring an EdgePort The EdgePort feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner.
* Disabling global spanning tree (using the no spanning-tree command in CONFIGURATION mode). Example of Enabling an EdgePort on an Interface To verify that EdgePort is enabled, use the show config command from INTERFACE mode.
Figure 86. MSTP with Three VLANs Mapped to Two Spanning Tree Instances Router 1 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 1/21,31/1 no shutdown Router 2 Running-Configuration This example uses the following steps: 1. Enable MSTP globally and set the region name and revision map MSTP instances to the VLANs. 2. Assign Layer-2 interfaces to the MSTP topology. 3. Create VLANs mapped to MSTP instances tag interfaces to the VLANs.
name Tahiti revision 123 MSTI 1 VLAN 100 MSTI 2 VLAN 200,300 ! (Step 2) interface TenGigabitEthernet 3/11/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/21/1 no ip address switchport no shutdown ! (Step 3) interface Vlan 100 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 3/11/1,21/1 no shutdown SFTOS Example Running-Conf
(Step 3) interface vlan 100 tagged 1/0/31 tagged 1/0/32 exit interface vlan 200 tagged 1/0/31 tagged 1/0/32 exit interface vlan 300 tagged 1/0/31 tagged 1/0/32 exit Debugging and Verifying MSTP Configurations To debut and verify MSTP configuration, use the following commands. • Display BPDUs. EXEC Privilege mode • debug spanning-tree mstp bpdu Display MSTP-triggered topology change messages.
– Are there “extra” MSTP instances in the Sending or Received logs? This may mean that an additional MSTP instance was configured on one router but not the others. The following example shows the show run spanning-tree mstp command. Dell#show run spanning-tree mstp ! protocol spanning-tree mstp name Tahiti revision 123 MSTI 1 VLAN 100 MSTI 2 VLAN 200,300 The following example shows viewing the debug log of a successful MSTP configuration.
INST 2: Flags: 0x70, Reg Root: 32768:0001.e8d5.
Multicast Features 30 NOTE: Multicast routing is supported on secondary IP addresses; it is not supported on IPv6. NOTE: Multicast routing is supported across default and non-default VRFs. The Dell Networking operating system (OS) supports the following multicast protocols: • PIM Sparse-Mode (PIM-SM) • Internet Group Management Protocol (IGMP) • Multicast Source Discovery Protocol (MSDP) Enabling IP Multicast Prior to enabling any multicast protocols, you must enable multicast routing.
Protocol Ethernet Address 01:00:5e:00:00:06 RIP 01:00:5e:00:00:09 NTP 01:00:5e:00:01:01 VRRP 01:00:5e:00:00:12 PIM-SM 01:00:5e:00:00:0d • The Dell Networking OS implementation of MTRACE is in accordance with IETF draft draft-fennertraceroute-ipm. • Multicast is not supported on secondary IP addresses. • If you enable multicast routing, Egress L3 ACL is not applied to multicast data traffic. Multicast Policies Dell Networking OS offers parallel multicast features for IPv4.
be learnt until TIB level falls below low watermark. 3w1d13h: %RPM0-P:RP2 %PIM-3-PIM_TIB_LIMIT: PIM TIB below low watermark. Route learning will begin. To limit the number of multicast routes, use the following command. • Limit the total number of multicast routes on the system. CONFIGURATION mode ip multicast-limit The range if from 1 to 16000. The default is 4000. NOTE: The IN-L3-McastFib CAM partition is used to store multicast routes and is a separate hardware limit that exists per port-pipe.
Figure 87. Preventing a Host from Joining a Group The following table lists the location and description shown in the previous illustration. Table 52. Preventing a Host from Joining a Group — Description Location Description 1/21/1 • • • • Interface TenGigabitEthernet 1/21/1 ip pim sparse-mode ip address 10.11.12.
Location Description • • ip address 10.11.13.1/24 no shutdown 2/1/1 • • • • Interface TenGigabitEthernet 2/1/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11/1 • • • • Interface TenGigabitEthernet 2/11/1 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31/1 • • • • Interface TenGigabitEthernet 2/31/1 ip pim sparse-mode ip address 10.11.23.1/24 no shutdown 3/1/1 • • • • Interface TenGigabitEthernet 3/1/1 ip pim sparse-mode ip address 10.11.5.
Preventing a PIM Router from Forming an Adjacency To prevent a router from participating in PIM (for example, to configure stub multicast routing), use the following command. • Prevent a router from participating in PIM. INTERFACE mode ip pim neighbor-filter Setting a Threshold for Switching to the SPT The functionality to specify a threshold for switchover to the shortest path trees (SPTs) is available on the platform.
created for group 239.0.0.1 in the routing table, but no outgoing interfaces are listed. R2 has no filter, so it is allowed to forward both groups. As a result, Receiver 1 receives only one transmission, while Receiver 2 receives duplicate transmissions. Figure 88. Preventing a Source from Transmitting to a Group The following table lists the location and description shown in the previous illustration. Table 54.
Location Description • no shutdown 1/31/1 • • • • Interface TenGigabitEthernet 1/31/1 ip pim sparse-mode ip address 10.11.13.1/24 no shutdown 2/1/1 • • • • Interface TenGigabitEthernet 2/1/1 ip pim sparse-mode ip address 10.11.1.1/24 no shutdown 2/11/1 • • • • Interface TenGigabitEthernet 2/11/1 ip pim sparse-mode ip address 10.11.12.2/24 no shutdown 2/31/1 • • • • Interface TenGigabitEthernet 2/31 ip pim sparse-mode ip address 10.11.23.
Location Description • no shutdown Preventing a PIM Router from Processing a Join To permit or deny PIM Join/Prune messages on an interface using an extended IP access list, use the following command. NOTE: Dell Networking recommends not using the ip pim join-filter command on an interface between a source and the RP router.
Object Tracking 31 IPv4/IPv6 object tracking is available on Dell Networking OS. Object tracking allows the Dell Networking Operating System (OS) client processes, such as virtual router redundancy protocol (VRRP), to monitor tracked objects (for example, interface or link status) and take appropriate action when the state of an object changes. NOTE: In Dell Networking OS release version 8.4.1.0, object tracking is supported only on VRRP.
Figure 89. Object Tracking Example When you configure a tracked object, such as an IPv4/IPv6 a route or interface, you specify an object number to identify the object. Optionally, you can also specify: • UP and DOWN thresholds used to report changes in a route metric. • A time delay before changes in a tracked object’s state are reported to a client. Track Layer 2 Interfaces You can create an object to track the line-protocol state of a Layer 2 interface.
• The Layer 3 status of an interface goes DOWN when its Layer 2 status goes down or the IP address is removed from the routing table. Track IPv4 and IPv6 Routes You can create an object that tracks an IPv4 or IPv6 route entry in the routing table. Specify a tracked route by its IPv4/IPv6 address and prefix-length, and optionally, by a virtual routing and forwarding (VRF) instance name if the route to be tracked is part of a VRF. The next-hop address is not part of the definition of the tracked object.
The tracking process uses a protocol-specific resolution value to convert the actual metric in the routing table to a scaled metric in the range from 0 to 255. The resolution value is user-configurable and calculates the scaled metric by dividing a route's cost by the resolution value set for the route type: • For intermediate system to intermediate system (ISIS), you can set the resolution in the range from 1 to 1000, where the default is 10.
For a complete listing of all commands related to object tracking, refer to the Dell Networking OS Command Line Interface Reference Guide. Tracking a Layer 2 Interface You can create an object that tracks the line-protocol state of a Layer 2 interface and monitors its operational status (UP or DOWN). You can track the status of any of the following Layer 2 interfaces: • • 1 Gigabit Ethernet: Enter gigabitethernet slot/port in the track interface interface command (refer to Step 1).
Example of Configuring Object Tracking Dell(conf)#track 100 interface tengigabitethernet 7/1/1 line-protocol Dell(conf-track-100)#delay up 20 Dell(conf-track-100)#description San Jose data center Dell(conf-track-100)#end Dell#show track 100 Track 100 Interface TenGigabitEthernet 7/1/1 line-protocol Description: San Jose data center Tracking a Layer 3 Interface You can create an object that tracks the routing status of an IPv4 or IPv6 Layer 3 interface.
The default is 0. 3. (Optional) Identify the tracked object with a text description. OBJECT TRACKING mode description text The text string can be up to 80 characters. 4. (Optional) Display the tracking configuration and the tracked object’s status.
The UP/DOWN state of the route is determined by the entry of the next-hop address in the ARP cache. A tracked route is considered to be reachable if there is an ARP cache entry for the route's next-hop address. If the next-hop address in the ARP cache ages out for a route tracked for its reachability, an attempt is made to regenerate the ARP cache entry to see if the next-hop address appears before considering the route DOWN.
(Optional) E-Series only: For an IPv4 route, you can enter a VRF name to specify the virtual routing table to which the tracked route belongs. 2. (Optional) Configure the time delay used before communicating a change in the status of a tracked route. OBJECT TRACKING mode delay {[up seconds] [down seconds]} Valid delay times are from 0 to 180 seconds. The default is 0. 3. (Optional) Identify the tracked object with a text description.
Tracking a Metric Threshold Use the following commands to configure object tracking on the metric threshold of an IPv4 or IPv6 route. To remove object tracking, use the no track object-id command. 1. (Optional) Reconfigure the default resolution value used by the specified protocol to scale the metric for IPv4 or IPv6 routes. CONFIGURATION mode track resolution {ip route | ipv6 route} {isis resolution-value | ospf resolution-value} The range of resolution values is: • 2. ISIS routes - 1 to 1000.
The default UP threshold is 254. The routing state is UP if the scaled route metric is less than or equal to the UP threshold. The defult DOWN threshold is 255. The routing state is DOWN if the scaled route metric is greater than or equal to the DOWN threshold. 6. (Optional) Display the tracking configuration. EXEC Privilege mode show track object-id 7. Example of the track ip route metric threshold Command Example of the track ipv6 route metric threshold Command Dell(conf)#track 6 ip route 2.1.1.
IPv6 route 2040::/64 metric threshold Metric threshold is Up (STATIC/0/0) 5 changes, last change 00:02:16 Metric threshold down 255 up 254 First-hop interface is TenGigabitEthernet 1/2/1 Tracked by: VRRP TenGigabitEthernet 2/30/1 IPv6 VRID 1 Track 3 IPv6 route 2050::/64 reachability Reachability is Up (STATIC) 5 changes, last change 00:02:16 First-hop interface is TenGigabitEthernet 1/2/1 Tracked by: VRRP TenGigabitEthernet 2/30/1 IPv6 VRID 1 Track 4 Interface TenGigabitEthernet 1/4/1 ip routing IP routing
track 4 interface TenGigabitEthernet 1/4/1 ip routing track 5 ip route 192.168.0.
Open Shortest Path First (OSPFv2 and OSPFv3) 32 Open shortest path first (OSPFv2 for IPv4) and OSPF version 3 (OSPF for IPv6) are supported on Dell Networking OS. This chapter provides a general description of OSPFv2 (OSPF for IPv4) and OSPFv3 (OSPF for IPv6) as supported in the Dell Networking Operating System (OS). NOTE: The fundamental mechanisms of OSPF (flooding, DR election, area support, SPF calculations, and so on) are the same between OSPFv2 and OSPFv3.
You can divide an AS into a number of areas, which are groups of contiguous networks and attached hosts. Routers with multiple interfaces can participate in multiple areas. These routers, called area border routers (ABRs), maintain separate databases for each area. Areas are a logical grouping of OSPF routers identified by an integer or dotted-decimal number. Areas allow you to further organize your routers within in the AS. One or more areas are required within the AS.
An OSPF backbone is responsible for distributing routing information between areas. It consists of all area border routers, networks not wholly contained in any area, and their attached routers. NOTE: If you configure two non-backbone areas, then you must enable the B bit in OSPF. The backbone is the only area with a default area number. All other areas can have their Area ID assigned in the configuration. In the previous example, Routers A, B, C, G, H, and I are the Backbone.
Figure 91. OSPF Routing Examples Backbone Router (BR) A backbone router (BR) is part of the OSPF Backbone, Area 0. This includes all ABRs. It can also include any routers that connect only to the backbone and another ABR, but are only part of Area 0, such as Router I in the previous example.
Area Border Router (ABR) Within an AS, an area border router (ABR) connects one or more areas to the backbone. The ABR keeps a copy of the link-state database for every area it connects to, so it may keep multiple copies of the link state database. An ABR takes information it has learned on one of its attached areas and can summarize it before sending it out on other areas it is connected to. An ABR can connect to many areas in an AS, and is considered a member of each area it connects to.
• Type 1: Router LSA — The router lists links to other routers or networks in the same area. Type 1 LSAs are flooded across their own area only. The link-state ID of the Type 1 LSA is the originating router ID. • Type 2: Network LSA — The DR in an area lists which routers are joined within the area. Type 2 LSAs are flooded across their own area only. The link-state ID of the Type 2 LSA is the IP interface address of the DR.
When you configure the LSA throttle timers, syslog messages appear, indicating the interval times, as shown below for the transmit timer (45000ms) and arrival timer (1000ms). Mar 15 09:46:00: %STKUNIT0-M:CP %OSPF-4-LSA_BACKOFF: OSPF Process 10,Router lsa id 2.2.2.2 router-id 2.2.2.2 is backed off to transmit after 45000ms Mar 15 09:46:06: %STKUNIT0-M:CP %OSPF-4-LSA_BACKOFF: OSPF Process 10,Router lsa id 3.3.3.3 rtrid 3.3.3.
OSPF with Dell Networking OS Dell Networking OS supports up to 10,000 OSPF routes for OSPFv2. Within that 10,000 routes, you can designate up to 8,000 routes as external and up to 2,000 as inter/intra area routes. Dell Networking OS version 9.4(0.0) and later support only one OSPFv2 process per VRF. Dell Networking OS version 9.7(0.0) and later support OSPFv3 in VRF. Also, on OSPFv3, Dell Networking OS supports only one OSPFv3 process per VRF.
period, neighbor OSPFv2 /v3 interfaces save the LSAs from the restarting OSPF interface. Helper neighbor routers continue to announce the restarting router as fully adjacent, as long as the network topology remains unchanged. When the restarting router completes its restart, it flushes the Type 9 and 11 LSAs, notifying its neighbors that the restart is complete. This notification happens before the grace period expires.
Multi-Process OSPFv2 with VRF Multi-process OSPF with VRF is supported on the Dell Networking OS. Multi-process OSPF allows multiple OSPFv2 processes on a single router. Multiple OSPFv2 processes allow for isolating routing domains, supporting multiple route policies and priorities in different domains, and creating smaller domains for easier management. The system supports up to 16 OSPFv2 processes. Each OSPFv2 process has a unique process ID and must have an associated router ID.
ACKs 2 (shown in bold) is printed only for ACK packets. 00:10:41 : OSPF(1000:00): Rcv. v:2 t:5(LSAck) l:64 Acks 2 rid:2.2.2.2 aid:1500 chk:0xdbee aut:0 auk: keyid:0 from:Vl 1000 LSType:Type-5 AS External id:160.1.1.0 adv:6.1.0.0 seq:0x8000000c LSType:Type-5 AS External id:160.1.2.0 adv:6.1.0.0 seq:0x8000000c 00:10:41 : OSPF(1000:00): Rcv. v:2 t:5(LSAck) l:64 Acks 2 rid:2.2.2.2 aid:1500 chk:0xdbee aut:0 auk: keyid:0 from:Vl 100 LSType:Type-5 AS External id:160.1.1.0 adv:6.1.0.
Examples of Setting and Viewing a Dead Interval In the following example, the dead interval is set at 4x the hello interval (shown in bold). Dell(conf)#int tengigabitethernet 2/2/1 Dell(conf-if-te-2/2/1)#ip ospf hello-interval 20 Dell(conf-if-te-2/2/1)#ip ospf dead-interval 80 Dell(conf-if-te-2/2/1)# In the following example, the dead interval is set at 4x the hello interval (shown in bold).
• Enabling OSPFv2 Authentication • Creating Filter Routes • Applying Prefix Lists • Redistributing Routes • Troubleshooting OSPFv2 1. Configure a physical interface. Assign an IP address, physical or Loopback, to the interface to enable Layer 3 routing. 2. Enable OSPF globally. Assign network area and neighbors. 3. Add interfaces or configure other attributes. 4. Set the time interval between when the switch receives a topology change and starts a shortest path first (SPF) calculation.
3. Return to CONFIGURATION mode to enable the OSPFv2 process globally. CONFIGURATION mode router ospf process-id [vrf {vrf name}] • vrf name: enter the keyword VRF and the instance name to tie the OSPF instance to the VRF. All network commands under this OSPF instance are later tied to the VRF instance. The range is from 0 to 65535. The OSPF process ID is the identifying number assigned to the OSPF process. The router ID is the IP address associated with the OSPF process.
Assigning an OSPFv2 Area After you enable OSPFv2, assign the interface to an OSPF area. Set up OSPF areas and enable OSPFv2 on an interface with the network command. You must have at least one AS area: Area 0. This is the backbone area. If your OSPF network contains more than one area, configure a backbone area (Area ID 0.0.0.0). Any area besides Area 0 can have any number ID assigned to it. The OSPFv2 process evaluates the network commands in the order they are configured.
Dell(conf-router_ospf-1)#network 20.20.20.20/24 area 2 Dell(conf-router_ospf-1)# Dell# Dell Networking recommends using the interface IP addresses for the OSPFv2 router ID for easier management and troubleshooting. To view the configuration, use the show config command in CONFIGURATION ROUTER OSPF mode. OSPF, by default, sends hello packets out to all physical interfaces assigned an IP address that is a subset of a network on which OSPF is enabled.
Loopback interface is treated as a stub Host. Dell# Configuring Stub Areas OSPF supports different types of LSAs to help reduce the amount of router processing within the areas. Type 5 LSAs are not flooded into stub areas; the ABR advertises a default route into the stub area to which it is attached. Stub area routers use the default route to reach external destinations. To ensure connectivity in your OSPFv2 network, never configure the backbone area as a stub area.
Enabling Passive Interfaces A passive interface is one that does not send or receive routing information. Enabling passive interface suppresses routing updates on an interface. Although the passive interface does not send or receive routing updates, the network on that interface is still included in OSPF updates sent via other interfaces. To suppress the interface’s participation on an OSPF interface, use the following command. This command stops the router from sending updates on that interface.
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 No Hellos (Passive interface) Neighbor Count is 0, Adjacent neighbor count is 0 Loopback 45 is up, line protocol is up Internet Address 10.1.1.23/24, Area 2.2.2.2 Process ID 34, Router ID 10.1.2.100, Network Type LOOPBACK, Cost: 1 Enabling Fast-Convergence The fast-convergence CLI sets the minimum origination and arrival LSA parameters to zero (0), allowing rapid route calculation.
Dell##show ip ospf 1 Routing Process ospf 1 with ID 192.168.67.2 Supports only single TOS (TOS0) routes SPF schedule delay 5 secs, Hold time between two SPFs 10 secs Convergence Level 0 Min LSA origination 5 secs, Min LSA arrival 1 secs Number of area in this router is 0, normal 0 stub 0 nssa 0 Dell# Changing OSPFv2 Parameters on Interfaces In Dell Networking OS, you can modify the OSPF settings on the interfaces.
• NOTE: You can configure a maximum of six digest keys on an interface. Of the available six digest keys, the switches select the MD5 key that is common. The remaining MD5 keys are unused. Change the priority of the interface, which is used to determine the Designated Router for the OSPF broadcast network. CONFIG-INTERFACE mode ip ospf priority number • – number: the range is from 0 to 255 (the default is 1). Change the retransmission interval between LSAs.
Enabling OSPFv2 Authentication To enable or change various OSPF authentication parameters, use the following commands. • Set a clear text authentication scheme on the interface. CONFIG-INTERFACE mode ip ospf authentication-key key Configure a key that is a text string no longer than eight characters. • All neighboring routers must share password to exchange OSPF information. Set the authentication change wait time in seconds between 0 and 300 for the interface.
This setting is the time that an OSPFv2 router’s neighbors advertises it as fully adjacent, regardless of the synchronization state, during a graceful restart. OSPFv2 terminates this process when the grace period ends. 2. Enter the Router ID of the OSPFv2 helper router from which the router does not accept graceful restart assistance. CONFIG-ROUTEROSPF- id mode graceful-restart helper-reject router-id • • Planned-only — the OSPFv2 router supports graceful-restart for planned restarts only.
network 10.0.2.0/24 area 0 Dell# Creating Filter Routes To filter routes, use prefix lists. OSPF applies prefix lists to incoming or outgoing routes. Incoming routes must meet the conditions of the prefix lists. If they do not, OSPF does not add the route to the routing table. Configure the prefix list in CONFIGURATION PREFIX LIST mode prior to assigning it to the OSPF process. • Create a prefix list and assign it a unique name.
CONFIG-ROUTEROSPF-id mode redistribute {bgp | connected | isis | rip | static} [metric metric-value | metric-type type-value] [route-map map-name] [tag tag-value] Configure the following required and optional parameters: – bgp, connected, isis, rip, static: enter one of the keywords to redistribute those routes. – metric metric-value: the range is from 0 to 4294967295. – metric-type metric-type: 1 for OSPF external route type 1. 2 for OSPF external route type 2.
• View the summary of all OSPF process IDs enables on the router. EXEC Privilege mode • show running-config ospf View the summary information of the IP routes. EXEC Privilege mode • show ip route summary View the summary information for the OSPF database. EXEC Privilege mode • show ip ospf database View the configuration of OSPF neighbors connected to the local router. EXEC Privilege mode • show ip ospf neighbor View the LSAs currently in the queue.
Sample Configurations for OSPFv2 The following configurations are examples for enabling OSPFv2. These examples are not comprehensive directions. They are intended to give you some guidance with typical configurations. You can copy and paste from these examples to your CLI. To support your own IP addresses, interfaces, names, and so on, be sure that you make the necessary changes. Basic OSPFv2 Router Topology The following illustration is a sample basic OSPFv2 topology. Figure 93.
interface Loopback 30 ip address 192.168.100.100/24 no shutdown ! interface TenGigabitEthernet 3/1/1 ip address 10.1.13.3/24 no shutdown ! interface TenGigabitEthernet 3/2/1 ip address 10.2.13.3/24 no shutdown OSPF Area 0 — Te 2/1/1 and 2/2/1 router ospf 22222 network 192.168.100.0/24 area 0 network 10.2.21.0/24 area 0 network 10.2.22.0/24 area 0 ! interface Loopback 20 ip address 192.168.100.20/24 no shutdown ! interface TenGigabitEthernet 2/1/1 ip address 10.2.21.
NOTE: IPv6 and OSPFv3 do not support Multi-Process OSPF. You can only enable a single OSPFv3 process. Set the time interval between when the switch receives a topology change and starts a shortest path first (SPF) calculation.
Assigning Area ID on an Interface To assign the OSPFv3 process to an interface, use the following command. The ipv6 ospf area command enables OSPFv3 on an interface and places the interface in the specified area. Additionally, the command creates the OSPFv3 process with ID on the router. OSPFv2 requires two commands to accomplish the same tasks — the router ospf command to create the OSPF process, then the network area command to enable OSPFv2 on an interface.
Assigning OSPFv3 Process ID and Router ID to a VRF To assign, disable, or reset OSPFv3 on a non-default VRF, use the following commands. • Enable the OSPFv3 process on a non-default VRF and enter OSPFv3 mode. CONFIGURATION mode ipv6 router ospf {process ID}} • The process ID range is from 0 to 65535. Assign the router ID for this OSPFv3 process. CONF-IPV6-ROUTER-OSPF mode router-id {number} – number: the IPv4 address. The format is A.B.C.D.
passive-interface {interface slot/port/subport} Interface: identifies the specific interface that is passive. – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/ subport information. – For a 40-Gigabit Ethernet interface, enter the keyword fortyGigE then the slot/port information. – For a port channel interface, enter the keywords port-channel then a number. – For a VLAN interface, enter the keyword vlan then a number from 1 to 4094.
– always: indicate that default route information is always advertised. – metric metric-value: The range is from 0 to 4294967295. – metric-type metric-type: enter 1 for OSPFv3 external route type 1 OR 2 for OSPFv3 external route type 2. – route-map map-name: enter a name of a configured route map. Enabling OSPFv3 Graceful Restart For more information about graceful restart, refer to Graceful Restart.
• The default is both planned and unplanned restarts trigger an OSPFv3 graceful restart. Selecting one or the other mode restricts OSPFv3 to the single selected mode. Disable OSPFv3 graceful-restart. CONF-IPV6-ROUTER-OSPF mode no graceful-restart grace-period Displaying Graceful Restart To display information on the use and configuration of OSPFv3 graceful restart, enter any of the following commands. • Display the graceful-restart configuration for OSPFv2 and OSPFv3 (shown in the following example).
Originate New LSAS Rx New LSAS Ext LSA Count Rte Max Eq Cost Paths GR grace-period GR mode 73 114085 0 5 180 planned and unplanned Area 0 database summary Type Brd Rtr Count AS Bdr Rtr Count LSA count Summary LSAs Rtr LSA Count Net LSA Count Inter Area Pfx LSA Count Inter Area Rtr LSA Count Group Mem LSA Count Count/Status 2 2 12010 1 4 3 12000 0 0 The following example shows the show ipv6 ospf database grace-lsa command.
• HA — IPsec authentication header is used in packet authentication to verify that data is not altered during transmission and ensures that users are communicating with the intended individual or organization. Insert the authentication header after the IP header with a value of 51. AH provides integrity and validation of data origin by authenticating every OSPFv3 packet. For detailed information about the IP AH protocol, refer to RFC 4302.
– IPsec security associations (SAs) are supported only in Transport mode (Tunnel mode is not supported). – ESP with null encryption is supported for authenticating only OSPFv3 protocol headers. – ESP with non-null encryption is supported for full confidentiality. – 3DES, DES, AES-CBC, and NULL encryption algorithms are supported; encrypted and unencrypted keys are supported. NOTE: To encrypt all keys on a router, use the service password-encryption command in Global Configuration mode.
• no ipv6 ospf authentication null Display the configuration of IPsec authentication policies on the router. • show crypto ipsec policy Display the security associations set up for OSPFv3 interfaces in authentication policies. show crypto ipsec sa ipv6 Configuring IPsec Encryption on an Interface To configure, remove, or display IPsec encryption on an interface, use the following commands.
• Display the configuration of IPsec encryption policies on the router. • show crypto ipsec policy Display the security associations set up for OSPFv3 interfaces in encryption policies. show crypto ipsec sa ipv6 Configuring IPSec Authentication for an OSPFv3 Area To configure, remove, or display IPSec authentication for an OSPFv3 area, use the following commands.
NOTE: When you configure encryption using the area encryption command, you enable both IPsec encryption and authentication. However, when you enable authentication on an area using the area authentication command, you do not enable encryption at the same time. If you have enabled IPsec authentication in an OSPFv3 area using the area authentication command, you cannot use the area encryption command in the area at the same time.
• – name: displays configuration details about a specified policy. Display security associations set up for OSPFv3 links in IPsec authentication and encryption policies on the router. EXEC Privilege show crypto ipsec sa ipv6 [interface interface] To display information on the SAs used on a specific interface, enter interface interface, where interface is one of the following values: – For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/ subport information.
Outbound ESP Cipher Key : bbdd96e6eb4828e2e27bc3f9ff541e43faa759c9ef5706ba10345a1039ba8f8a Transform set : esp-128-aes esp-sha1-hmac The following example shows the show crypto ipsec sa ipv6 command.
• Are the adjacencies established correctly? • Did you configure the interfaces for Layer 3 correctly? • Is the router in the correct area type? • Did you include the routes in the OSPF database? • Did you include the OSPF routes in the routing table (not just the OSPF database)? Some useful troubleshooting commands are: • show ipv6 interfaces • show ipv6 protocols • debug ipv6 ospf events and/or packets • show ipv6 neighbors • show ipv6 routes Viewing Summary Information To get general
Policy-based Routing (PBR) 33 Policy-based Routing (PBR) allows a switch to make routing decisions based on policies applied to an interface. Overview When a router receives a packet, the router normally decides where to forward the packet based on the destination address in the packet, which is used to look up an entry in a routing table. However, in some cases, there may be a need to forward the packet based on other criteria: size, source, protocol type, destination, and so forth.
To enable a PBR, create a redirect list. Redirect lists are defined by rules, or routing policies.
Non-contiguous bitmasks for PBR allows more granular and flexible control over routing policies. You can include or exclude addresses that are in the middle of a subnet. You can enter bitmasks using the dotted decimal format. Dell#show ip redirect-list IP redirect-list rcl0: Defined as: seq 5 permit ip 200.200.200.200 200.200.200.200 199.199.199.199 199.199.199.199 seq 10 redirect 1.1.1.2 tcp 234.224.234.234 255.234.234.234 222.222.222.
seq 10 permit ip host 3.3.3.3 any seq 15 redirect 2.2.2.2 ip any any Create a Redirect List To create a redirect list, use the following commands. Create a redirect list by entering the list name. CONFIGURATION mode ip redirect-list redirect-list-name redirect-list-name: 16 characters. To delete the redirect list, use the no ip redirect-list command. The following example creates a redirect list by the name of xyz.
The redirect rule supports Non-contiguous bitmasks for PBR in the Destination router IP address The following example shows how to create a rule for a redirect list by configuring: • IP address of the next-hop router in the forwarding route • IP protocol number • Source address with mask information • Destination address with mask information Example: Creating a Rule Dell(conf-redirect-list)#redirect ? A.B.C.D Forwarding router's address Dell(conf-redirect-list)#redirect 3.3.3.
seq 20 redirect 10.1.1.3 ip 20.1.1.0/24 any Dell(conf-redirect-list)# NOTE: Starting with the Dell Networking OS version 9.4(0.0), the use of multiple recursive routes with the same source-address and destination-address combination in a redirect policy on an router. A recursive route is a route for which the immediate next-hop address is learned dynamically through a routing protocol and acquired through a route lookup in the routing table.
ip redirect-group xyz shutdown Dell(conf-if-te-1/1/1)# In addition to supporting multiple redirect-lists in a redirect-group, multiple redirect-groups are supported on a single interface. Dell Networking OS has the capability to support multiple groups on an interface for backup purposes. Show Redirect List Configuration To view the configuration redirect list configuration, use the following commands. 1. View the redirect list configuration and the associated interfaces.
Use the show ip redirect-list (without the list name) to display all the redirect-lists configured on the device. Dell#show ip redirect-list IP redirect-list rcl0: Defined as: seq 5 permit ip 200.200.200.200 200.200.200.200 199.199.199.199 199.199.199.199 seq 10 redirect 1.1.1.2 tcp 234.224.234.234 255.234.234.234 222.222.222.
Policy-based Routing (PBR) 687
34 PIM Sparse-Mode (PIM-SM) Protocol-independent multicast sparse-mode (PIM-SM) is supported on Dell Networking OS. PIM-SM is a multicast protocol that forwards multicast traffic to a subnet only after a request using a PIM Join message; this behavior is the opposite of PIM-Dense mode, which forwards multicast traffic to all subnets until a request to stop. Implementation Information The following information is necessary for implementing PIM-SM.
1. After receiving an IGMP Join message, the receiver gateway router (last-hop DR) creates a (*,G) entry in its multicast routing table for the requested group. The interface on which the join message was received becomes the outgoing interface associated with the (*,G) entry. 2. The last-hop DR sends a PIM Join message to the RP.
tree switchover latency by copying and forwarding the first (S,G) packet received on the SPT to the PIM task immediately upon arrival. The arrival of the (S,G) packet confirms for PIM that the SPT is created, and that it can prune itself from the shared tree. Important Point to Remember If you use a Loopback interface with a /32 mask as the RP, you must enable PIM Sparse-mode on the interface. Configuring PIM-SM Configuring PIM-SM is a three-step process. 1.
Examples of Viewing PIM-SM Information To display which interfaces are enabled with PIM-SM, use the show ip pim interface command from EXEC Privilege mode. Dell#show ip pim interface Address Interface Ver/ Mode 165.87.34.5 Te 1/10/1 v2/S 10.1.1.2 Vl 10 v2/S 20.1.1.5 Vl 20 v2/S 165.87.31.200 Vl 30 v2/S Nbr Count 0 1 1 1 Query Intvl 30 30 30 30 DR Prio 1 1 1 1 DR 165.87.34.5 10.1.1.2 20.1.1.5 165.87.31.
To configure a global expiry time or to configure the expiry time for a particular (S,G) entry, use the following commands. 1. Enable global expiry timer for S, G entries. CONFIGURATION mode ip pim sparse-mode sg-expiry-timer seconds The range is from 211 to 86,400 seconds. The default is 210. 2. Set the expiry time for a specific (S,G) entry (as shown in the following example). CONFIGURATION mode ip pim sparse-mode sg-expiry-timer seconds sg-list access-list-name The range is from 211 to 86,400 seconds.
Example of Viewing an RP on a Loopback Interface Dell#sh run int loop0 ! interface Loopback 0 ip address 1.1.1.1/32 ip pim sparse-mode no shutdown Dell#sh run pim ! ip pim rp-address 1.1.1.1 group-address 224.0.0.0/4 Overriding Bootstrap Router Updates PIM-SM routers must know the address of the RP for each group for which they have (*,G) entry. This address is obtained automatically through the bootstrap router (BSR) mechanism or a static RP configuration.
• Change the interval at which a router sends hello messages. INTERFACE mode • ip pim query-interval seconds Display the current value of these parameter. EXEC Privilege mode show ip pim interface Creating Multicast Boundaries and Domains A PIM domain is a contiguous set of routers that all implement PIM and are configured to operate within a common boundary defined by PIM multicast border routers (PMBRs). PMBRs connect each PIM domain to the rest of the Internet.
PIM Source-Specific Mode (PIM-SSM) 35 PIM source-specific mode (PIM-SSM) is supported on Dell Networking OS. PIM-SSM is a multicast protocol that forwards multicast traffic from a single source to a subnet. In the other versions of protocol independent multicast (PIM), a receiver subscribes to a group only. The receiver receives traffic not just from the source in which it is interested but from all sources sending to that group.
Configure PIM-SMM Configuring PIM-SSM is a two-step process. 1. Configure PIM-SMM. 2. Enable PIM-SSM for a range of addresses. Related Configuration Tasks • Use PIM-SSM with IGMP Version 2 Hosts Enabling PIM-SSM To enable PIM-SSM, follow these steps. 1. Create an ACL that uses permit rules to specify what range of addresses should use SSM. CONFIGURATION mode ip access-list standard name 2. Enter the ip pim ssm-range command and specify the ACL you created.
• When an SSM map is in place and Dell Networking OS cannot find any matching access lists for a group, it continues to create (*,G) entries because there is an implicit deny for unspecified groups in the ACL. • When you remove the mapping configuration, Dell Networking OS removes the corresponding (S,G) states that it created and re-establishes the original (*,G) states. • You may enter multiple ssm-map commands for different access lists.
Last report Group source Source address 10.11.5.2 00:00:01 received Join list Uptime Expires Never Interface Vlan 400 Group 239.0.0.1 Uptime 00:00:05 Expires Never Router mode INCLUDE Last reporter 10.11.4.2 Last reporter mode INCLUDE Last report received ALLOW Group source list Source address Uptime Expires 10.11.5.
Port Monitoring 36 Port monitoring is supported on Dell Networking OS. Mirroring is used for monitoring Ingress or Egress or both Ingress and Egress traffic on a specific port(s). This mirrored traffic can be sent to a port where a network sniffer can connect and monitor the traffic.
Port Monitoring The S6000–ON supports multiple source-destination statements in a single monitor session. The maximum number of source ports that can be supported in a session is 128. The maximum number of destination ports that can be supported is 4 per port pipe. In the following examples, ports 1/13/1, 1/14/1, 1/15/1, and 1/16/1 all belong to the same port-pipe. They are pointing to four different destinations (1/1/1, 1/2/1, 1/3/1, and 1/37/1).
Example of Viewing a Monitoring Session In the example below, 0/25 and 0/26 belong to Port-pipe 1. This port-pipe has the same restriction of only four destination ports, new or used.
show interface 2. Create a monitoring session using the command monitor session from CONFIGURATION mode, as shown in the following example. CONFIGURATION mode monitor session monitor session type rpm/erpm type is an optional keyword, required only for rpm and erpm 3. Specify the source and destination port and direction of traffic, as shown in the following example.
Figure 95. Port Monitoring Example Configuring Monitor Multicast Queue To configure monitor QoS multicast queue ID, use the following commands. 1. Configure monitor QoS multicast queue ID. CONFIGURATION mode monitor multicast-queue queue-id Dell(conf)#monitor multicast-queue 7 2. Verify information about monitor configurations.
Enabling Flow-Based Monitoring Flow-based monitoring is supported only on the S-Series platform. Flow-based monitoring conserves bandwidth by monitoring only specified traffic instead of all traffic on the interface. This feature is particularly useful when looking for malicious traffic. It is available for Layer 2 and Layer 3 ingress and egress traffic. You can specify traffic using standard or extended access-lists. 1. Enable flow-based monitoring for a monitoring session.
--------- ---------------- --------- ------0 Te 1/1/1 Te 1/2/1 rx interface Flow-based Remote Port Mirroring While local port monitoring allows you to monitor traffic from one or more source ports by directing it to a destination port on the same switch/router, remote port mirroring allows you to monitor Layer 2 and Layer 3 ingress and/or egress traffic on multiple source ports on different switches and forward the mirrored traffic to multiple destination ports on different switches.
Configuring Remote Port Mirroring Remote port mirroring requires a source session (monitored ports on different source switches), a reserved tagged VLAN for transporting mirrored traffic (configured on source, intermediate, and destination switches), and a destination session (destination ports connected to analyzers on destination switches).
• The L3 interface configuration should be blocked for RPM VLAN. • The member port of the reserved VLAN should have MTU and IPMTU value as MAX+4 (to hold the VLAN tag parameter). • To associate with source session, the reserved VLAN can have at max of only 4 member ports. • To associate with destination session, the reserved VLAN can have multiple member ports.
• A destination port for remote port mirroring cannot be used as a source port, including the session in which the port functions as the destination port. • A destination port cannot be used in any spanning tree instance. • The reserved VLAN used to transport mirrored traffic must be a L2 VLAN. L3 VLANs are not supported. • On a source switch on which you configure source ports for remote port mirroring, you can add only one port to the dedicated RPM VLAN which is used to transport mirrored traffic.
Step Command Purpose 1 configure terminal Enter global configuration mode. 2 monitor session type rpm The needs to be unique and not already defined in the box specifying type as 'rpm' defines a RPM session. 3 source Interface | Range Specify the port or list of ports that needs to be monitored 4 direction Specify rx, tx or both in case to monitor ingress/ egress or both ingress and egress packets on the specified port..
Dell(conf)#interface vlan 30 Dell(conf-if-vl-30)#mode remote-port-mirroring Dell(conf-if-vl-30)#tagged te 1/30/1 Dell(conf-if-vl-30)#exit Dell(conf)#interface port-channel 10 Dell(conf-if-po-10)#channel-member te 1/28/1 - 1/28/2 Dell(conf-if-po-10)#no shutdown Dell(conf-if-po-10)#exit Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source port-channel 10 dest remote-vlan 30 dir both Dell(conf-mon-sess-3)#no disable Dell(conf-mon-sess-3)# Dell(conf-mon-sess-3)#exit Dell(conf)#end Dell# Dell#show
Dell(conf)#monitor session 2 type rpm Dell(conf-mon-sess-2)#source remote-vlan 20 destination te 1/5/1 Dell(conf-mon-sess-2)#tagged destination te 1/5/1 Dell(conf-mon-sess-2)#exit Dell(conf)#monitor session 3 type rpm Dell(conf-mon-sess-3)#source remote-vlan 30 destination te 1/6/1 Dell(conf-mon-sess-3)#tagged destination te 1/6/1 Dell(conf-mon-sess-3)#end Dell# Dell#show monitor session SessID Source Destination Dir Mode Source IP ------ ------------------ ---- --------1 remote-vlan 10 Te 1/4/1 N/A N/A N/A
Configuring the Encapsulated Remote Port Mirroring The ERPM session copies traffic from the source ports/lags or source VLANs and forwards the traffic using routable GRE-encapsulated packets to the destination ip address specified in the session. Important: The steps to be followed for the ERPM Encapsulation : • Dell Networking OS supports ERPM Source session only. The Encapsulated packets terminate at the destination ip or at the analyzer.
4 direction Specify rx, tx or both in case to monitor ingress/egress or both ingress and egress packets on the specified port.. 5 erpm source-ip dest-ip Specify the source ip address and the destination ip where the packet needs to be sent. 6 flow-based enable Specify flow-based enable for mirroring on a flow by flow basis and also for vlan as source. 7 no disable No disable command is mandatory in order for a erpm session to be active.
ERPM Behavior on a typical Dell Networking OS The Dell Networking OS is designed to support only the Encapsulation of the data received / transmitted at the specified source port (Port A). An ERPM destination session / decapsulation of the ERPM packets at the destination Switch are not supported. As seen in the above figure, the packets received/transmitted on Port A will be encapsulated with an IP/GRE header plus a new L2 header and sent to the destination ip address (Port D’s ip address) on the sniffer.
– The Header that gets attached to the packet is 38 bytes long. In case of a packet with L3 VLAN, it would be 42 bytes long. The original payload /original mirrored data starts from the 39th byte in a given ERPM packet. The first 38/42 bytes of the header needs to be ignored/ chopped off. – Some tools support options to edit the capture file. We can make use of such features (for example: editcap ) and chop the ERPM header part and save it to a new trace file. This new file (i.e.
Per-VLAN Spanning Tree Plus (PVST+) 37 Per-VLAN spanning tree plus (PVST+) is supported on Dell Networking OS. Protocol Overview PVST+ is a variation of spanning tree — developed by a third party — that allows you to configure a separate spanning tree instance for each virtual local area network (VLAN). For more information about spanning tree, refer to the Spanning Tree Protocol (STP) chapter. Figure 96.
Table 55. Spanning Tree Variations Dell Networking OS Supports Dell Networking Term IEEE Specification Spanning Tree Protocol (STP) 802 .1d Rapid Spanning Tree Protocol (RSTP) 802 .1w Multiple Spanning Tree Protocol (MSTP) 802 .1s Per-VLAN Spanning Tree Plus (PVST+) Third Party Implementation Information • The Dell Networking OS implementation of PVST+ is based on IEEE Standard 802.1w. • The Dell Networking OS implementation of PVST+ uses IEEE 802.
PROTOCOL PVST mode protocol spanning-tree pvst 2. Enable PVST+. PROTOCOL PVST mode no disable Disabling PVST+ To disable PVST+ globally or on an interface, use the following commands. • Disable PVST+ globally. PROTOCOL PVST mode • disable Disable PVST+ on an interface, or remove a PVST+ parameter configuration. INTERFACE mode no spanning-tree pvst Example of Viewing PVST+ Configuration To display your PVST+ configuration, use the show config command from PROTOCOL PVST mode.
Figure 97. Load Balancing with PVST+ The bridge with the bridge value for bridge priority is elected root. Because all bridges use the default priority (until configured otherwise), the lowest MAC address is used as a tie-breaker. To increase the likelihood that a bridge is selected as the STP root, assign bridges a low non-default value for bridge priority. To assign a bridge priority, use the following command. • Assign a bridge priority.
Root Identifier has priority 4096, Address 0001.e80d.b6d6 Root Bridge hello time 2, max age 20, forward delay 15 Bridge Identifier has priority 4096, Address 0001.e80d.b6d6 Configured hello time 2, max age 20, forward delay 15 We are the root of VLAN 100 Current root has priority 4096, Address 0001.e80d.b6d6 Number of topology changes 5, last change occurred 00:34:37 ago on Te 1/32/1 Port 375 (TenGigabitEthernet 1/22/1) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.
• Change the max-age parameter. PROTOCOL PVST mode vlan max-age The range is from 6 to 40. The default is 20 seconds. The values for global PVST+ parameters are given in the output of the show spanning-tree pvst command. Modifying Interface PVST+ Parameters You can adjust two interface parameters (port cost and port priority) to increase or decrease the probability that a port becomes a forwarding port. • Port cost — a value that is based on the interface type.
spanning-tree pvst vlan priority. The range is from 0 to 240, in increments of 16. The default is 128. The values for interface PVST+ parameters are given in the output of the show spanning-tree pvst command, as previously shown. Configuring an EdgePort The EdgePort feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner.
PVST+ in Multi-Vendor Networks Some non-Dell Networking systems which have hybrid ports participating in PVST+ transmit two kinds of BPDUs: an 802.1D BPDU and an untagged PVST+ BPDU. Dell Networking systems do not expect PVST+ BPDU (tagged or untagged) on an untagged port. If this situation occurs, Dell Networking OS places the port in an Error-Disable state. This behavior might result in the network not converging.
extend system-id Example of Viewing the Extend System ID in a PVST+ Configuration Dell(conf-pvst)#do show spanning-tree pvst vlan 5 brief VLAN 5 Executing IEEE compatible Spanning Tree Protocol Root ID Priority 32773, Address 0001.e832.73f7 Root Bridge hello time 2, max age 20, forward delay 15 Bridge ID Priority 32773 (priority 32768 sys-id-ext 5), Address 0001.e832.
switchport no shutdown ! interface Vlan 100 no ip address tagged TenGigabitEthernet 2/12,32/1 no shutdown ! interface Vlan 200 no ip address tagged TenGigabitEthernet 2/12,32/1 no shutdown ! interface Vlan 300 no ip address tagged TenGigabitEthernet 2/12,32/1 no shutdown ! protocol spanning-tree pvst no disable vlan 200 bridge-priority 4096 Example of PVST+ Configuration (R3) interface TenGigabitEthernet 3/12/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 3/22/1 no ip address switchp
38 Quality of Service (QoS) Quality of service (QoS) is supported on Dell Networking OS. Differentiated service is accomplished by classifying and queuing traffic, and assigning priorities to those queues. Table 57.
Feature Direction Configure a Scheduler to Queue Egress Specify WRED Drop Precedence Egress Create Policy Maps Ingress + Egress Create Input Policy Maps Ingress Honor DSCP Values on Ingress Packets Ingress Honoring dot1p Values on Ingress Packets Ingress Create Output Policy Maps Egress Specify an Aggregate QoS Policy Egress Create Output Policy Maps Egress Enabling QoS Rate Adjustment Enabling StrictPriority Queueing Weighted Random Early Detection Egress Create WRED Profiles Egress
Figure 99. Dell Networking QoS Architecture Implementation Information The Dell Networking QoS implementation complies with IEEE 802.1p User Priority Bits for QoS Indication.
Port-Based QoS Configurations You can configure the following QoS features on an interface. • Setting dot1p Priorities for Incoming Traffic • Configuring Port-Based Rate Policing • Configuring Port-Based Rate Shaping Setting dot1p Priorities for Incoming Traffic Dell Networking OS places traffic marked with a priority in a queue based on the following table. If you set a dot1p priority for a port-channel, all port-channel members are configured with the same value.
You can configure service-class dynamic dot1p from CONFIGURATION mode, which applies the configuration to all interfaces. A CONFIGURATION mode service-class dynamic dot1p entry supersedes any INTERFACE entries. For more information, refer to Mapping dot1p Values to Service Queues. NOTE: You cannot configure service-policy input and service-class dynamic dot1p on the same interface. • Honor dot1p priorities on ingress traffic.
Configuring Port-Based Rate Shaping Dell Networking OS Behavior: Rate shaping is effectively rate limiting because of its smaller buffer size. Rate shaping on tagged ports is slightly greater than the configured rate and rate shaping on untagged ports is slightly less than configured rate. Rate shaping buffers, rather than drops, traffic exceeding the specified rate until the buffer is exhausted.
Policy-Based QoS Configurations Policy-based QoS configurations consist of the components shown in the following example. Figure 100. Constructing Policy-Based QoS Configurations Classify Traffic Class maps differentiate traffic so that you can apply separate quality of service policies to different types of traffic. For both class maps, Layer 2 and Layer 3, Dell Networking OS matches packets against match criteria in the order that you configure them.
Creating a Layer 3 Class Map A Layer 3 class map differentiates ingress packets based on the DSCP value or IP precedence, and characteristics defined in an IP ACL. You can also use VLAN IDs and VRF IDs to classify the traffic using layer 3 class-maps. You may specify more than one DSCP and IP precedence value, but only one value must match to trigger a positive match for the class map. NOTE: IPv6 and IP-any class maps cannot match on ACLs or VLANs. Use step 1 or step 2 to start creating a Layer 3 class map.
The following example matches IPv6 traffic with a DSCP value of 40. Dell(conf)# class-map match-all test Dell(conf-class-map)# match ipv6 dscp 40 The following example matches IPv4 and IPv6 traffic with a precedence value of 3. Dell(conf)# class-map match-any test1 Dell(conf-class-map)#match ip-any precedence 3 Creating a Layer 2 Class Map All class maps are Layer 3 by default; however, you can create a Layer 2 class map by specifying the layer2 option with the class-map command.
In cases such as these, where class-maps with overlapping ACL rules are applied to different queues, use the keyword order. Dell Networking OS writes to the CAM ACL rules with lower order numbers (order numbers closer to 0) before rules with higher order numbers so that packets are matched as you intended. • Specify the order in which you want to apply ACL rules using the keyword order. order The order can range from 0 to 254. By default, all ACL rules have an order of 255.
Dell# show cam layer3-qos interface tengigabitethernet 2/4/1 Cam Port Dscp Proto Tcp Src Dst SrcIp DstIp DSCP Queue Index Flag Port Port Marking ----------------------------------------------------------------------20416 1 18 IP 0x0 0 0 23.64.0.5/32 0.0.0.0/0 20 2 20417 1 18 IP 0x0 0 0 0.0.0.0/0 0.0.0.0/0 0 20418 1 0 IP 0x0 0 0 23.64.0.2/32 0.0.0.0/0 10 1 20419 1 0 IP 0x0 0 0 0.0.0.0/0 0.0.0.0/0 0 20420 1 0 IP 0x0 0 0 23.64.0.3/32 0.0.0.0/0 12 1 20421 1 0 IP 0x0 0 0 0.0.0.0/0 0.0.0.
• If single rate two color policer is configured along with this feature, then by default all packets less than PIR would be considered as “Green” But ‘Green’ packets matching the specific match criteria for which ‘color-marking’ is configured will be over-written and marked as “Yellow”.
Configuring Policy-Based Rate Policing To configure policy-based rate policing, use the following command. • Configure rate police ingress traffic. QOS-POLICY-IN mode rate-police Setting a dot1p Value for Egress Packets To set a dot1p value for egress packets, use the following command. • Set a dscp or dot1p value for egress packets.
Allocating Bandwidth to Queue Schedule packets for egress based on Deficit Round Robin (DRR). These strategies both offer a guaranteed data rate. The following table lists the default bandwidth weights for each queue, and their equivalent percentage which is derived by dividing the bandwidth weight by the sum of all queue weights. Table 59. Default Bandwidth Weights Queue Default Weight Equivalent Percentage 0 1 6.67% 1 2 13.33% 2 4 26.67% 3 8 53.33% • Allocate bandwidth to queues.
• All DSCP values that are not specified as yellow or red are colored green (low drop precedence). • A DSCP value cannot be in both the yellow and red lists. Setting the red or yellow list with any DSCP value that is already in the other list results in an error and no update to that DSCP list is made. • Each color map can only have one list of DSCP values for each color; any DSCP values previously listed for that color that are not in the new DSCP list are colored green.
yellow 4,7 red 20,30 Dscp-color-map mapTWO yellow 16,55 Display a specific DSCP color map. Dell# show qos dscp-color-map mapTWO Dscp-color-map mapTWO yellow 16,55 Displaying a DSCP Color Policy Configuration To display the DSCP color policy configuration for one or all interfaces, use the show qos dscpcolor-policy {summary [interface] | detail {interface}} command in EXEC mode. summary: Displays summary information about a color policy on one or more interfaces.
policy-map-input Create a Layer 2 input policy map by specifying the keyword layer2 with the policy-map-input command. 2. After you create an input policy map, do one or more of the following: Applying a Class-Map or Input QoS Policy to a Queue Applying an Input QoS Policy to an Input Policy Map Honoring DSCP Values on Ingress Packets Honoring dot1p Values on Ingress Packets 3. Apply the input policy map to an interface.
DSCP/CP hex range (XXX)xxx DSCP Definition Traditional IP Precedence Internal Queue ID DSCP/CP decimal 011XXX AF3 Flash 1 16–31 010XXX AF2 Immediate 1 16–31 001XXX AF1 Priority 0 0–15 000XXX BE (Best Effort) Best Effort 0 0–15 Table 61.
dot1p Queue ID 7 7 The dot1p value is also honored for frames on the default VLAN. For more information, refer to PriorityTagged Frames on the Default VLAN. • Enable the trust dot1p feature. POLICY-MAP-IN mode trust dot1p Mapping dot1p Values to Service Queues All traffic is by default mapped to the same queue, Queue 0. If you honor dot1p on ingress, you can create service classes based the queueing strategy in Honoring dot1p Values on Ingress Packets.
service-policy input Specify the keyword layer2 if the policy map you are applying a Layer 2 policy map. Creating Output Policy Maps 1. Create an output policy map. CONFIGURATION mode policy-map-output 2. After you create an output policy map, do one or more of the following: Applying an Output QoS Policy to a Queue Specifying an Aggregate QoS Policy Applying an Output Policy Map to an Interface 3. Apply the policy map to an interface.
Enabling QoS Rate Adjustment By default while rate limiting, policing, and shaping, Dell Networking OS does not include the Preamble, SFD, or the IFG fields. These fields are overhead; only the fields from MAC destination address to the CRC are used for forwarding and are included in these rate metering calculations.
Queue Classification Requirements for PFC Functionality Queue classification requirements for PFC functionality are mentioned below: • On untagged ports, Queue classification must be based on DSCP. • On tagged ports, Queue classification must be based on Dot1p. Layer 3 classification configurations should not be present on the port. • On hybrid ports, Queue classification can be based on either Dot1p (for tagged packets) or DSCP (for untagged packets) but not both.
In switch B, global dot1p honoring should be enabled, this will queue the packets on queue 1 as the dot1p will be 2 and PFC should be enabled for priority 2. The policy map applied on switch A need not be enabled in switch B. When queue 1 in switch B gets congested, PFC will be generated for priority 2 which will be honored in switch A.
Figure 101. Packet Drop Rate for WRED You can create a custom WRED profile or use one of the five pre-defined profiles. Creating WRED Profiles To create WRED profiles, use the following commands. 1. Create a WRED profile. CONFIGURATION mode wred-profile 2. Specify the minimum and maximum threshold values. WRED mode threshold Applying a WRED Profile to Traffic After you create a WRED profile, you must specify to which traffic Dell Networking OS should apply the profile.
• Assign a WRED profile to either yellow or green traffic. QOS-POLICY-OUT mode wred Displaying Default and Configured WRED Profiles To display the default and configured WRED profiles, use the following command. • Display default and configured WRED profiles and their threshold values. EXEC mode show qos wred-profile Displaying WRED Drop Statistics To display WRED drop statistics, use the following command. • Display the number of packets Dell Networking OS the WRED profile drops.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Dell# UCAST UCAST UCAST UCAST UCAST UCAST UCAST UCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST MCAST 0 0 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13056 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pre-Calculating Available QoS CAM Space Before Dell Networking OS version 7.3.
• Status — indicates whether the specified policy-map can be completely applied to an interface in the port-pipe. – Allowed — indicates that the policy-map can be applied because the estimated number of CAM entries is less or equal to the available number of CAM entries. The number of interfaces in the port-pipe to which the policy-map can be applied is given in parentheses.
You can use the rate-shape pps peak-rate burst-packets command in the QoS Policy Out Configuration mode to configure the peak rate and burst size as a measure of pps. Alternatively, you can use the rate shape kbps peak-rate burst-KB command to configure the peak rate and peak burst size as a measure of bytes.
might be greater than others. In this case, the space on the buffer and traffic manager (BTM) (ingress or egress) can be consumed by only one or few types of traffic, leaving no space for other types. You can apply a WRED profile to a policy-map so that the specified traffic can be prevented from consuming too much of the BTM resources. WRED drops packets when the average queue length exceeds the configured threshold value to signify congestion.
You can define WRED profiles and weight on each of the global service-pools for both loss-based and lossless (PFC) service- pools. The following events occur when you configure WRED and ECN on global service-pools: • If WRED/ECN is enabled on the global service-pool with threshold values and if it is not enabled on the queues, WRED/ECN are not effective based on global service-pool WRED thresholds.
Queue Configuration Service-Pool Configuration WRED Threshold Relationship Q threshold = QT, Service pool threshold = SP-T Expected Functionality SP-T < Q-T Same as above but ECN marking starts above SP-T. Configuring WRED and ECN Attributes The functionality to configure a weight factor for the WRED and ECN functionality for backplane ports is supported on the Z9000 platform. WRED drops packets when the average queue length exceeds the configured threshold value to signify congestion.
Guidelines for Configuring ECN for Classifying and ColorMarking Packets Keep the following points in mind while configuring the marking and mapping of incoming packets using ECN fields in IPv4 headers: • Currently Dell Networking OS supports matching only the following TCP flags: – ACK – FIN – SYN – PSH – RST – URG In the existing software, ECE/CWR TCP flag qualifiers are not supported.
policy-map-input ecn_0_pmap service-queue 0 class-map ecn_0_cmap Applying this policy-map “ecn_0_pmap” will mark all the packets with ‘ecn == 0’ as yellow packets on queue0 (default queue). Classifying Incoming Packets Using ECN and Color-Marking Explicit Congestion Notification (ECN) is a capability that enhances WRED by marking the packets instead of causing WRED to drop them when the threshold value is exceeded.
3. Marking For the L3 Routed packets, the DSCP marking is the only marking action supported in the software. As a part of this feature, the additional marking action to set the “color” of the traffic will be provided. Until Release 9.3(0.0), the software has the capability to qualify only on the 6-bit DSCP part of the ToS field in IPv4 Header. You can now accept and process incoming packets based on the 2-bit ECN part of the ToS field in addition to the DSCP categorization.
• set a new DSCP for the packet • set the packet color as ‘yellow’ • set the packet color as ‘yellow’ and set a new DSCP for the packet This marking action to set the color of the packet is allowed only on the ‘match-any’ logical operator of the class-map.
seq 15 permit any dscp 50 ecn 3 ! ip access-list standard dscp_40_ecn seq 5 permit any dscp 40 ecn 1 seq 10 permit any dscp 40 ecn 2 seq 15 permit any dscp 40 ecn 3 ! ip access-list standard dscp_50_non_ecn seq 5 permit any dscp 50 ecn 0 ! ip access-list standard dscp_40_non_ecn seq 5 permit any dscp 40 ecn 0 ! class-map match-any class_dscp_40 match ip access-group dscp_40_non_ecn set-color yellow match ip access-group dscp_40_ecn ! class-map match-any class_dscp_50 match ip access-group dscp_50_non_ecn se
Managing Hardware Buffer Statistics Bufffer statistics tracking utility is supported on the platform. The memory management unit (MMU) on S6000 platform is 12.2 MB in size. It contains approximately 60,000 cells, each of which is 208 bytes in size. MMU also has another portion of 3 MB allocated to it. The entire MMU space is shared across a maximum of 104 logical ports to support the egress admissioncontrol functionality to implement scheduling and shaping on per-port and per-queue levels.
To configure the buffer statistics tracking utility, perform the following step: 1. Enable the buffer statistics tracking utility and enter the Buffer Statistics Snapshot configuration mode. CONFIGURATION mode Dell(conf)#buffer-stats-snapshot Dell(conf)#no disable Enable this utility to be able to configure the parameters for buffer statistics tracking. By default, buffer statistics tracking is disabled. 2.
Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 21 (interface Fo 1/164) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 25 (interface Fo 1/168) --------------------------------------Q# TYPE Q# TOTAL BUFFERED CELLS --------------------------------------MCAST 3 0 Unit 1 unit: 3 port: 29 (interface Fo 1/172) --------------------------------------Q# TYPE Q# TOTAL BUFFER
MCAST MCAST MCAST MCAST 5 6 7 8 Quality of Service (QoS) 0 0 0 0 765
Routing Information Protocol (RIP) 39 Routing information protocol (RIP) is supported on Dell Networking OS. RIP is based on a distance-vector algorithm; it tracks distances or hop counts to nearby routers when establishing network connections. RIP protocol standards are listed in the Standards Compliance chapter. Protocol Overview RIP is the oldest interior gateway protocol. There are two versions of RIP: RIP version 1 (RIPv1) and RIP version 2 (RIPv2).
RIPv2 RIPv2 adds support for subnet fields in the RIP routing updates, thus qualifying it as a classless routing protocol. The RIPv2 message format includes entries for route tags, subnet masks, and next hop addresses. Another enhancement included in RIPv2 is multicasting for route updates on IP multicast address 224.0.0.9.
• • • • • • • Controlling RIP Routing Updates (optional) Setting Send and Receive Version (optional) Generating a Default Route (optional) Controlling Route Metrics (optional) Summarize Routes (optional) Controlling Route Metrics Debugging RIP For a complete listing of all commands related to RIP, refer to the Dell Networking OS Command Reference Interface Guide. Enabling RIP Globally By default, RIP is not enabled in Dell Networking OS. To enable RIP globally, use the following commands. 1.
8.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 8.0.0.0/8 auto-summary 12.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 12.0.0.0/8 auto-summary 20.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 20.0.0.0/8 auto-summary 29.10.10.0/24 directly connected,Fa 1/4 29.0.0.0/8 auto-summary 31.0.0.0/8 [120/1] via 29.10.10.12, 00:00:26, Fa 31.0.0.0/8 auto-summary 192.162.2.0/24 [120/1] via 29.10.10.12, 00:01:21, Fa 192.162.2.0/24 auto-summary 192.161.1.0/24 [120/1] via 29.10.10.12, 00:00:27, Fa 192.161.1.
Configure RIP on Interfaces When you enable RIP globally on the system, interfaces meeting certain conditions start receiving RIP routes. By default, interfaces that you enable and configure with an IP address in the same subnet as the RIP network address receive RIPv1 and RIPv2 routes and send RIPv1 routes. Assign IP addresses to interfaces that are part of the same subnet as the RIP network identified in the network command syntax.
Adding RIP Routes from Other Instances In addition to filtering routes, you can add routes from other routing instances or protocols to the RIP process. With the redistribute command, you can include open shortest path first (OSPF), static, or directly connected routes in the RIP process. To add routes from other routing instances or protocols, use the following commands. • Include directly connected or user-configured (static) routes in RIP.
ip rip send version [1] [2] Examples of the RIP Process To see whether the version command is configured, use the show config command in ROUTER RIP mode. The following example shows the RIP configuration after the ROUTER RIP mode version command is set to RIPv2. When you set the ROUTER RIP mode version command, the interface (TenGigabitEthernet 1/1/1) participating in the RIP process is also set to send and receive RIPv2 (shown in bold).
10.0.0.0 Routing Information Sources: Gateway Distance Last Update Distance: (default is 120) Dell# Generating a Default Route Traffic is forwarded to the default route when the traffic’s network is not explicitly listed in the routing table. Default routes are not enabled in RIP unless specified. Use the default-information originate command in ROUTER RIP mode to generate a default route into RIP.
Exercise caution when applying an offset command to routers on a broadcast network, as the router using the offset command is modifying RIP advertisements before sending out those advertisements. The distance command also allows you to manipulate route metrics. To assign different weights to routes so that the ones with the lower weight or administrative distance assigned are preferred, use the distance command. To set route matrixes, use the following commands.
RIP Configuration Example The examples in this section show the command sequence to configure RIPv2 on the two routers shown in the following illustration — Core 2 and Core 3. The host prompts used in the following example reflect those names. The examples are divided into the following groups of command sequences: • Configuring RIPv2 on Core 2 • Core 2 RIP Output • RIP Configuration on Core 3 • Core 3 RIP Output • RIP Configuration Summary Figure 102.
• • To display Core 2 RIP setup, use the show ip route command. To display Core 2 RIP activity, use the show ip protocols command. The following example shows the show ip rip database command to view the learned RIP routes on Core 2. Core2(conf-router_rip)#end 00:12:24: %RPM0-P:CP %SYS-5-CONFIG_I: Configured from console by console Core2#show ip rip database Total number of routes in RIP database: 7 10.11.30.0/24 [120/1] via 10.11.20.1, 00:00:03, TenGigabitEthernet 2/3/1 10.300.10.
Outgoing filter for all interfaces is Incoming filter for all interfaces is Default redistribution metric is 1 Default version control: receive version 2, send version 2 Interface Recv Send TenGigabitEthernet 2/4/1 2 2 TenGigabitEthernet 2/5/1 2 2 TenGigabitEthernet 2/3/1 2 2 TenGigabitEthernet 2/11/1 2 2 Routing for Networks: 10.300.10.0 10.200.10.0 10.11.20.0 10.11.10.0 Routing Information Sources: Gateway Distance Last Update 10.11.20.
[120/1] via 10.11.20.2, 00:00:13, TenGigabitEthernet 10.300.10.0/24 [120/1] via 10.11.20.2, 00:00:13, TenGigabitEthernet 10.11.20.0/24 directly connected,TenGigabitEthernet 10.11.30.0/24 directly connected,TenGigabitEthernet 10.0.0.0/8 auto-summary 192.168.1.0/24 directly connected,TenGigabitEthernet 192.168.1.0/24 auto-summary 192.168.2.0/24 directly connected,TenGigabitEthernet 192.168.2.
10.11.20.2 120 00:00:22 Distance: (default is 120) Core3# RIP Configuration Summary Examples of Viewing RIP Configuration on Core 2 and Core 3 The following example shows viewing the RIP configuration on Core 2. ! interface TenGigabitEthernet ip address 10.11.10.1/24 no shutdown ! interface TenGigabitEthernet ip address 10.11.20.2/24 no shutdown ! interface TenGigabitEthernet ip address 10.200.10.1/24 no shutdown ! interface TenGigabitEthernet ip address 10.250.10.
network 192.168.1.0 network 192.168.2.
Remote Monitoring (RMON) 40 Remote monitoring (RMON) is supported on Dell Networking OS. RMON is an industry-standard implementation that monitors network traffic by sharing network monitoring information. RMON provides both 32-bit and 64-bit monitoring facility and long-term statistics collection on Dell Networking Ethernet interfaces. RMON operates with the simple network management protocol (SNMP) and monitors all nodes on a local area network (LAN) segment.
NOTE: A network management system (NMS) should be ready to interpret a down interface and plot the interface performance graph accordingly. • Line Card Down — The same as Interface Down (see previous). • RPM Down, RPM Failover — Master and standby route processor modules (RPMs) run the RMON sampling process in the background.
– event-number: event number to trigger when the falling threshold exceeds its limit. This value is identical to the alarmFallingEventIndex in the alarmTable of the RMON MIB. If there is no corresponding falling-threshold event, the value should be zero. – owner string: (Optional) specifies an owner for the alarm, this setting is the alarmOwner object in the alarmTable of the RMON MIB. Default is a null-terminated string.
Configuring RMON Collection Statistics To enable RMON MIB statistics collection on an interface, use the RMON collection statistics command in INTERFACE CONFIGURATION mode. • Enable RMON MIB statistics collection. CONFIGURATION INTERFACE (config-if) mode [no] rmon collection statistics {controlEntry integer} [owner ownername] – controlEntry: specifies the RMON group of statistics using a value. – integer: a value from 1 to 65,535 that identifies the RMON Statistics Table.
– seconds: (Optional) the number of seconds in each polling cycle. The value is ranged from 5 to 3,600 (Seconds). The default is 1,800 (as defined in RFC-2819). Example of the rmon collection history Command To remove a specified RMON history group of statistics collection, use the no form of this command.
Rapid Spanning Tree Protocol (RSTP) 41 Rapid spanning tree protocol (RSTP) is supported on Dell Networking OS. Protocol Overview RSTP is a Layer 2 protocol — specified by IEEE 802.1w — that is essentially the same as spanning-tree protocol (STP) but provides faster convergence and interoperability with switches configured with STP and multiple spanning tree protocol (MSTP). The Dell Networking OS supports three other variations of spanning tree, as shown in the following table. Table 65.
Important Points to Remember • RSTP is disabled by default. • Dell Networking OS supports only one Rapid Spanning Tree (RST) instance. • All interfaces in virtual local area networks (VLANs) and all enabled interfaces in Layer 2 mode are automatically added to the RST topology. • Adding a group of ports to a range of VLANs sends multiple messages to the rapid spanning tree protocol (RSTP) task, avoid using the range command.
switchport 3. Enable the interface. INTERFACE mode no shutdown Example of Verifying an Interface is in Layer 2 Mode and Enabled To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. The bold lines indicate that the interface is in Layer 2 mode.
Figure 103. Rapid Spanning Tree Enabled Globally To view the interfaces participating in RSTP, use the show spanning-tree rstp command from EXEC privilege mode. If a physical interface is part of a port channel, only the port channel is listed in the command output. Dell#show spanning-tree rstp Root Identifier has priority 32768, Address 0001.e801.cbb4 Root Bridge hello time 2, max age 20, forward delay 15, max hops 0 Bridge Identifier has priority 32768, Address 0001.e801.
The port is not in the Edge port mode Port 379 (TenGigabitEthernet 2/3/1) is designated Forwarding Port path cost 20000, Port priority 128, Port Identifier 128.379 Designated root has priority 32768, address 0001.e801.cbb4 Designated bridge has priority 32768, address 0001.e801.cbb4 Designated port id is 128.
Modifying Global Parameters You can modify RSTP parameters. The root bridge sets the values for forward-delay, hello-time, and max-age and overwrites the values set on other bridges participating in the Rapid Spanning Tree group. • Forward-delay — the amount of time an interface waits in the Listening state and the Learning state before it transitions to the Forwarding state. • Hello-time — the time interval in which the bridge sends RSTP BPDUs.
NOTE: With large configurations (especially those configurations with more ports) Dell Networking recommends increasing the hello-time. The range is from 1 to 10. • The default is 2 seconds. Change the max-age parameter. PROTOCOL SPANNING TREE RSTP mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree rstp command from EXEC privilege mode.
To view the current values for interface parameters, use the show spanning-tree rstp command from EXEC privilege mode. Enabling SNMP Traps for Root Elections and Topology Changes To enable SNMP traps collectively, use this command. Enable SNMP traps for RSTP, MSTP, and PVST+ collectively. snmp-server enable traps xstp Influencing RSTP Root Selection RSTP determines the root bridge, but you can assign one bridge a lower priority to increase the likelihood that it is selected as the root bridge.
CAUTION: Configure EdgePort only on links connecting to an end station. If you enable EdgePort on an interface connected to a network, it can cause loops. Dell Networking OS Behavior: Regarding bpduguard shutdown-on-violation behavior: • If the interface to be shut down is a port channel, all the member ports are disabled in the hardware. • When you add a physical port to a port channel already in the Error Disable state, the new member port is also disabled in the hardware.
RSTP fast hellos decrease the hello interval to the order of milliseconds and all timers derived from the hello timer are adjusted accordingly. This feature does not inter-operate with other vendors, and is available only for RSTP. • Configure a hello time on the order of milliseconds. PROTOCOL RSTP mode hello-time milli-second interval The range is from 50 to 950 milliseconds.
Software-Defined Networking (SDN) 42 Dell Networking operating software supports Software-Defined Networking (SDN). For more information, refer to the SDN Deployment Guide.
Security 43 Security features are supported on Dell Networking OS. This chapter describes several ways to provide security to the Dell Networking system. For details about all the commands described in this chapter, refer to the Security chapter in the Dell Networking OS Command Reference Guide. AAA Accounting Accounting, authentication, and authorization (AAA) accounting is part of the AAA security model.
aaa accounting {commands | exec | suppress | system level} {default | name} {start-stop | wait-start | stop-only} {tacacs+} The variables are: – system: sends accounting information of any other AAA configuration. – exec: sends accounting information when a user has logged in to EXEC mode. – command level: sends accounting of commands executed at the specified privilege level. – suppress: Do not generate accounting records for a specific type of user.
Configuring AAA Accounting for Terminal Lines To enable AAA accounting with a named method list for a specific terminal line (where com15 and execAcct are the method list names), use the following commands. • Configure AAA accounting for terminal lines.
and different users. In Dell Networking OS, AAA uses a list of authentication methods, called method lists, to define the types of authentication and the sequence in which they are applied. You can define a method list or use the default method list. User-defined method lists take precedence over the default method list.
2. • line: use the password you defined using the password command in LINE mode. • local: use the username/password database defined in the local configuration. • none: no authentication. • radius: use the RADIUS servers configured with the radius-server host command. • tacacs+: use the TACACS+ servers configured with the tacacs-server host command. Enter LINE mode. CONFIGURATION mode line {aux 0 | console 0 | vty number [... end-number]} 3.
radius-server host x.x.x.x key some-password 3. Establish a host address and password. CONFIGURATION mode tacacs-server host x.x.x.x key some-password Examples of the enable commands for RADIUS To get enable authentication from the RADIUS server and use TACACS as a backup, issue the following commands. The following example shows enabling authentication from the RADIUS server. Dell(config)# aaa authentication enable default radius tacacs Radius and TACACS server has to be properly setup for this.
verify that you have successfully obscured passwords and keys, use the show running-config command or show startup-config command. If you are using role-based access control (RBAC), only the system administrator and security administrator roles can enable the service obscure-password command. To enable the obscuring of passwords and keys, use the following command. • Turn on the obscuring of passwords and keys in the configuration.
spanning-tree command, log in to the router, enter the enable command for privilege level 15 (this privilege level is the default level for the command) and then enter CONFIGURATION mode. You can configure passwords to control access to the box and assign different privilege levels to users. Dell Networking OS supports the use of passwords when you log in to the system and when you enter the enable command.
enable command, then the privilege level. If you do not enter a privilege level, the default level 15 is assumed. To configure a password for a specific privilege level, use the following command. • Configure a password for a privilege level. CONFIGURATION mode enable password [level level] [encryption-mode] password Configure the optional and required parameters: – level level: Specify a level from 0 to 15. Level 15 includes all levels. – encryption-type: Enter 0 for plain text or 7 for encrypted text.
• 2. Secret: Specify the secret for the user. Configure a password for privilege level. CONFIGURATION mode enable password [level level] [encryption-mode] password Configure the optional and required parameters: • level level: specify a level from 0 to 15. Level 15 includes all levels. • encryption-type: enter 0 for plain text or 7 for encrypted text. • password: enter a string up to 32 characters long. To change only the password for the enable command, configure only the password parameter. 3.
! username admin password 0 admin username john password 0 john privilege 8 ! The following example shows the Telnet session for user john. The show privilege command output confirms that john is in privilege level 8. In EXEC Privilege mode, john can access only the commands listed. In CONFIGURATION mode, john can access only the snmp-server commands. apollo% telnet 172.31.1.53 Trying 172.31.1.53... Connected to 172.31.1.53. Escape character is '^]'.
Enabling and Disabling Privilege Levels To enable and disable privilege levels, use the following commands. • Set a user’s security level. EXEC Privilege mode enable or enable privilege-level • If you do not enter a privilege level, Dell Networking OS sets it to 15 by default. Move to a lower privilege level. EXEC Privilege mode disable level-number – level-number: The level-number you wish to set. If you enter disable without a level-number, your security level is 1.
Idle Time Every session line has its own idle-time. If the idle-time value is not changed, the default value of 30 minutes is used. RADIUS specifies idle-time allow for a user during a session before timeout. When a user logs in, the lower of the two idle-time values (configured or default) is used. The idle-time value is updated if both of the following happens: • The administrator changes the idle-time of the line on which the user has logged in.
• • • • • Defining a AAA Method List to be Used for RADIUS (mandatory) Applying the Method List to Terminal Lines (mandatory except when using default lists) Specifying a RADIUS Server Host (mandatory) Setting Global Communication Parameters for all RADIUS Server Hosts (optional) Monitoring RADIUS (optional) For a complete listing of all Dell Networking OS commands related to RADIUS, refer to the Security chapter in the Dell Networking OS Command Reference Guide.
• To use the method list. CONFIGURATION mode authorization exec methodlist Specifying a RADIUS Server Host When configuring a RADIUS server host, you can set different communication parameters, such as the UDP port, the key password, the number of retries, and the timeout. To specify a RADIUS server host and configure its communication parameters, use the following command. • Enter the host name or IP address of the RADIUS server host.
• Set a time interval after which a RADIUS host server is declared dead. CONFIGURATION mode radius-server deadtime seconds • – seconds: the range is from 0 to 2147483647. The default is 0 seconds. Configure a key for all RADIUS communications between the system and RADIUS server hosts. CONFIGURATION mode radius-server key [encryption-type] key – encryption-type: enter 7 to encrypt the password. Enter 0 to keep the password as plain text. • – key: enter a string. The key can be up to 42 characters long.
• Specifying a TACACS+ Server Host For a complete listing of all commands related to TACACS+, refer to the Security chapter in the Dell Networking OS Command Reference Guide. Choosing TACACS+ as the Authentication Method One of the login authentication methods available is TACACS+ and the user’s name and password are sent for authentication to the TACACS hosts specified.
aaa authentication enable LOCAL enable tacacs+ aaa authentication login default tacacs+ local aaa authentication login LOCAL local tacacs+ aaa authorization exec default tacacs+ none aaa authorization commands 1 default tacacs+ none aaa authorization commands 15 default tacacs+ none aaa accounting exec default start-stop tacacs+ aaa accounting commands 1 default start-stop tacacs+ aaa accounting commands 15 default start-stop tacacs+ Dell(conf)# Dell(conf)#do show run tacacs+ ! tacacs-server key 7 d05206c30
Specifying a TACACS+ Server Host To specify a TACACS+ server host and configure its communication parameters, use the following command. • Enter the host name or IP address of the TACACS+ server host. CONFIGURATION mode tacacs-server host {hostname | ip-address} [port port-number] [timeout seconds] [key key] Configure the optional communication parameters for the specific host: – port port-number: the range is from 0 to 65535. Enter a TCP port number. The default is 49.
If rejected by the AAA server, the command is not added to the running config, and a message displays: 04:07:48: %RPM0-P:CP %SEC-3-SEC_AUTHORIZATION_FAIL: Authorization failure Command authorization failed for user (denyall) on vty0 ( 10.11.9.209 ) Protection from TCP Tiny and Overlapping Fragment Attacks Tiny and overlapping fragment attack is a class of attack where configured ACL entries — denying TCP port-specific traffic — is bypassed and traffic is sent to its destination although denied by the ACL.
SSH server version : v2. SSH server vrf : default. SSH server ciphers : 3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,aes128ctr,aes192-ctr,aes256-ctr. SSH server macs : hmac-md5,hmac-md5-96,hmac-sha1,hmac-sha1-96,hmacsha2-256,hmac-sha2-256-96. SSH server kex algorithms : diffie-hellman-group-exchange-sha1,diffie-hellmangroup1-sha1,diffie-hellman-group14-sha1. Password Authentication : enabled. Hostbased Authentication : disabled. RSA Authentication : disabled.
To configure the time or volume rekey threshold at which to re-generate the SSH key during an SSH session, use the ip ssh rekey [time rekey-interval] [volume rekey-limit] command. CONFIGURATION mode. Configure the following parameters: • rekey-interval: time-based rekey threshold for an SSH session. The range is from 10 to 1440 minutes. The default is 60 minutes. • rekey-limit: volume-based rekey threshold for an SSH session. The range is from 1 to 4096 to megabytes. The default is 1024 megabytes.
Configuring the HMAC Algorithm for the SSH Server To configure the HMAC algorithm for the SSH server, use the ip ssh server mac hmac-algorithm command in CONFIGURATION mode. hmac-algorithm: Enter a space-delimited list of keyed-hash message authentication code (HMAC) algorithms supported by the SSH server.
• aes256-cbc • aes128-ctr • aes192-ctr • aes256-ctr The default cipher list is 3des-cbc,aes128-cbc,aes192-cbc,aes256-cbc,aes128-ctr,aes192-ctr,aes256-ctr Example of Configuring a Cipher List The following example shows you how to configure a cipher list. Dell(conf)#ip ssh server cipher 3des-cbc aes128-cbc aes128-ctr Secure Shell Authentication Secure Shell (SSH) is enabled by default using the SSH Password Authentication method.
Using RSA Authentication of SSH The following procedure authenticates an SSH client based on an RSA key using RSA authentication. This method uses SSH version 2. 1. On the SSH client (Unix machine), generate an RSA key, as shown in the following example. 2. Copy the public key id_rsa.pub to the Dell Networking system. 3. Disable password authentication if enabled. CONFIGURATION mode no ip ssh password-authentication enable 4. Bind the public keys to RSA authentication.
CONFIGURATION mode ip ssh hostbased-authentication enable 7. Bind shosts and rhosts to host-based authentication. CONFIGURATION mode ip ssh pub-key-file flash://filename or ip ssh rhostsfile flash://filename Examples of Creating shosts and rhosts The following example shows creating shosts. admin@Unix_client# cd /etc/ssh admin@Unix_client# ls moduli sshd_config ssh_host_dsa_key.pub ssh_host_key.pub ssh_host_rsa_key.
Troubleshooting SSH To troubleshoot SSH, use the following information. You may not bind id_rsa.pub to RSA authentication while logged in via the console. In this case, this message displays:%Error: No username set for this term. Enable host-based authentication on the server (Dell Networking system) and the client (Unix machine). The following message appears if you attempt to log in via SSH and host-based is disabled on the client.
Authentication Method VTY access-class support? Username access-class support? Remote authorization support? RADIUS YES NO YES (with Dell Networking OS version 6.1.1.0 and later) Dell Networking OS provides several ways to configure access classes for VTY lines, including: • VTY Line Local Authentication and Authorization • VTY Line Remote Authentication and Authorization VTY Line Local Authentication and Authorization Dell Networking OS retrieves the access class from the local database.
VTY Line Remote Authentication and Authorization Dell Networking OS retrieves the access class from the VTY line. The Dell Networking OS takes the access class from the VTY line and applies it to ALL users. Dell Networking OS does not need to know the identity of the incoming user and can immediately apply the access class. If the authentication method is RADIUS, TACACS+, or line, and you have configured an access class for the VTY line, Dell Networking OS immediately applies it.
Role-Based Access Control With Role-Based Access Control (RBAC), access and authorization is controlled based on a user’s role. Users are granted permissions based on their user roles, not on their individual user ID. User roles are created for job functions and through those roles they acquire the permissions to perform their associated job function.
A constrained RBAC model provides for separation of duty and as a result, provides greater security than the hierarchical RBAC model. Essentially, a constrained model puts some limitations around each role’s permissions to allow you to partition of tasks. However, some inheritance is possible. Default command permissions are based on CLI mode (such as configure, interface, router), any specific command settings, and the permissions allowed by the privilege and role commands.
NOTE: The authentication method list should be in the same order as the authorization method list. For example, if you configure the authentication method list in the following order (TACACS+, local), Dell Networking recommends that authorization method list is configured in the same order (TACACS+, local). 4. Specify authorization method list (RADIUS, TACACS+, or Local). You must at least specify local authorization.
mode enablement, password policies, inactivity timeouts, banner establishment, and cryptographic key operations for secure access paths. • System Administrator (sysadmin). This role has full access to all the commands in the system, exclusive access to commands that manipulate the file system formatting, and access to the system shell. This role can also create user IDs and user roles. The following summarizes the modes that the predefined user roles can access.
• If you inherit a user role, you cannot modify or delete the inheritance. If you want to change or remove the inheritance, delete the user role and create it again. If the user role is in use, you cannot delete the user role. 1. Create a new user role CONFIGURATION mode userrole name [inherit existing-role-name] 2. Verify that the new user role has inherited the security administrator permissions. Dell(conf)#do show userroles EXEC Privilege mode 3.
When you modify a command for a role, you specify the role, the mode, and whether you want to restrict access using the deleterole keyword or grant access using the addrole keyword followed by the command you are controlling access. For information about how to create new roles, see also Creating a New User Role. The following output displays the modes available for the role command.
The following example shows that the secadmin role can now access Interface mode (highlighted in bold). Role Inheritance netoperator Modes netadmin secadmin Line sysadmin MAC Exec Config Interface Router IP RouteMap Protocol MAC Exec Config Interface Exec Config Interface Line Router IP RouteMap Protocol Example: Remove Security Administrator Access to Line Mode.
Adding and Deleting Users from a Role To create a user name that is authenticated based on a user role, use the username name password encryption-type password role role-name command in CONFIGURATION mode. Example The following example creates a user name that is authenticated based on a user role. Dell (conf) #username john password 0 password role secadmin The following example deletes a user role.
Configure AAA Authorization for Roles Authorization services determine if the user has permission to use a command in the CLI. Users with only privilege levels can use commands in privilege-or-role mode (the default) provided their privilege level is the same or greater than the privilege level of those commands. Users with defined roles can use commands provided their role is permitted to use those commands. Role inheritance is also used to determine authorization.
authorization exec ucraaa accounting commands role netadmin line vty 2 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 3 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 4 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 5 login authentication ucraaa authorization exec ucraaa accounting commands role netadmin line vty 6 login authentication ucraaa authorization exe
Example for Creating a AVP Pair for System Defined or User-Defined Role The following section shows you how to create an AV pair to allow a user to login from a network access server to have access to commands based on the user’s role. The format to create an AV pair for a user role is Force10-avpair= ”shell:role=“ where user-role is a user defined or systemdefined role. In the following example, you create an AV pair for a system-defined role, sysadmin.
Displaying Active Accounting Sessions for Roles To display active accounting sessions for each user role, use the show accounting command in EXEC mode.
Displaying Role Permissions Assigned to a Command To display permissions assigned to a command, use the show role command in EXEC Privilege mode. The output displays the user role and or permission level.
Service Provider Bridging 44 Service provider bridging is supported on Dell Networking OS. VLAN Stacking VLAN stacking, also called Q-in-Q, is defined in IEEE 802.1ad — Provider Bridges, which is an amendment to IEEE 802.1Q — Virtual Bridged Local Area Networks. It enables service providers to use 802.1Q architecture to offer separate VLANs to customers with no coordination between customers, and minimal coordination between customers and the provider. Using only 802.
Figure 104. VLAN Stacking in a Service Provider Network Important Points to Remember • Interfaces that are members of the Default VLAN and are configured as VLAN-Stack access or trunk ports do not switch untagged traffic. To switch traffic, add these interfaces to a non-default VLANStack-enabled VLAN. • Dell Networking cautions against using the same MAC address on different customer VLANs, on the same VLAN-Stack VLAN.
Configure VLAN Stacking Configuring VLAN-Stacking is a three-step process. 1. Creating Access and Trunk Ports 2. Assign access and trunk ports to a VLAN (Creating Access and Trunk Ports). 3. Enabling VLAN-Stacking for a VLAN.
Dell#show run interface tengigabitEthernet 1/2/1 ! interface TenGigabitEthernet 1/2/1 no ip address switchport vlan-stack trunk no shutdown Enable VLAN-Stacking for a VLAN To enable VLAN-Stacking for a VLAN, use the following command. • Enable VLAN-Stacking for the VLAN. INTERFACE VLAN mode vlan-stack compatible Example of Viewing VLAN Stack Member Status To display the status and members of a VLAN, use the show vlan command from EXEC Privilege mode.
Configuring Dell Networking OS Options for Trunk Ports 802.1ad trunk ports may also be tagged members of a VLAN so that it can carry single and double-tagged traffic. You can enable trunk ports to carry untagged, single-tagged, and double-tagged VLAN traffic by making the trunk port a hybrid port. To configure trunk ports, use the following commands. 1. Configure a trunk port to carry untagged, single-tagged, and double-tagged traffic by making it a hybrid port. INTERFACE mode portmode hybrid 2.
Debugging VLAN Stacking To debug VLAN stacking, use the following command. • Debug the internal state and membership of a VLAN and its ports. debug member Example of Debugging a VLAN and its Ports The port notations are as follows: • MT — stacked trunk • MU — stacked access port • T — 802.1Q trunk port • U — 802.
were treated as the same TPID, as shown in the following illustration. Dell Networking OS Versions 8.2.1.0 and later differentiate between 0x9100 and 0x91XY, also shown in the following illustration. You can configure the first 8 bits of the TPID using the vlan-stack protocol-type command. The TPID is global. Ingress frames that do not match the system TPID are treated as untagged. This rule applies for both the outer tag TPID of a double-tagged frame and the TPID of a single-tagged frame.
Figure 105.
Figure 106.
Figure 107. Single and Double-Tag TPID Mismatch VLAN Stacking Packet Drop Precedence The drop eligible indicator (DEI) bit in the S-Tag indicates to a service provider bridge which packets it should prefer to drop when congested. Enabling Drop Eligibility Enable drop eligibility globally before you can honor or mark the DEI value. When you enable drop eligibility, DEI mapping or marking takes place according to the defaults. In this case, the CFI is affected according to the following table.
Table 68. Drop Eligibility Behavior Ingress Egress DEI Disabled DEI Enabled Normal Port Normal Port Retain CFI Set CFI to 0. Trunk Port Trunk Port Retain inner tag CFI Retain inner tag CFI. Retain outer tag CFI Set outer tag CFI to 0. Retain inner tag CFI Retain inner tag CFI Set outer tag CFI to 0 Set outer tag CFI to 0 Access Port Trunk Port To enable drop eligibility globally, use the following command. • Make packets eligible for dropping based on their DEI value.
Marking Egress Packets with a DEI Value On egress, you can set the DEI value according to a different mapping than ingress. For ingress information, refer to Honoring the Incoming DEI Value. To mark egress packets, use the following command. • Set the DEI value on egress according to the color currently assigned to the packet.
• • Mark the S-Tag dot1p and queue the frame according to the original C-Tag dot1p. In this case, you must have other dot1p QoS configurations; this option is classic dot1p marking. Mark the S-Tag dot1p and queue the frame according to the S-Tag dot1p. For example, if frames with C-Tag dot1p values 0, 6, and 7 are mapped to an S-Tag dot1p value 0, all such frames are sent to the queue associated with the S-Tag 802.1p value 0.
service-policy input in layer2 no shutdown Mapping C-Tag to S-Tag dot1p Values To map C-Tag dot1p values to S-Tag dot1p values and mark the frames accordingly, use the following commands. 1. Allocate CAM space to enable queuing frames according to the C-Tag or the S-Tag.
Figure 109. VLAN Stacking without L2PT You might need to transport control traffic transparently through the intermediate network to the other region. Layer 2 protocol tunneling enables BPDUs to traverse the intermediate network by identifying frames with the Bridge Group Address, rewriting the destination MAC to a user-configured non-reserved address, and forwarding the frames.
the intermediate network because only Dell Networking OS could recognize the significance of the destination MAC address and rewrite it to the original Bridge Group Address. In Dell Networking OS version 8.2.1.0 and later, the L2PT MAC address is user-configurable, so you can specify an address that non-Dell Networking systems can recognize and rewrite the address at egress edge. Figure 110. VLAN Stacking with L2PT Implementation Information • L2PT is available for STP, RSTP, MSTP, and PVST+ BPDUs.
Enabling Layer 2 Protocol Tunneling To enable Layer 2 protocol tunneling, use the following command. 1. Verify that the system is running the default CAM profile. Use this CAM profile for L2PT. EXEC Privilege mode show cam-profile 2. Enable protocol tunneling globally on the system. CONFIGURATION mode protocol-tunnel enable 3. Tunnel BPDUs the VLAN.
3. Reload the system. EXEC Privilege mode reload 4. Set a maximum rate at which the RPM processes BPDUs for L2PT. VLAN STACKING mode protocol-tunnel rate-limit The default is: no rate limiting. The range is from 64 to 320 kbps. Debugging Layer 2 Protocol Tunneling To debug Layer 2 protocol tunneling, use the following command. • Display debugging information for L2PT. EXEC Privilege mode debug protocol-tunnel Provider Backbone Bridging IEEE 802.1ad—Provider Bridges amends 802.
sFlow 45 Configuring sFlow is supported on Dell Networking OS. Overview The Dell Networking Operating System (OS) supports sFlow version 5. sFlow is a standard-based sampling technology embedded within switches and routers which is used to monitor network traffic. It is designed to provide traffic monitoring for high-speed networks with many switches and routers. sFlow uses two types of sampling: • Statistical packet-based sampling of switched or routed packet flows.
To avoid the back-off, either increase the global sampling rate or configure all the line card ports with the desired sampling rate even if some ports have no sFlow configured. Important Points to Remember • The Dell Networking OS implementation of the sFlow MIB supports sFlow configuration via snmpset. • By default, sFlow collection is supported only on data ports.
Global default extended maximum header size: 128 bytes Global extended information enabled: none 1 collectors configured Collector IP addr: 100.1.1.1, Agent IP addr: 1.1.1.2, UDP port: 6343 VRF: Default 0 UDP packets exported 0 UDP packets dropped 0 sFlow samples collected stack-unit 1 Port set 0 Te 1/1/1: configured rate 16384, actual rate 16384 Dell# If you did not enable any extended information, the show output displays the following (shown in bold).
NOTE: Interface mode configuration takes priority. • To reset the maximum header size of a packet, use the following command • [no] sflow max-header-size extended View the maximum header size of a packet.
• Displaying Show sFlow on an Interface • Displaying Show sFlow on a Line Card Displaying Show sFlow Global To view sFlow statistics, use the following command. • Display sFlow configuration information and statistics. EXEC mode show sflow Example of Viewing sFlow Configuration (Global) The first bold line indicates sFlow is globally enabled.
The following example shows the show running-config interface command. Dell#show running-config interface tengigabitethernet 1/16/1 ! interface TenGigabitEthernet 1/16/1 no ip address mtu 9252 ip mtu 9234 switchport sflow ingress-enable sflow sample-rate 8192 no shutdown Displaying Show sFlow on a Stack-unit To view sFlow statistics on a specified stack-unit, use the following command. • Display sFlow configuration information and statistics on the specified interface.
Changing the Polling Intervals The sflow polling-interval command configures the polling interval for an interface in the maximum number of seconds between successive samples of counters sent to the collector. This command changes the global default counter polling (20 seconds) interval. You can configure an interface to use a different polling interval. To configure the polling intervals globally (in CONFIGURATION mode) or by interface (in INTERFACE mode), use the following command.
• extended-router — Next-hop and source and destination mask length. • extended-gateway — Source and destination AS number and the BGP next-hop. NOTE: The entire AS path is not included. BGP community-list and local preference information are not included. These fields are assigned default values and are not interpreted by the collector. • Enable extended sFlow.
• The sFlow sampling functionality is supported only for egress traffic and not for ingress traffic. The previous points are summarized in following table. Table 69. Extended Gateway Summary IP SA IP DA srcAS and srcPeerAS dstAS and dstPeerAS Description static/ connected/IGP static/ connected/IGP — — Extended gateway data is not exported because there is no AS information. static/ connected/IGP BGP 0 Exported src_as and src_peer_as are zero because there is no AS information for IGP.
46 Simple Network Management Protocol (SNMP) Simple network management protocol (SNMP) is supported on Dell Networking OS. NOTE: On Dell Networking routers, standard and private SNMP management information bases (MIBs) are supported, including all Get and a limited number of Set operations (such as set vlan and copy cmd). Protocol Overview Network management stations use SNMP to retrieve or alter management data from network elements.
configuration. A subset of these options are the FIPS-approved algorithms: HMAC-SHA1-96 for authentication and AES128-CFB for privacy. The other options are not FIPS-approved algorithms because of known security weaknesses. The AES128-CFB privacy option is supported and is compliant with RFC 3826. The SNMPv3 feature also uses a FIPS-validated cryptographic module for all of its cryptographic operations when the system is configured with the fips mode enable command in Global Configuration mode.
4. A message is logged indicating whether FIPS mode is enabled for SNMPv3. This message is generated only when the first SNMPv3 user is configured because you can modify the FIPS mode only when users are not previously configured. This log message is provided to assist your system security auditing procedures. Configuration Task List for SNMP Configuring SNMP version 1 or version 2 requires a single step. NOTE: The configurations in this chapter use a UNIX environment with net-snmp version 5.4.
SNMP version 3 (SNMPv3) is a user-based security model that provides password authentication for user security and encryption for data security and privacy. Three sets of configurations are available for SNMP read/write operations: no password or privacy, password privileges, password and privacy privileges. You can configure a maximum of 16 users even if they are in different groups.
• Configure the user with view privileges only (no password or privacy privileges). CONFIGURATION mode • snmp-server user name group-name 3 noauth Configure an SNMP group with view privileges only (no password or privacy privileges). CONFIGURATION mode • snmp-server group group-name 3 noauth auth read name write name Configure an SNMPv3 view.
Reading Managed Object Values You may only retrieve (read) managed object values if your management station is a member of the same community as the SNMP agent. Dell Networking supports RFC 4001, Textual Conventions for Internet Work Addresses that defines values representing a type of internet address. These values display for ipAddressTable objects using the snmpwalk command. There are several UNIX SNMP commands that read data. • Read the value of a single managed object.
• To write or write-over the value of a managed object. snmpset -v version -c community agent-ip {identifier.instance | descriptor.instance}syntax value Example of Writing the Value of a Managed Object > snmpset -v 2c -c mycommunity 10.11.131.161 sysName.0 s "R5" SNMPv2-MIB::sysName.0 = STRING: R5 Configuring Contact and Location Information using SNMP You may configure system contact and location information from the Dell Networking system or from the management station using SNMP.
The default is None. Subscribing to Managed Object Value Updates using SNMP By default, the Dell Networking system displays some unsolicited SNMP messages (traps) upon certain events and conditions. You can also configure the system to send the traps to a management station. Traps cannot be saved on the system. Dell Networking OS supports the following three sets of traps: • RFC 1157-defined traps — coldStart, warmStart, linkDown, linkUp, authenticationFailure, and egpNeighbborLoss.
snmp authentication SNMP_AUTH_FAIL:SNMP Authentication failed.Request with invalid community string. snmp coldstart SNMP_COLD_START: Agent Initialized - SNMP COLD_START. SNMP_WARM_START:Agent Initialized - SNMP WARM_START. snmp linkdown PORT_LINKDN:changed interface state to down:%d snmp linkup PORT_LINKUP:changed interface state to up:%d Enabling a Subset of SNMP Traps You can enable a subset of Dell Networking enterprise-specific SNMP traps using one of the following listed command options.
envmon temperature MINOR_TEMP: Minor alarm: chassis temperature MINOR_TEMP_CLR: Minor alarm cleared: chassis temperature normal (%s %d temperature is within threshold of %dC) MAJOR_TEMP: Major alarm: chassis temperature high (%s temperature reaches or exceeds threshold of %dC) MAJOR_TEMP_CLR: Major alarm cleared: chassis temperature lower (%s %d temperature is within threshold of %dC) envmon fan FAN_TRAY_BAD: Major alarm: fantray %d is missing or down FAN_TRAY_OK: Major alarm cleared: fan tray %d present FA
SNMP Copy Config Command Completed %RPM0-P:CP %SNMP-4-RMON_RISING_THRESHOLD: STACKUNIT0 rising threshold alarm from SNMP OID %RPM0-P:CP %SNMP-4-RMON_FALLING_THRESHOLD: STACKUNIT0 falling threshold alarm from SNMP OID %RPM0-P:CP %SNMP-4-RMON_HC_RISING_THRESHOLD: STACKUNIT0 high-capacity rising threshold alarm from SNMP OID Enabling an SNMP Agent to Notify Syslog Server Failure You can configure a network device to send an SNMP trap in the event of an audit processing failure due to connect
Following is the sample audit log message that other syslog servers that are reachable receive: Oct 21 00:46:13: dv-fedgov-s4810-6: %EVL-6-NOT_REACHABLE:Syslog server 10.11.226.121 (port: 9140) is not reachable Following example shows the SNMP trap that is sent when connectivity to the syslog server is resumed: DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (10230) 0:01:42.30 SNMPv2MIB::snmpTrapOID.0 = OID: SNMPv2SMI::enterprises.6027.3.30.1.1.2 SNMPv2-SMI::enterprises.6027.3.30.1.
MIB Object OID Object Values Description 4 = ftp copyServerAddress, copyUserName, and copyUserPassword. 5 = scp 6 = usbflash copySrcFileName copyDestFileType . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.4 Path (if the file is not in the current directory) and filename. Specifies name of the file. . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.5 1 = Dell Networking OS file Specifies the type of file to copy to. 2 = running-config • • 3 = startup-config • copyDestFileLocation . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.
MIB Object OID Object Values copyUserName . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.9 Username for the server. Username for the FTP, TFTP, or SCP server. . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.10 Password for the server. copyUserPassword Description • If you specify copyUserName, you must also specify copyUserPassword. Password for the FTP, TFTP, or SCP server. Copying a Configuration File To copy a configuration file, use the following commands.
The following examples show the snmpset command to copy a configuration. These examples assume that: • the server OS is UNIX • you are using SNMP version 2c • the community name is public • the file f10-copy-config.mib is in the current directory or in the snmpset tool path Copying Configuration Files via SNMP To copy the running-config to the startup-config from the UNIX machine, use the following command. • Copy the running-config to the startup-config from the UNIX machine.
The following example shows how to copy configuration files from a UNIX machine using OID. >snmpset -c public -v 2c 10.11.131.162 .1.3.6.1.4.1.6027.3.5.1.1.1.1.2.8 i 3 .1.3.6.1.4.1.6027.3.5.1.1.1.1.5.8 i 2 SNMPv2-SMI::enterprises.6027.3.5.1.1.1.1.2.8 = INTEGER: 3 SNMPv2-SMI::enterprises.6027.3.5.1.1.1.1.5.8 = INTEGER: 2 Copying the Startup-Config Files to the Server via FTP To copy the startup-config to the server via FTP from the UNIX machine, use the following command.
Copy a Binary File to the Startup-Configuration To copy a binary file from the server to the startup-configuration on the Dell Networking system via FTP, use the following command. • Copy a binary file from the server to the startup-configuration on the Dell Networking system via FTP. snmpset -v 2c -c public -m ./f10-copy-config.mib force10system-ip-address copySrcFileType.index i 1 copySrcFileLocation.index i 4 copySrcFileName.index s filepath/filename copyDestFileType.index i 3 copyServerAddress.
MIB Object OID Values Description 6 = timeout 7 = unknown copyEntryRowStatus . 1.3.6.1.4.1.6027.3.5.1.1.1. 1.15 Row status Specifies the state of the copy operation. Uses CreateAndGo when you are performing the copy. The state is set to active when the copy is completed. Obtaining a Value for MIB Objects To obtain a value for any of the MIB objects, use the following command. • Get a copy-config MIB object value. snmpset -v 2c -c public -m ./f10-copy-config.mib force10system-ip-address [OID.
MIB Support to Display the Available Memory Size on Flash Dell Networking provides more MIB objects to display the available memory size on flash memory. The following table lists the MIB object that contains the available memory size on flash memory. Table 73. MIB Objects for Displaying the Available Memory Size on Flash via SNMP MIB Object OID Description chStackUnitFlashUsageUtil 1.3.6.1.4.1.6027.3.10.1.2.9.1.6 Contains flash memory usage in percentage.
MIB Object OID Description chSysCoresTimeCreated 1.3.6.1.4.1.6027.3.10.1.2.10.1.3 Contains the time at which core files are created. chSysCoresStackUnitNumber 1.3.6.1.4.1.6027.3.10.1.2.10.1.4 Contains information that includes which stack unit or processor the core file was originated from. chSysCoresProcess 1.3.6.1.4.1.6027.3.10.1.2.10.1.5 Contains information that includes the process names that generated each core file.
Creating a VLAN To create a VLAN, use the dot1qVlanStaticRowStatus object. The snmpset operation shown in the following example creates VLAN 10 by specifying a value of 4 for instance 10 of the dot1qVlanStaticRowStatus object. Example of Creating a VLAN using SNMP > snmpset -v2c -c mycommunity 123.45.6.78 .1.3.6.1.2.1.17.7.1.4.3.1.5.10 i 4 SNMPv2-SMI::mib-2.17.7.1.4.3.1.5.10 = INTEGER: 4 Assigning a VLAN Alias Write a character string to the dot1qVlanStaticName object to assign a name to a VLAN.
Example of Adding an Untagged Port to a VLAN using SNMP In the following example, Port 0/2 is added as an untagged member of VLAN 10. >snmpset -v2c -c mycommunity 10.11.131.185 . 1.3.6.1.2.1.17.7.1.4.3.1.2.1107787786 x "40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00" .1.3.6.1.2.1.17.7.1.4.3.1.4.
set-overload-bit on-startup isis The following OIDs are configurable through the snmpset command. The node OID is 1.3.6.1.4.1.6027.3.18 F10-ISIS-MIB::f10IsisSysOloadSetOverload F10-ISIS-MIB::f10IsisSysOloadSetOloadOnStartupUntil F10-ISIS-MIB::f10IsisSysOloadWaitForBgp F10-ISIS-MIB::f10IsisSysOloadV6SetOverload F10-ISIS-MIB::f10IsisSysOloadV6SetOloadOnStartupUntil F10-ISIS-MIB::f10IsisSysOloadV6WaitForBgp To enable overload bit for IPv4 set 1.3.6.1.4.1.6027.3.18.1.1 and IPv6 set 1.3.6.1.4.1.6027.3.18.1.
Fetch Dynamic MAC Entries using SNMP Dell Networking supports the RFC 1493 dot1d table for the default VLAN and the dot1q table for all other VLANs. NOTE: The 802.1q Q-BRIDGE MIB defines VLANs regarding 802.1d, as 802.1d itself does not define them. As a switchport must belong a VLAN (the default VLAN or a configured VLAN), all MAC address learned on a switchport are associated with a VLAN. For this reason, the Q-Bridge MIB is used for MAC address query.
Example of Fetching MAC Addresses Learned on a Non-default VLAN Using SNMP In the following example, TenGigabitEthernet 1/21/1 is moved to VLAN 1000, a non-default VLAN. To fetch the MAC addresses learned on non-default VLANs, use the object dot1qTpFdbTable. The instance number is the VLAN number concatenated with the decimal conversion of the MAC address.
• Display the interface index number. EXEC Privilege mode show interface Example of Deriving the Interface Index Number To view the system image on Flash Partition A, use the chSysSwInPartitionAImgVers object or, to view the system image on Flash Partition B, use the chSysSwInPartitionBImgVers object. Table 76. MIB Objects for Viewing the System Image on Flash Partitions MIB Object OID Description MIB chSysSwInPartitionAImg 1.3.6.1.4.1.6027.3.10.1.2. Vers 8.1.
dot3aCommonAggFdbStatus SNMPv2-SMI::enterprises.6027.3.2.1.1.6.1.4.1107755009.1 = INTEGER: 1 << Status active, 2 – status inactive Example of Viewing Status of Learned MAC Addresses If we learn MAC addresses for the LAG, status is shown for those as well. dot3aCurAggVlanId SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.1.1.0.0.0.0.0.1.1 dot3aCurAggMacAddr SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.2.1.0.0.0.0.0.1.1 00 00 00 01 dot3aCurAggIndex SNMPv2-SMI::enterprises.6027.3.2.1.1.4.1.3.1.0.0.0.0.0.1.
• When you query an IPv4 icmpMsgStatsInPkts object in the ICMP table by using the snmpwalk command, the echo response output may not be displayed. To correctly display ICMP statistics, such as echo response, use the show ip traffic command.
47 Storm Control Storm control is supported on Dell Networking OS. The storm control feature allows you to control unknown-unicast and broadcast traffic on Layer 2 and Layer 3 physical interfaces. Dell Networking Operating System (OS) Behavior: Dell Networking OS supports broadcast control (the storm-control broadcast command) for Layer 2 and Layer 3 traffic. Configure Storm Control Storm control is supported in INTERFACE mode and CONFIGURATION mode.
Spanning Tree Protocol (STP) 48 The spanning tree protocol (STP) is supported on Dell Networking OS. Protocol Overview STP is a Layer 2 protocol — specified by IEEE 802.1d — that eliminates loops in a bridged topology by enabling only a single path through the network. By eliminating loops, the protocol improves scalability in a large network and allows you to implement redundant paths, which can be activated after the failure of active paths.
• Configuring Spanning Trees as Hitless Important Points to Remember • STP is disabled by default. • The Dell Networking OS supports only one spanning tree instance (0). For multiple instances, enable the multiple spanning tree protocol (MSTP) or per-VLAN spanning tree plus (PVST+). You may only enable one flavor of spanning tree at any one time.
Configuring Interfaces for Layer 2 Mode All interfaces on all switches that participate in spanning tree must be in Layer 2 mode and enabled. Figure 111. Example of Configuring Interfaces for Layer 2 Mode To configure and enable the interfaces for Layer 2, use the following command. 1. If the interface has been assigned an IP address, remove it. INTERFACE mode no ip address 2. Place the interface in Layer 2 mode.
3. Enable the interface. INTERFACE mode no shutdown Example of the show config Command To verify that an interface is in Layer 2 mode and enabled, use the show config command from INTERFACE mode. Dell(conf-if-te-1/1/1)#show config ! interface TenGigabitEthernet 1/1/1 no ip address switchport no shutdown Dell(conf-if-te-1/1/1)# Enabling Spanning Tree Protocol Globally Enable the spanning tree protocol globally; it is not enabled by default.
Figure 112. Spanning Tree Enabled Globally To enable STP globally, use the following commands. 1. Enter PROTOCOL SPANNING TREE mode. CONFIGURATION mode protocol spanning-tree 0 2. Enable STP. PROTOCOL SPANNING TREE mode no disable Examples of Verifying Spanning Tree Information To disable STP globally for all Layer 2 interfaces, use the disable command from PROTOCOL SPANNING TREE mode. To verify that STP is enabled, use the show config command from PROTOCOL SPANNING TREE mode.
To view the spanning tree configuration and the interfaces that are participating in STP, use the show spanning-tree 0 command from EXEC privilege mode. If a physical interface is part of a port channel, only the port channel is listed in the command output. R2#show spanning-tree 0 Executing IEEE compatible Spanning Tree Protocol Bridge Identifier has priority 32768, address 0001.e826.ddb7 Configured hello time 2, max age 20, forward delay 15 Current root has priority 32768, address 0001.e80d.
INTERFACE mode spanning-tree 0 Modifying Global Parameters You can modify the spanning tree parameters. The root bridge sets the values for forward-delay, hellotime, and max-age and overwrites the values set on other bridges participating in STP. NOTE: Dell Networking recommends that only experienced network administrators change the spanning tree parameters. Poorly planned modification of the spanning tree parameters can negatively affect network performance.
• the default is 2 seconds. Change the max-age parameter (the refresh interval for configuration information that is generated by recomputing the spanning tree topology). PROTOCOL SPANNING TREE mode max-age seconds The range is from 6 to 40. The default is 20 seconds. To view the current values for global parameters, use the show spanning-tree 0 command from EXEC privilege mode. Refer to the second example in Enabling Spanning Tree Protocol Globally.
Enabling PortFast The PortFast feature enables interfaces to begin forwarding traffic approximately 30 seconds sooner. Interfaces forward frames by default until they receive a BPDU that indicates that they should behave otherwise; they do not go through the Learning and Listening states. The bpduguard shutdown-onviolation option causes the interface hardware to be shut down when it receives a BPDU.
The following example shows a scenario in which an edgeport might unintentionally receive a BPDU. The port on the Dell Networking system is configured with Portfast. If the switch is connected to the hub, the BPDUs that the switch generates might trigger an undesirable topology change. If you enable BPDU Guard, when the edge port receives the BPDU, the BPDU is dropped, the port is blocked, and a console message is generated.
Figure 113. Enabling BPDU Guard Dell Networking OS Behavior: BPDU guard and BPDU filtering both block BPDUs, but are two separate features. BPDU guard: • is used on edgeports and blocks all traffic on edgeport if it receives a BPDU. • drops the BPDU after it reaches the RPM and generates a console message.
Te 1/7/1 128.264 128 20000 EDS 20000 32768 0001.e85d.0e90 128.264 Interface Name Role PortID Prio Cost Sts Cost Link-type Edge ------------ ------ -------- ---- ------- --- ---------------Te 1/6/1 Root 128.263 128 20000 FWD 20000 P2P No Te 1/7/1 ErrDis 128.
network behavior. The STP root guard feature ensures that the position of the root bridge does not change. Root Guard Scenario For example, as shown in the following illustration (STP topology 1, upper left) Switch A is the root bridge in the network core. Switch C functions as an access switch connected to an external device. The link between Switch C and Switch B is in a Blocking state. The flow of STP BPDUs is shown in the illustration.
Configuring Root Guard Enable STP root guard on a per-port or per-port-channel basis. Dell Networking OS Behavior: The following conditions apply to a port enabled with STP root guard: • Root guard is supported on any STP-enabled port or port-channel interface except when used as a stacking port.
Configuring Spanning Trees as Hitless You can configure STP, RSTP, MSTP, and PVST+ to be hitless (configure all or none as hitless). When configured as hitless, critical protocol state information is synchronized between the RPMs so that RPM failover is seamless and no topology change is triggered. To be hitless per spanning tree type or for all spanning tree types, use the following commands. • Configure LACP to be hitless.
As soon as a BPDU is received on an STP port in a Loop-Inconsistent state, the port returns to a blocking state. If you disable STP loop guard on a port in a Loop-Inconsistent state, the port transitions to an STP blocking state and restarts the max-age timer. Figure 115. STP Loop Guard Prevents Forwarding Loops Configuring Loop Guard Enable STP loop guard on a per-port or per-port channel basis.
– Rapid Spanning Tree Protocol (RSTP) – Multiple Spanning Tree Protocol (MSTP) – Per-VLAN Spanning Tree Plus (PVST+) • You cannot enable root guard and loop guard at the same time on an STP port. For example, if you configure loop guard on a port on which root guard is already configured, the following error message is displayed: % Error: RootGuard is configured. Cannot configure LoopGuard.
--------Te 1/1/1 Te 1/2/1 Te 1/3/1 912 -------0 0 0 --------- ---------INCON(Root) Rootguard LIS Loopguard EDS (Shut) Bpduguard Spanning Tree Protocol (STP)
System Time and Date 49 System time and date settings and the network time protocol (NTP) are supported on Dell Networking OS. You can set system times and dates and maintained through the NTP. They are also set through the Dell Networking Operating System (OS) command line interfaces (CLIs) and hardware settings. In the release 9.4.(0.0), support for reaching an NTP server through different VRFs is included. You can configure a maximum of eight logging servers across different VRFs or the same VRF.
In what may be the most common client/server model, a client sends an NTP message to one or more servers and processes the replies as received. The server interchanges addresses and ports, overwrites certain fields in the message, recalculates the checksum and returns the message immediately. Information included in the NTP message allows the client to determine the server time regarding local time and adjust the local clock accordingly.
Implementation Information Dell Networking systems can only be an NTP client. Configure the Network Time Protocol Configuring NTP is a one-step process. • Enabling NTP Related Configuration Tasks • Configuring NTP Broadcasts • Disabling NTP on an Interface • Configuring a Source IP Address for NTP Packets (optional) Enabling NTP NTP is disabled by default. To enable NTP, specify an NTP server to which the Dell Networking system synchronizes.
To configure an interface to receive NTP broadcasts, use the following commands. • Set the interface to receive NTP packets. INTERFACE mode ntp broadcast client Example of Configuring NTP Broadcasts 2w1d11h : NTP: Maximum Slew:-0.000470, Remainder = -0.496884 Disabling NTP on an Interface By default, NTP is enabled on all active interfaces. If you disable NTP on an interface, Dell Networking OS drops any NTP packets sent to that interface. To disable NTP on an interface, use the following command.
Configuring NTP Authentication NTP authentication and the corresponding trusted key provide a reliable means of exchanging NTP packets with trusted time sources. NTP authentication begins when the first NTP packet is created following the configuration of keys. NTP authentication in Dell Networking OS uses the message digest 5 (MD5) algorithm and the key is embedded in the synchronization packet that is sent to an NTP time source.
– ipv4-address : Enter an IPv4 address in dotted decimal format (A.B.C.D). – ipv6-address : Enter an IPv6 address in the format 0000:0000:0000:0000:0000:0000:0000:0000. Elision of zeros is supported. – key keyid : Configure a text string as the key exchanged between the NTP server and the client. – prefer: Enter the keyword prefer to set this NTP server as the preferred server. – version number : Enter a number as the NTP version. The range is from 1 to 4. 5. Configure the switch as NTP master.
NOTE: • Leap Indicator (sys.leap, peer.leap, pkt.leap) — This is a two-bit code warning of an impending leap second to be inserted in the NTP time scale. The bits are set before 23:59 on the day of insertion and reset after 00:00 on the following day. This causes the number of seconds (rollover interval) in the day of insertion to be increased or decreased by one.
Dell Networking OS Time and Date You can set the time and date using the Dell Networking OS CLI. Configuration Task List The following is a configuration task list for configuring the time and date settings.
• Set the clock to the appropriate timezone. CONFIGURATION mode clock timezone timezone-name offset – timezone-name: enter the name of the timezone. Do not use spaces. – offset: enter one of the following: * a number from 1 to 23 as the number of hours in addition to UTC for the timezone. * a minus sign (-) then a number from 1 to 23 as the number of hours.
– offset: (OPTIONAL) enter the number of minutes to add during the summer-time period. The range is from 1 to1440. The default is 60 minutes.
– end-year: Enter a four-digit number as the year. The range is from 1993 to 2035. – end-time: Enter the time in hours:minutes. For the hour variable, use the 24-hour format; example, 17:15 is 5:15 pm. – offset: (OPTIONAL) Enter the number of minutes to add during the summer-time period. The range is from 1 to1440. The default is 60 minutes. Examples of the clock summer-time recurring Command The following example shows the clock summer-time recurring command.
Tunneling 50 Tunnel interfaces create a logical tunnel for IPv4 or IPv6 traffic. Tunneling supports RFC 2003, RFC 2473, and 4213. DSCP, hop-limits, flow label values, open shortest path first (OSPF) v2, and OSPFv3 are supported. Internet control message protocol (ICMP) error relay, PATH MTU transmission, and fragmented packets are not supported. Configuring a Tunnel You can configure a tunnel in IPv6 mode, IPv6IP mode, and IPIP mode.
Dell(conf-if-tu-2)#no shutdown Dell(conf-if-tu-2)#show config ! interface Tunnel 2 no ip address ipv6 address 2::1/64 tunnel destination 90.1.1.1 tunnel source 60.1.1.1 tunnel mode ipv6ip no shutdown The following sample configuration shows a tunnel configured in IPIP mode (IPv4 tunnel carries IPv4 and IPv6 traffic): Dell(conf)#interface tunnel 3 Dell(conf-if-tu-3)#tunnel source 5::5 Dell(conf-if-tu-3)#tunnel destination 8::9 Dell(conf-if-tu-3)#tunnel mode ipv6 Dell(conf-if-tu-3)#ip address 3.1.1.
tunnel keepalive 1.1.1.2 attempts 4 interval 6 tunnel mode ipip no shutdown Configuring a Tunnel Interface You can configure the tunnel interface using the ip unnumbered and ipv6 unnumbered commands. To configure the tunnel interface to operate without a unique explicit IP or IPv6 address, select the interface from which the tunnel borrows its address. The following sample configuration shows how to use the interface tunnel configuration commands.
interface Tunnel 1 ip address 1.1.1.1/24 ipv6 address 1abd::1/64 tunnel source 40.1.1.1 tunnel allow-remote 40.1.1.2 tunnel mode ipip decapsulate-any no shutdown Configuring Tunnel source anylocal Decapsulation The tunnel source anylocal command allows a multipoint receive-only tunnel to decapsulate tunnel packets addressed to any IPv4 or IPv6 (depending on the tunnel mode) address configured on the switch that is operationally UP.
• Multipath over more than one VLAN interfaces will not be working for packets routed over the tunnel interface. This is inherited from the current implementation and this is not applicable for the receiveonly tunnels functionality discussed above. • IP tunnel interfaces are supported over ECMP paths to the next hop. ECMP paths over IP tunnel interfaces are supported. ARP and neighbor resolution for the IP tunnel next hop are supported.
Upgrade Procedures 51 To find the upgrade procedures, go to the Dell Networking OS Release Notes for your system type to see all the requirements needed to upgrade to the desired Dell Networking OS version. To upgrade your system type, follow the procedures in the Dell Networking OS Release Notes. Get Help with Upgrades Direct any questions or concerns about the Dell Networking OS upgrade procedures to the Dell Technical Support Center. You can reach Technical Support: • On the web: http://www.dell.
52 Virtual LANs (VLANs) Virtual LANs (VLANs) are supported on Dell Networking OS. VLANs are a logical broadcast domain or logical grouping of interfaces in a local area network (LAN) in which all data received is kept locally and broadcast to all members of the group. When in Layer 2 mode, VLANs move traffic at wire speed and can span multiple devices. The Dell Networking Operating System (OS) supports up to 4093 port-based VLANs and one default VLAN, as specified in IEEE 802.1Q.
command places the interface in Layer 2 mode and the show vlan command in EXEC privilege mode indicates that the interface is now part of the Default VLAN (VLAN 1). By default, VLAN 1 is the Default VLAN. To change that designation, use the default vlan-id command in CONFIGURATION mode. You cannot delete the Default VLAN. NOTE: You cannot assign an IP address to the Default VLAN. To assign an IP address to a VLAN that is currently the Default VLAN, create another VLAN and assign it to be the Default VLAN.
VLANs and Port Tagging To add an interface to a VLAN, the interface must be in Layer 2 mode. After you place an interface in Layer 2 mode, the interface is automatically placed in the Default VLAN. Dell Networking OS supports IEEE 802.1Q tagging at the interface level to filter traffic. When you enable tagging, a tag header is added to the frame after the destination and source MAC addresses. That information is preserved as the frame moves through the network.
A VLAN is active only if the VLAN contains interfaces and those interfaces are operationally up. As shown in the following example, VLAN 1 is inactive because it does not contain any interfaces. The other VLANs contain enabled interfaces and are active. NOTE: In a VLAN, the shutdown command stops Layer 3 (routed) traffic only. Layer 2 traffic continues to pass through the VLAN. If the VLAN is not a routed VLAN (that is, configured with an IP address), the shutdown command has no affect on VLAN traffic.
To tag frames leaving an interface in Layer 2 mode, assign that interface to a port-based VLAN to tag it with that VLAN ID. To tag interfaces, use the following commands. 1. Access INTERFACE VLAN mode of the VLAN to which you want to assign the interface. CONFIGURATION mode interface vlan vlan-id 2. Enable an interface to include the IEEE 802.1Q tag header.
When you remove a tagged interface from a VLAN (using the no tagged interface command), it remains tagged only if it is a tagged interface in another VLAN. If the tagged interface is removed from the only VLAN to which it belongs, the interface is placed in the Default VLAN as an untagged interface. Moving Untagged Interfaces To move untagged interfaces from the Default VLAN to another VLAN, use the following commands. 1. Access INTERFACE VLAN mode of the VLAN to which you want to assign the interface.
NUM * 1 2 3 4 Status Q Inactive Active T T Active T T Active U Ports Po1(So 0/0-1) Te 1/3/1 Po1(So 0/0-1) Te 1/1/1 Te 1/2/1 The only way to remove an interface from the Default VLAN is to place the interface in Default mode by using the no switchport command in INTERFACE mode. Assigning an IP Address to a VLAN VLANs are a Layer 2 feature. For two physical interfaces on different VLANs to communicate, you must assign an IP address to the VLANs to route traffic between the two interfaces.
NOTE: When a hybrid port is untagged in a VLAN but it receives tagged traffic, all traffic is accepted. NOTE: You cannot configure an existing switchport or port channel interface for Native VLAN. Interfaces must have no other Layer 2 or Layer 3 configurations when using the portmode hybrid command or a message similar to this displays: % Error: Port is in Layer-2 mode Gi 5/6. To configure a port so that it can be a member of an untagged and tagged VLANs, use the following commands. 1.
VLT Proxy Gateway 53 The Virtual link trucking (VLT) proxy gateway feature allows a VLT domain to locally terminate and route L3 packets that are destined to a Layer 3 (L3) end point in another VLT domain. Enable the VLT proxy gateway using the link layer discover protocol (LLDP) method or the static configuration. For more information, refer to Dell Networking OS Command Line Reference Guide.
Guidelines for Enabling the VLT Proxy Gateway Keep the following points in mind when you enable a VLT proxy gateway: • • • • • • • Proxy gateway is supported only for VLT; for example, across a VLT domain. You must enable the VLT peer-routing command for the VLT proxy gateway to function. Asymmetric virtual local area network (VLAN) configuration, such as the same VLAN configured with Layer 2 (L2) mode on one VLT domain and L3 mode on another VLT domain is not supported.
• If the port-channel specified in the proxy-gateway command is not a VLT LAG, the configuration is rejected by the CLI. • You cannot change the VLT LAG to a legacy LAG when it is part of proxy-gateway. • You cannot change the link layer discovery protocol (LLDP) port channel interface to a legacy LAG when you enable a proxy gateway. • Dell Networking recommends the vlt-peer-mac transmit command only for square VLTs without diagonal links.
• LLDP uses the existing infrastructure and adds a new TLV for sending and receiving on the configured ports. • There are only a few MAC addresses for each unit transmitted. All currently active MAC addresses are carried on the newly defined TLV. • Dell Networking devices not configured with VLT proxy gateway process standard TLVs and ignore TLVs configured with VLT proxy gateway.
Sample Configuration for a VLT Proxy Gateway • The above figure shows a sample VLT Proxy gateway scenario. There are no diagonal links in the square VLT connection between the C and D in VLT domain 1 and C1 and D1 in the VLT domain 2. This causes sub-optimal routing with the VLT Proxy Gateway LLDP method. For VLT Proxy Gateway to work in this scenario you must configure the VLT-peer-mac transmit command under VLT Domain Proxy Gateway LLDP mode, in both C and D (VLT domain 1) and C1 and D1 (VLT domain 2).
address of D1, it may be dropped. This behavior is applicable only in an LLDP configuration; in a static configuration, the packet is forwarded. • • Any L3 packet, when it gets an L3 hit and is routed, it has a time to live (TTL) decrement as expected. You can disable the VLT Proxy Gateway for a particular VLAN using an "Exclude-VLAN" configuration. The configuration has to be done in both the VLT domains [C and D in VLT domain 1 and C1 and D1 in VLT domain 2].
1. Configure proxy-gateway lldp in VLT Domain Configuration mode. 2. Configure peer-domain-link port-channel in VLT Domain Proxy Gateway LLDP mode. The VLT port channel is the one that connects the remote VLT domain. Sample Dynamic Proxy Configuration on C switch or C1 switch Switch_C#conf Switch_C(conf)#vlt domain 1 Switch_C(conf-vlt-domain1)#proxy-gateway lldp Switch_C(conf-vlt-domain1-pxy-gw-lldp)#peer-domain-link port-channel 1....
Virtual Link Trunking (VLT) 54 Overview VLT allows physical links between two chassis to appear as a single virtual link to the network core or other switches such as Edge, Access, or top-of-rack (ToR). VLT reduces the role of spanning tree protocols (STPs) by allowing link aggregation group (LAG) terminations on two separate distribution or core switches, and by supporting a loop-free topology. (To prevent the initial loop that may occur prior to VLT being established, use a spanning tree protocol.
Figure 118. VLT on Switches VLT on Core Switches Uplinks from servers to the access layer and from access layer to the aggregation layer are bundled in LAG groups with end-to-end Layer 2 multipathing. This set up requires “horizontal” stacking at the access layer and VLT at the aggregation layer such that all the uplinks from servers to access and access to aggregation are in Active-Active Load Sharing mode.
Figure 119. Enhanced VLT VLT Terminology The following are key VLT terms. • Virtual link trunk (VLT) — The combined port channel between an attached device and the VLT peer switches. • VLT backup link — The backup link monitors the vitality of VLT peer switches. The backup link sends configurable, periodic keep alive messages between the VLT peer switches. • VLT interconnect (VLTi) — The link used to synchronize states between the VLT peer switches.
Configure Virtual Link Trunking VLT requires that you enable the feature and then configure the same VLT domain, backup link, and VLT interconnect on both peer switches. Important Points to Remember • VLT port channel interfaces must be switch ports. • If you include RSTP on the system, configure it before VLT. Refer to Configure Rapid Spanning Tree. • If you include PVST on the system, configure it before VLT. Refer to PVST Configuration.
• For multiple VLT LAGs configured on the same VLAN, if a host is learned on one VLT LAG and there is a station move between LAGs, the link local address redirects to the VLTi link on one of the peers. If this occurs, clear the link local address that is redirecting to the VLTi link. • VLT Heartbeat is supported only on default VRFs.
– The chassis members in a VLT domain support connection to orphan hosts and switches that are not connected to both switches in the VLT core. • VLT interconnect (VLTi) – The VLT interconnect must consist of either 10G or 40G ports. A maximum of eight 10G or four 40G ports is supported. A combination of 10G and 40G ports is not supported. – A VLT interconnect over 1G ports is not supported. – The port channel must be in Default mode (not Switchport mode) to have VLTi recognize it.
– In the backup link between peer switches, heartbeat messages are exchanged between the two chassis for health checks. The default time interval between heartbeat messages over the backup link is 1 second. You can configure this interval. The range is from 1 to 5 seconds. DSCP marking on heartbeat messages is CS6.
– All system management protocols are supported on VLT ports, including SNMP, RMON, AAA, ACL, DNS, FTP, SSH, Syslog, NTP, RADIUS, SCP, TACACS+, Telnet, and LLDP. – Enable Layer 3 VLAN connectivity VLT peers by configuring a VLAN network interface for the same VLAN on both switches. – Dell Networking does not recommend enabling peer-routing if the CAM is full. To enable peerrouting, a minimum of two local DA spaces for wild card functionality are required.
Primary and Secondary VLT Peers To prevent issues when connectivity between peers is lost, you can designate Primary and Secondary roles for VLT peers . You can elect or configure the Primary Peer. By default, the peer with the lowest MAC address is selected as the Primary Peer. You can configure another peer as the Primary Peer using the VLT domain domain-id role priority priority-value command. If the VLTi link fails, the status of the remote VLT Primary Peer is checked using the backup link.
When the bandwidth usage drops below the 80% threshold, the system generates another syslog message (shown in the following message) and an SNMP trap. %STKUNIT0-M:CP %VLTMGR-6-VLT-LAG-ICL: Overall Bandwidth utilization of VLT-ICLLAG (port-channel 25) reaches below threshold.
PIM-Sparse Mode Support on VLT The designated router functionality of the PIM Sparse-Mode multicast protocol is supported on VLT peer switches for multicast sources and receivers that are connected to VLT ports. VLT peer switches can act as a last-hop router for IGMP receivers and as a first-hop router for multicast sources. Figure 120.
(DR) if they are incorrectly hashed. In addition to being first-hop or last -hop routers, the peer node can also act as an intermediate router. On a VLT-enabled PIM router, if any PIM neighbor is reachable through a Spanned Layer 3 (L3) VLAN interface, this must be the only PIM-enabled interface to reach that neighbor. A Spanned L3 VLAN is any L3 VLAN configured on both peers in a VLT domain. This does not apply to server-side L2 VLT ports because they do not connect to any PIM routers.
time needed for peer recovery provides resiliency. You can enable VLT unicast across multiple configurations using VLT links. You can enable ECMP on VLT nodes using VLT unicast. VLT unicast routing is supported on both IPv6/IPv4. To enable VLT unicast routing, both VLT peers must be in L3 mode. Static route and routing protocols such as RIP, OSPF, ISIS, and BGP are supported. However, point-to-point configuration is not supported. To enable VLT unicast, VLAN configuration must be symmetrical on both peers.
• VLT resiliency — After a VLT link or peer failure, if the traffic hashes to the VLT peer, the traffic continues to be routed using multicast until the PIM protocol detects the failure and adjusts the multicast distribution tree. • Optimal routing — The VLT peer that receives the incoming traffic can directly route traffic to all downstream routers connected on VLT ports.
Non-VLT ARP Sync ARP entries (including ND entries) learned on other ports are synced with the VLT peer to support station move scenarios. NOTE: ARP entries learned on non-VLT, non-spanned VLANs are not synced with VLT peers. RSTP Configuration RSTP is supported in a VLT domain. Before you configure VLT on peer switches, configure RSTP in the network. RSTP is required for initial loop prevention during the VLT startup phase.
Sample RSTP Configuration The following is a sample of an RSTP configuration. Using the example shown in the Overview section as a sample VLT topology, the primary VLT switch sends BPDUs to an access device (switch or server) with its own RSTP bridge ID. BPDUs generated by an RSTP-enabled access device are only processed by the primary VLT switch. The secondary VLT switch tunnels the BPDUs that it receives to the primary VLT switch over the VLT interconnect.
5. Connect the peer switches in a VLT domain to an attached access device (switch or server). Configuring a VLT Interconnect To configure a VLT interconnect, follow these steps. 1. Configure the port channel for the VLT interconnect on a VLT switch and enter interface configuration mode. CONFIGURATION mode interface port-channel id-number Enter the same port-channel number configured with the peer-link port-channel command as described in Enabling VLT and Creating a VLT Domain.
system explicitly, the system mac-address of the primary will be the VLT MAC address for the domain. To disable VLT, use the no vlt domain command. NOTE: Do not use MAC addresses such as “reserved” or “multicast.” 2. Configure the IP address of the management interface on the remote VLT peer to be used as the endpoint of the VLT backup link for sending out-of-band hello messages.
4. Repeat Steps 1 to 3 on the VLT peer switch. To set an amount of time, in seconds, to delay the system from restoring the VLT port, use the delayrestore command at any time. For more information, refer to VLT Port Delayed Restoration. Configuring a VLT Port Delay Period To configure a VLT port delay period, use the following commands. 1. Enter VLT-domain configuration mode for a specified VLT domain. CONFIGURATION mode vlt domain domain-id The range of domain IDs from 1 to 1000. 2.
To explicitly configure the default MAC address for the domain by entering a new MAC address, use the system-mac command. The format is aaaa.bbbb.cccc. Also, reconfigure the same MAC address on the VLT peer switch. Use this command to minimize the time required for the VLT system to synchronize the default MAC address of the VLT domain on both peer switches when one peer switch reboots. 4.
no shutdown 6. Associate the port channel to the corresponding port channel in the VLT peer for the VLT connection to an attached device. INTERFACE PORT-CHANNEL mode vlt-peer-lag port-channel id-number The valid port-channel ID numbers are from 1 to 128. 7. Repeat Steps 1 to 6 on the VLT peer switch to configure the same port channel as part of the VLT domain. 8. On an attached switch or server: To connect to the VLT domain and add port channels to it, configure a port channel.
CONFIGURATION mode interface port-channel id-number Enter the same port-channel number configured with the peer-link port-channel command in the . 2. Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: • For a 10-Gigabit Ethernet interface, enter the keyword TenGigabitEthernet then the slot/port/ subport information. • 3.
VLT DOMAIN CONFIGURATION mode unit-id {0 | 1} The unit IDs are used for internal system operations. To explicitly configure the default values on each peer switch, use the unit-id command. Configure a different unit ID (0 or 1) on each peer switch. Use this command to minimize the time required for the VLT system to determine the unit ID assigned to each peer switch when one peer switch reboots. 8. Configure enhanced VLT.
no shutdown 16. Repeat steps 1 through 15 for the VLT peer node in Domain 1. 17. Repeat steps 1 through 15 for the first VLT node in Domain 2. 18. Repeat steps 1 through 15 for the VLT peer node in Domain 2. To verify the configuration of a VLT domain, use any of the show commands described in . VLT Sample Configuration To review a sample VLT configuration setup, study these steps. 1. Configure the VLT domain with the same ID in VLT peer 1 and VLT peer 2. VLT DOMAIN mode vlt domain domain id 2.
EXEC Privilege mode show running-config entity 12. Verify that VLT is running. EXEC mode show vlt brief or show vlt detail 13. Verify that the VLT LAG is running in both VLT peer units. EXEC mode or EXEC Privilege mode show interfaces interface Example of Configuring VLT In the following sample VLT configuration steps, VLT peer 1 is Dell-2, VLT peer 2 is Dell-4, and the ToR is S60-1.
peer-link port-channel 1 back-up destination 10.11.206.43 Dell-4# Dell-4#show running-config interface managementethernet 1/1 ip address 10.11.206.58/16 no shutdown Configure the VLT links between VLT peer 1 and VLT peer 2 to the Top of Rack unit. In the following example, port Te 1/4/1 in VLT peer 1 is connected to Te 1/8/1 of TOR and port Te 1/18/1 in VLT peer 2 is connected to Te 1/30/1 of TOR. 1.
no shutdown s60-1#show running-config interface port-channel 100 ! interface Port-channel 100 no ip address switchport no shutdown s60-1#show interfaces port-channel 100 brief Codes: L - LACP Port-channel L LAG 100 Mode L2 Status up Uptime 03:33:48 Ports Te 1/8/1 (Up) Te 1/30/1 (Up) Verify VLT is up. Verify that the VLTi (ICL) link, backup link connectivity (heartbeat status), and VLT peer link (peer chassis) are all up.
PVST+ Configuration PVST+ is supported in a VLT domain. Before you configure VLT on peer switches, configure PVST+ in the network. PVST+ is required for initial loop prevention during the VLT startup phase. You may also use PVST+ for loop prevention in the network outside of the VLT port channel. Run PVST+ on both VLT peer switches. PVST+ instance will be created for every VLAN configured in the system.
128.3 Te 1/10 128.230 Te 1/13 128.233 Interface Name ---------Po 1 Po 2 Te 1/10/1 Te 1/10/3 Dell# 128.230 128 2000 FWD 0 0 90b1.1cf4.9b79 128.233 128 2000 FWD 0 0 90b1.1cf4.9b79 Role -----Desg Desg Desg Desg PortID -------128.2 128.3 128.230 128.
Domain_1_Peer1(conf-vlt-domain)# system-mac mac-address 00:0a:00:0a:00:0a Domain_1_Peer1(conf-vlt-domain)# unit-id 0 Configure eVLT on Peer 1. Domain_1_Peer1(conf)#interface port-channel 100 Domain_1_Peer1(conf-if-po-100)# switchport Domain_1_Peer1(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_1_Peer1(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 1.
Configure eVLT on Peer 3. Domain_2_Peer3(conf)#interface port-channel 100 Domain_2_Peer3(conf-if-po-100)# switchport Domain_2_Peer3(conf-if-po-100)# vlt-peer-lag port-channel 100 Domain_2_Peer3(conf-if-po-100)# no shutdown Add links to the eVLT port-channel on Peer 3.
The following example shows how to enable PIM on the VLT port VLANs. VLT_Peer1(conf)#interface vlan 4001 VLT_Peer1(conf-if-vl-4001)#ip address 140.0.0.1/24 VLT_Peer1(conf-if-vl-4001)#ip pim sparse-mode VLT_Peer1(conf-if-vl-4001)#tagged port-channel 101 VLT_Peer1(conf-if-vl-4001)#tagged port-channel 102 VLT_Peer1(conf-if-vl-4001)#no shutdown VLT_Peer1(conf-if-vl-4001)#exit The following example shows how to configure the VLTi port as a static multicast router port for the VLAN.
• Display the current configuration of all VLT domains or a specified group on the switch. EXEC mode • show running-config vlt Display statistics on VLT operation. EXEC mode • show vlt statistics Display the RSTP configuration on a VLT peer switch, including the status of port channels used in the VLT interconnect trunk and to connect to access devices. EXEC mode • show spanning-tree rstp Display the current status of a port or port-channel interface used in the VLT domain.
Domain ID Role Role Priority ICL Link Status HeartBeat Status VLT Peer Status Version Local System MAC address Remote System MAC address Remote system version Delay-Restore timer : Up : Up : Up : : : : Delay-Restore Abort Threshold Peer-Routing Peer-Routing-Timeout timer Multicast peer-routing timeout Dell# : 1 : Secondary : 32768 : 6(3) 00:01:e8:8a:e9:91 00:01:e8:8a:e9:76 6(3) 90 seconds : 60 seconds : Disabled : 0 seconds : 150 seconds The following example shows the show vlt detail command.
Dell_VLTpeer2# show running-config vlt ! vlt domain 30 peer-link port-channel 60 back-up destination 10.11.200.20 The following example shows the show vlt statistics command.
---------- -------- ---- ------- -------- - ------- ------------Po 1 128.2 128 200000 DIS 0 0 0001.e88a.dff8 128.2 Po 3 128.4 128 200000 DIS 0 0 0001.e88a.dff8 128.4 Po 4 128.5 128 200000 DIS 0 0 0001.e88a.dff8 128.5 Po 100 128.101 128 800 FWD(VLTi)0 0 0001.e88a.dff8 128.101 Po 110 128.111 128 00 FWD(vlt) 0 0 0001.e88a.dff8 128.111 Po 111 128.112 128 200000 DIS(vlt) 0 0 0001.e88a.dff8 128.112 Po 120 128.121 128 2000 FWD(vlt) 0 0 0001.e88a.dff8 128.
Isolated Q: U - Untagged, T - Tagged x - Dot1x untagged, X - Dot1x tagged G - GVRP tagged, M - Vlan-stack, H - Hyperpull tagged NUM Status Description Q Ports 10 Active U Po110(Fo 1/8) T Po100(Fo 1/5,6) Configuring Virtual Link Trunking (VLT Peer 2) Enable VLT and create a VLT domain with a backup-link VLT interconnect (VLTi). Dell_VLTpeer2(conf)#vlt domain 999 Dell_VLTpeer2(conf-vlt-domain)#peer-link port-channel 100 Dell_VLTpeer2(conf-vlt-domain)#back-up destination 10.11.206.
Verifying a Port-Channel Connection to a VLT Domain (From an Attached Access Switch) On an access device, verify the port-channel connection to a VLT domain. Dell_TORswitch(conf)# show running-config interface port-channel 11 ! interface Port-channel 11 no ip address switchport channel-member fortyGigE 1/5,6 no shutdown Troubleshooting VLT To help troubleshoot different VLT issues that may occur, use the following information.
Description Behavior During Run Time Action to Take Spanning tree mismatch All VLT port channels go at global level down on both VLT peers. A syslog error message is generated. No traffic is passed on the port channels. During run time, a loop may occur as long as the mismatch lasts. Spanning tree mismatch A syslog error message at port level is generated. A one-time informational syslog message is generated. Correct the spanning tree configuration on the ports.
Reconfiguring Stacked Switches as VLT To convert switches that have been stacked to VLT peers, use the following procedure. 1. Remove the current configuration from the switches. You will need to split the configuration up for each switch. 2. Copy the files to the flash memory of the appropriate switch. 3. Copy the files on the flash drive to the startup-config. 4. Reset the stacking ports to user ports for both switches. 5. Reload the stack and confirm the new configurations have been applied. 6.
Keep the following points in mind when you configure VLT nodes in a PVLAN: • Configure the VLTi link to be in trunk mode. Do not configure the VLTi link to be in access or promiscuous mode. • You can configure a VLT LAG or port channel to be in trunk, access, or promiscuous port modes when you include the VLT LAG in a PVLAN. The VLT LAG settings must be the same on both the peers. If you configure a VLT LAG as a trunk port, you can associate that LAG to be a member of a normal VLAN or a PVLAN.
and the VLAN is a primary VLT VLAN on one peer and not a primary VLT VLAN on the other peer, MAC synchronization does not occur. Whenever a change occurs in the VLAN mode of one of the peers, this modification is synchronized with the other peers. Depending on the validation mechanism that is initiated for MAC synchronization of VLT peers, MAC addresses learned on a particular VLAN are either synchronized with the other peers, or MAC addresses synchronized from the other peers on the same VLAN are deleted.
Scenarios for VLAN Membership and MAC Synchronization With VLT Nodes in PVLAN The following table illustrates the association of the VLTi link and PVLANs, and the MAC synchronization of VLT nodes in a PVLAN (for various modes of operations of the VLT peers): Table 80.
VLT LAG Mode PVLAN Mode of VLT VLAN Peer1 Peer2 Peer1 Peer2 Access Access Secondary (Community) Access Access Access Access Access Access ICL VLAN Membership Mac Synchronization Secondary (Community) Yes Yes - Primary VLAN X - Primary VLAN X Yes Yes Secondary (Isolated) Secondary (Isolated) Yes Yes - Primary VLAN X - Primary VLAN X Yes Yes Secondary (Isolated) Secondary (Isolated) No No - Primary VLAN X - Primary VLAN Y No No Secondary (Community) Secondary (Communit
NOTE: To be included in the VLTi, the port channel must be in Default mode (no switchport or VLAN assigned). 2. Remove an IP address from the interface. INTERFACE PORT-CHANNEL mode no ip address 3. Add one or more port interfaces to the port channel. INTERFACE PORT-CHANNEL mode channel-member interface interface: specify one of the following interface types: 4. • 1-Gigabit Ethernet: Enter gigabitethernet slot/port. • 10-Gigabit Ethernet: Enter tengigabitethernet slot/port.
3. Set the port in Layer 2 mode. INTERFACE mode switchport 4. Select the PVLAN mode. INTERFACE mode switchport mode private-vlan {host | promiscuous | trunk} 5. • host (isolated or community VLAN port) • promiscuous (intra-VLAN communication port) • trunk (inter-switch PVLAN hub port) Access INTERFACE VLAN mode for the VLAN to which you want to assign the PVLAN interfaces. CONFIGURATION mode interface vlan vlan-id 6. Enable the VLAN. INTERFACE VLAN mode no shutdown 7.
the show config command output, it is enabled. Only nondefault information is displayed in the show config command output. ARP proxy operation is performed on the VLT peer node IP address when the peer VLT node is down. The ARP proxy stops working either when the peer routing timer expires or when the peer VLT node goes up. Layer 3 VLT provides a higher resiliency at the Layer 3 forwarding level. VLT peer routing enables you to replace VRRP with routed VLT to route the traffic from Layer 2 access nodes.
When a VLT node detects peer up, it will not perform proxy ARP for the peer IP addresses. IP address synchronization occurs again between the VLT peers. Proxy ARP is enabled only if peer routing is enabled on both the VLT peers. If you disable peer routing by using the no peer-routingcommand in VLT DOMAIN node, a notification is sent to the VLT peer to disable the proxy ARP.
multicast peer-routing timeout value command. You can configure an optimal time for a VLT node to retain synced multicast routes or synced multicast outgoing interface (OIF), after a VLT peer node failure, through the multicast peer-routing-timeout command in VLT DOMAIN mode. Using the bootstrap router (BSR) mechanism, both the VLT nodes in a VLT domain can be configured as the candidate RP for the same group range. When an RP fails, the VLT peer automatically takes over the role of the RP.
Configure VLT LAG as VLAN-Stack Access or Trunk Port Dell(conf)#interface port-channel 10 Dell(conf-if-po-10)#switchport Dell(conf-if-po-10)#vlt-peer-lag port-channel 10 Dell(conf-if-po-10)#vlan-stack access Dell(conf-if-po-10)#no shutdown Dell#show running-config interface port-channel 10 ! interface Port-channel 10 no ip address switchport vlan-stack access vlt-peer-lag port-channel 10 no shutdown Dell# Dell(conf)#interface port-channel 20 Dell(conf-if-po-20)#switchport Dell(conf-if-po-20)#vlt-peer-lag po
i - Internal untagged, I - Internal tagged, v - VLT untagged, V - VLT tagged NUM 50 Status Active Description Dell# Q M M V Ports Po10(Te 1/8/1) Po20(Te 1/12/1) Po1(Te 1/30-32/1) Sample Configuration of VLAN-Stack Over VLT (Peer 2) Configure VLT domain Dell(conf)#vlt domain 1 Dell(conf-vlt-domain)#peer-link port-channel 1 Dell(conf-vlt-domain)#back-up destination 10.16.151.
Configure the VLAN as VLAN-Stack VLAN and add the VLT LAG as members to the VLAN Dell(conf)#interface vlan 50 Dell(conf-if-vl-50)#vlan-stack compatible Dell(conf-if-vl-50-stack)#member port-channel 10 Dell(conf-if-vl-50-stack)#member port-channel 20 Dell(conf-if-vl-50-stack)# Dell#show running-config interface vlan 50 ! interface Vlan 50 vlan-stack compatible member Port-channel 10,20 shutdown Dell# Verify that the Port Channels used in the VLT Domain are Assigned to the VLAN-Stack VLAN Dell#show vlan id 50
Virtual Extensible LAN (VXLAN) 55 Virtual Extensible LAN (VXLAN) is supported on Dell Networking OS. Overview The switch acts as the VXLAN gateway and performs the VXLAN Tunnel End Point (VTEP) functionality. VXLAN is a technology where in the data traffic from the virtualized servers is transparently transported over an existing legacy network.
Components of VXLAN network VXLAN provides a mechanism to extend an L2 network over an L3 network. In short, VXLAN is an L2 overlay scheme over an L3 network and this overlay is termed as a VXLAN segment.
• Advertises MACs learnt on south-facing VXLAN capable-ports to the NVP client. VXLAN Hypervisor It is the VTEP that connects the Virtual Machines (VM) to the underlay legacy network to the physical infrastructure. Service Node(SN) It is also another VTEP, but it is fully managed by NSX. The purpose of SN is to be the central replication engine for flooded packets Legacy TOR It is a TOR switch, which performs routing or switching decisions.
Components of VXLAN Frame Format Some of the important fields of the VXLAN frame format are described below: Outer Ethernet Header: Outer IP Header: Outer UDP Header: VXLAN Header : 1000 The Outer Ethernet Header consists of the following components: • Destination Address: Generally, it is a first hop router's MAC address when the VTEP is on a different address. • Source Address : It is the source MAC address of the router that routes the packet.
Frame Check Sequence (FCS): • VNI: The 24-bit field that is the VXLAN Network Identifier • Reserved: A set of fields, 24 bits and 8 bits, that are reserved and set to zero . Note that the original Ethernet frame's FCS is not included, but new FCS is generated on the outer Ethernet frame. Configuring and Controlling VXLAN from the NVP Controller GUI To configure and control VXLAN from the NVP controller GUI, follow these steps: 1.
2. Create Service Node To create service node, the required fields are the IP address and SSL certificate of the server. The Service node is responsible for broadcast/unknown unicast/multicast traffic replication. The following is the snapshot of the user interface for the creation of service node: 3. Create VXLAN Gateway To create a VXLAN L2 Gateway, the IP address of the Gateway is mandatory. The following is the snapshot of the user interface in creating a VXLAN Gateway 4.
5. Create Logical Switch Port A logical switch port provides a logical connection point for a VM interface (VIF) and a L2 gateway connection to an external network. It binds the virtual access ports in the GW to logical network (VXLAN) and VLAN. NOTE: For more details about NVP controller configuration, refer to the NVP user guide from VMWare . Configuring VxLAN Gateway To configure the VxLAN gateway on the switch, follow these steps: 1. Connecting to NVP controller 2.
The platform supports only the instance ID 1 in the initial release. 3. controller VxLAN INSTANCE mode controller controller IDip address port port-number tcp|ptcp|pssl|ssl The port number range is from 1 to 6632. The default port number is 6632. The default connection type is ssl. 4. gateway-ip VxLAN INSTANCE mode gateway-ip IP address 5. max-back off (Optional) VxLAN INSTANCE mode max_backoff time The range is from 1000-180000. The default value is 30000 milliseconds. 6.
The following example shows the show vxlan vxlan-instance logical-network command. Dell#show vxlan vxlan-instance 1 logical-network Instance : 1 Total LN count : 1 Name bffc3be0-13e6-4745-9f6b-0bcbc5877f01 4656 VNID Dell#$n-instance 1 logical-network n 2a8d5d19-8845-4365-ad04-243f0b6df252 Name : 2a8d5d19-8845-4365-ad04-243f0b6df252 Description : Tunnel Key : 2 VFI : 28674 Unknown Multicast MAC Tunnels: 192.168.122.
Admin State : enabled Management IP : 192.168.200.200 Gateway IP : 3.3.3.3 MAX Backoff : 30000 Controller 1 : 192.168.122.6:6632 ssl (connected) Fail Mode : secure Port List : Fo 0/4 Te 0/16 Te 0/80 Po 2 The following example shows the show vxlan vxlan-instance logical-network command.
The following example shows the show vxlan vxlan-instance unicast-mac-remote command. Dell# show vxlan vxlan-instance <1> unicast-mac-remote Total Local Mac Count: 1 VNI MAC TUNNEL 4656 00:00:01:00:00:01 36.1.1.
Virtual Routing and Forwarding (VRF) 56 Virtual Routing and Forwarding (VRF) allows a physical router to partition itself into multiple Virtual Routers (VRs). The control and data plane are isolated in each VR so that traffic does NOT flow across VRs.Virtual Routing and Forwarding (VRF) allows multiple instances of a routing table to co-exist within the same router at the same time. VRF Overview VRF improves functionality by allowing network paths to be segmented without using multiple devices.
Figure 122. VRF Network Example VRF Configuration Notes Although there is no restriction on the number of VLANs that can be assigned to a VRF instance, the total number of routes supported in VRF is limited by the size of the IPv4 CAM. VRF is implemented in a network device by using Forwarding Information Bases (FIBs). A network device may have the ability to configure different virtual routers, where entries in the FIB that belong to one VRF cannot be accessed by another VRF on the same device.
Dell Networking OS uses both the VRF name and VRF ID to manage VRF instances. The VRF name and VRF ID number are assigned using the ip vrf command. The VRF ID is displayed in show ip vrf command output. The VRF ID is not exchanged between routers. VRF IDs are local to a router. VRF supports some routing protocols only on the default VRF (default-vrf) instance. Table 1 displays the software features supported in VRF and whether they are supported on all VRF instances or only the default VRF. Table 81.
Feature/Capability Support Status for Default VRF Support Status for Non-default VRF NOTE: ACLs supported on all VRF VLAN ports. IPv4 ACLs are supported on nondefault-VRFs also. IPv6 ACLs are supported on defaultVRF only. PBR supported on default-VRF only. QoS not supported on VLANs.
DHCP DHCP requests are not forwarded across VRF instances. The DHCP client and server must be on the same VRF instance. VRF Configuration The VRF configuration tasks are: 1. Enabling VRF in Configuration Mode 2. Creating a Non-Default VRF 3. Assign an Interface to a VRF You can also: • View VRF Instance Information • Connect an OSPF Process to a VRF Instance • Configure VRRP on a VRF Load VRF CAM VRF is enabled by default on the switch.
NOTE: You can configure an IP address or subnet on a physical or VLAN interface that overlaps the same IP address or subnet configured on another interface only if the interfaces are assigned to different VRFs. If two interfaces are assigned to the same VRF, you cannot configure overlapping IP subnets or the same IP address on them. Task Command Syntax Command Mode Assign an interface to a VRF instance. ip vrf forwarding vrfname INTERFACE Assigning a Front-end Port to a Management VRF Starting in 9.
Task Command Syntax Display the interfaces assigned to show ip vrf [vrf-name] a VRF instance. To display information on all VRF instances (including the default VRF 0), do not enter a value for vrf-name. Command Mode EXEC Assigning an OSPF Process to a VRF Instance OSPF routes are supported on all VRF instances. Refer to for complete OSPF configuration information. Assign an OSPF process to a VRF instance . Return to CONFIGURATION mode to enable the OSPF process.
Task Command Syntax Command Mode ----------------------------! interface TenGigabitEthernet 1/13/1 ip vrf forwarding vrf1 ip address 10.1.1.1/24 ! vrrp-group 10 virtual-address 10.1.1.100 no shutdown View VRRP command output for the VRF vrf1 show vrrp vrf vrf1 -----------------TenGigabitEthernet 1/13/1, IPv4 VRID: 10, Version: 2, Net: 10.1.1.1 VRF: 2 vrf1 State: Master, Priority: 100, Master: 10.1.1.
• ipv6 nd ra-lifetime — Set IPv6 Router Advertisement Lifetime • ipv6 nd reachable-time — Set advertised reachability time • ipv6 nd retrans-timer — Set NS retransmit interval used and advertised in RA • ipv6 nd suppress-ra — Suppress IPv6 Router Advertisements • ipv6 ad — IPv6 Address Detection • ipv6 ad autoconfig — IPv6 stateless auto-configuration • ipv6 address — Configure IPv6 address on an interface NOTE: The command line help still displays relevant details
Figure 123.
Figure 124. Setup VRF Interfaces The following example relates to the configuration shown in Figure1 and Figure 2. Router 1 ip vrf blue 1 ! ip vrf orange 2 ! ip vrf green 3 ! interface TenGigabitEthernet 3/1/1 no ip address switchport no shutdown ! interface TenGigabitEthernet 1/1/1 ip vrf forwarding blue ip address 10.0.0.
interface TenGigabitEthernet 1/2/1 ip vrf forwarding orange ip address 20.0.0.1/24 no shutdown ! interface TenGigabitEthernet 1/3/1 ip vrf forwarding green ip address 30.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.1/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.
interface TenGigabitEthernet 2/2/1 ip vrf forwarding orange ip address 21.0.0.1/24 no shutdown ! interface TenGigabitEthernet 2/3/1 ip vrf forwarding green ip address 31.0.0.1/24 no shutdown ! interface Vlan 128 ip vrf forwarding blue ip address 1.0.0.2/24 tagged TenGigabitEthernet 3/1/1 no shutdown interface Vlan 192 ip vrf forwarding orange ip address 2.0.0.2/24 tagged TenGigabitEthernet 3/1/1 no shutdown ! interface Vlan 256 ip vrf forwarding green ip address 3.0.0.
green Vl 192 Te 1/3/1, Vl 256 3 Dell#show ip ospf 1 neighbor Neighbor ID Pri State 1.0.0.2 1 FULL/DR 0 Dead Time Address Interface Area 00:00:37 2.0.0.2 Vl 192 0 Dell#sh ip ospf 2 neighbor Neighbor ID Pri State 2.0.0.2 1 FULL/DR Dell#show ip route vrf blue Dead Time Address Interface Area 00:00:32 1.0.0.
N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Dist/Metric Last Change ------------------------------------C 3.0.0.0/24 Direct, Vl 256 0/0 00:20:52 C 30.0.0.0/24 Direct, Te 1/3/1 0/0 00:09:45 S 31.0.0.0/24 via 3.0.0.
N2 - OSPF NSSA external type 2, E1 - OSPF external type 1, E2 - OSPF external type 2, i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - IS-IS inter area, * - candidate default, > - non-active route, + - summary route Gateway of last resort is not set Destination Gateway Last Change --------------------------C 1.0.0.0/24 Direct, Vl 128 0/0 00:27:21 O 10.0.0.0/24 via 1.0.0.1, Vl 128 110/2 00:14:24 C 11.0.0.
C 0/0 Dell# 31.0.0.0/24 Direct, Te 2/3/1 00:20:19 Route Leaking VRFs Static routes can be used to redistribute routes between non-default to default/non-default VRF and vice-versa. You can configure route leaking between two VRFs using the following command: ip route vrf x.x.x.x s.s.s.s nh.nh.nh.nh vrf default. This command indicates that packets that are destined to x.x.x.x/s.s.s.s are reachable through nh.nh.nh.nh in the default VRF table. Meaning, the routes to x.x.x.x/s.s.s.
NOTE: In Dell Networking OS, you can configure at most one route-export per VRF as only one set of routes can be exposed for leaking. However, you can configure multiple route-import targets because a VRF can accept routes from multiple VRFs. After the target VRF learns routes that are leaked by the source VRF, the source VRF in turn can leak the export target corresponding to the destination VRFs that have imported its routes.
The show run output for the above configuration is as follows: ip vrf ip ip ! ip vrf ip ip ! ip vrf ! ip vrf ip ip ip VRF-Red route-export route-import 2:2 1:1 VRF-Blue route-export route-import 3:3 1:1 VRF-Green VRF-shared route-export route-import route-import 1:1 2:2 3:3 Show routing tables of all the VRFs (without any route-export and route-import tags being configured) Dell# show ip route vrf VRF-Red O 11.1.1.1/32 via 111.1.1.1 110/0 C 111.1.1.
Dell# show ip route vrf VRF-Green O 33.3.3.3/32 00:00:11 via 133.3.3.3 C Direct, Te 1/13/1 0/0 133.3.3.0/24 110/0 22:39:61 Dell# show ip route vrf VRF-Shared O 11.1.1.1/32 via VRF-Red:111.1.1.1 110/0 00:00:10 C 111.1.1.0/24 Direct, VRF-Red:Te 1/11/1 0/0 22:39:59 O 22.2.2.2/32 via VRF-Blue:122.2.2.2 110/0 00:00:11 C 122.2.2.0/24 Direct, VRF-Blue:Te 1/22/1 0/0 22:39:61 O 44.4.4.4/32 via 144.4.4.4 110/0 00:00:11 C 144.4.4.
only the routes (OSPF and BGP) that satisfy the matching criteria defined in route-map export_ospfbgp_protocol are exposed to VRF-blue. While importing these routes into VRF-blue, you can further specify match conditions at the import end to define the filtering criteria based on which the routes are imported into VRF-blue. You can define a route-map import_ospf_protocol and then specify the match criteria as OSPF using the match sourceprotocol ospf command.
ip route-import 1:1 import_ospf_protocol !this action accepts only OSPF routes from VRF-red even though both OSPF as well as BGP routes are shared The show VRF commands displays the following output: Dell# show ip route vrf VRF-Blue C 122.2.2.0/24 Direct, Te 1/22/1 0/0 O 22.2.2.2/32 via 122.2.2.2 110/0 00:00:11 O 44.4.4.4/32 22:39:61 via vrf-red:144.4.4.4 0/0 00:32:36 << only OSPF and BGP leaked from VRF-red Important Points to Remember • Only Active routes are eligible for leaking.
Virtual Router Redundancy Protocol (VRRP) 57 Virtual router redundancy protocol (VRRP) is supported on Dell Networking OS. VRRP Overview VRRP is designed to eliminate a single point of failure in a statically routed network. VRRP specifies a MASTER router that owns the next hop IP and MAC address for end stations on a local area network (LAN). The MASTER router is chosen from the virtual routers by an election process and forwards packets sent to the next hop IP address.
Figure 125. Basic VRRP Configuration VRRP Benefits With VRRP configured on a network, end-station connectivity to the network is not subject to a single point-of-failure. End-station connections to the network are redundant and are not dependent on internal gateway protocol (IGP) protocols to converge or update routing tables. VRRP Implementation Within a single VRRP group, up to 12 virtual IP addresses are supported.
decreases based on the dynamics of the network, the advertisement intervals may increase or decrease accordingly. CAUTION: Increasing the advertisement interval increases the VRRP Master dead interval, resulting in an increased failover time for Master/Backup election. Take caution when increasing the advertisement interval, as the increased dead interval may cause packets to be dropped during that switch-over time. VRRP Configuration By default, VRRP is not configured.
Examples of Configuring and Verifying VRRP The following examples how to configure VRRP. Dell(conf)#interface tengigabitethernet 1/1/1 Dell(conf-if-te-1/1/1)#vrrp-group 111 Dell(conf-if-te-1/1/1-vrid-111)# The following examples how to verify the VRRP configuration. Dell(conf-if-te-1/1/1)#show conf ! interface TenGigabitEthernet 1/1/1 ip address 10.10.10.
NOTE: Carefully following this procedure, otherwise you might introduce dual master switches issues. To migrate an IPv4 VRRP Group from VRRPv2 to VRRPv3: 1. Set the backup switches to VRRP version to both. Dell_backup_switch1(conf-if-te-1/1/1-vrid-100)#version both Dell_backup_switch2(conf-if-te-1/2/1-vrid-100)#version both 2. Set the master switch to VRRP protocol version 3. Dell_master_switch(conf-if-te-1/1/1-vrid-100)#version 3 3. Set the backup switches to version 3.
The VRID range is from 1 to 255. 2. Configure virtual IP addresses for this VRID. INTERFACE -VRID mode virtual-address ip-address1 [...ip-address12] The range is up to 12 addresses. Examples of the Configuring and Verifying a Virtual IP Address The following example shows how to configure a virtual IP address. Dell(conf-if-te-1/1/1-vrid-111)#virtual-address 10.10.10.1 Dell(conf-if-te-1/1/1-vrid-111)#virtual-address 10.10.10.2 Dell(conf-if-te-1/1/1-vrid-111)#virtual-address 10.10.10.
Setting VRRP Group (Virtual Router) Priority Setting a virtual router priority to 255 ensures that router is the “owner” virtual router for the VRRP group. VRRP elects the MASTER router by choosing the router with the highest priority. The default priority for a virtual router is 100. The higher the number, the higher the priority. If the MASTER router fails, VRRP begins the election process to choose a new MASTER router based on the next-highest priority.
NOTE: You must configure all virtual routers in the VRRP group the same: you must enable authentication with the same password or authentication is disabled. To configure simple authentication, use the following command. • Configure a simple text password. INTERFACE-VRID mode authentication-type simple [encryption-type] password Parameters: – encryption-type: 0 indicates unencrypted; 7 indicates encrypted. – password: plain text.
The following example shows how to disable preempt using the no preempt command. Dell(conf-if-te-1/1/1)#vrrp-group 111 Dell(conf-if-te-1/1/1-vrid-111)#no preempt Dell(conf-if-te-1/1/1-vrid-111)# The following example shows how to verify preempt is disabled using the show conf command. Dell(conf-if-te-1/1/1-vrid-111)#show conf ! vrrp-group 111 authentication-type simple 7 387a7f2df5969da4 no preempt priority 255 virtual-address 10.10.10.1 virtual-address 10.10.10.2 virtual-address 10.10.10.
advertise-interval centisecs centisecs The range is from 25 to 4075 centisecs in units of 25 centisecs. The default is 100 centisecs. Examples of the advertise-interval Command The following example shows how to change the advertise interval using the advertise-interval command. Dell(conf-if-te-1/1/1)#vrrp-group 111 Dell(conf-if-te-1/1/1-vrid-111)#advertise-interval 10 Dell(conf-if-te-1/1/1-vrid-111)# The following example shows how to verify the advertise interval change using the show conf command.
NOTE: You can configure a tracked object for a VRRP group (using the track object-id command in INTERFACE-VRID mode) before you actually create the tracked object (using a track object-id command in CONFIGURATION mode). However, no changes in the VRRP group’s priority occur until the tracked object is defined and determined to be down.
track TenGigabitEthernet 1/2/1 virtual-address 10.10.10.1 virtual-address 10.10.10.2 virtual-address 10.10.10.3 virtual-address 10.10.10.10 The following example shows verifying the tracking status.
Setting VRRP Initialization Delay When configured, VRRP is enabled immediately upon system reload or boot. You can delay VRRP initialization to allow the IGP and EGP protocols to be enabled prior to selecting the VRRP Master. This delay ensures that VRRP initializes with no errors or conflicts. You can configure the delay for up to 15 minutes, after which VRRP enables normally.
Sample Configurations Before you set up VRRP, review the following sample configurations. VRRP for an IPv4 Configuration The following configuration shows how to enable IPv4 VRRP. This example does not contain comprehensive directions and is intended to provide guidance for only a typical VRRP configuration. You can copy and paste from the example to your CLI. To support your own IP addresses, interfaces, names, and so on, be sure that you make the necessary changes.
Figure 126. VRRP for IPv4 Topology Examples of Configuring VRRP for IPv4 and IPv6 The following example shows configuring VRRP for IPv4 Router 2. R2(conf)#interface tengigabitethernet 2/31/1 R2(conf-if-te-2/31/1)#ip address 10.1.1.1/24 R2(conf-if-te-2/31/1)#vrrp-group 99 R2(conf-if-te-2/31/1-vrid-99)#priority 200 R2(conf-if-te-2/31/1-vrid-99)#virtual 10.1.1.3 R2(conf-if-te-2/31/1-vrid-99)#no shut R2(conf-if-te-2/31/1)#show conf ! interface TenGigabitEthernet 2/31/1 ip address 10.1.1.
priority 200 virtual-address 10.1.1.3 no shutdown R2(conf-if-te-2/31/1)#end R2#show vrrp -----------------TenGigabitEthernet 2/31/1, VRID: 99, Net: 10.1.1.1 State: Master, Priority: 200, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 817, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:63 Virtual IP address: 10.1.1.
Figure 127. VRRP for an IPv6 Configuration NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be MASTER even if one of two routers has a higher IP or IPv6 address. The following example shows configuring VRRP for IPv6 Router 2 and Router 3. Configure a virtual link local (fe80) address for each VRRPv3 group created for an interface.
Although R2 and R3 have the same default, priority (100), R2 is elected master in the VRRPv3 group because the TenGigabitethernet 1/1/1 interface has a higher IPv6 address than the TenGigabitethernet 1/2/1 interface on R3.
Virtual MAC address: 00:00:5e:00:02:0a VRRP in a VRF Configuration The following example shows how to enable VRRP operation in a VRF virtualized network for the following scenarios. • Multiple VRFs on physical interfaces running VRRP. • Multiple VRFs on VLAN interfaces running VRRP. To view a VRRP in a VRF configuration, use the show commands. VRRP in a VRF: Non-VLAN Scenario The following example shows how to enable VRRP in a non-VLAN.
Figure 128. VRRP in a VRF: Non-VLAN Example Example of Configuring VRRP in a VRF on Switch-1 (Non-VLAN) Switch-1 S1(conf)#ip vrf default-vrf 0 ! S1(conf)#ip vrf VRF-1 1 ! S1(conf)#ip vrf VRF-2 2 ! S1(conf)#ip vrf VRF-3 3 ! S1(conf)#interface TenGigabitEthernet 1/1/1 S1(conf-if-te-1/1/1)#ip vrf forwarding VRF-1 S1(conf-if-te-1/1/1)#ip address 10.10.1.5/24 S1(conf-if-te-1/1/1)#vrrp-group 11 % Info: The VRID used by the VRRP group 11 in VRF 1 will be 177.
S1(conf)#interface TenGigabitEthernet 1/3/1 S1(conf-if-te-1/3/1)#ip vrf forwarding VRF-3 S1(conf-if-te-1/3/1)#ip address 20.1.1.5/24 S1(conf-if-te-1/3/1)#vrrp-group 15 % Info: The VRID used by the VRRP group 15 in VRF 3 will be 243. S1(conf-if-te-1/3/1-vrid-105)#priority 255 S1(conf-if-te-1/3/1-vrid-105)#virtual-address 20.1.1.5 S1(conf-if-te-1/3/1)#no shutdown Dell#show vrrp tengigabitethernet 2/8/1 -----------------TenGigabitEthernet 2/8/1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.
VLAN Scenario In another scenario, to connect to the LAN, VRF-1, VRF-2, and VRF-3 use a single physical interface with multiple tagged VLANs (instead of separate physical interfaces). In this case, you configure three VLANs: VLAN-100, VLAN-200, and VLAN-300. Each VLAN is a member of one VRF. A physical interface ( tengigabitethernet 1/1/1) attaches to the LAN and is configured as a tagged interface in VLAN-100, VLAN-200, and VLAN-300. The rest of this example is similar to the non-VLAN scenario.
Vlan 400, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 1 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Dell#show vrrp vrf vrf2 port-channel 1 -----------------Port-channel 1, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 2 vrf2 State: Master, Priority: 100, Master: 10.1.1.
S2(conf-if-vl-300-vrid-101)#virtual-address 20.1.1.5 S2(conf-if-vl-300)#no shutdown Dell#show vrrp vrf vrf1 vlan 400 -----------------Vlan 400, IPv4 VRID: 1, Version: 2, Net: 10.1.1.1 VRF: 1 vrf1 State: Master, Priority: 100, Master: 10.1.1.1 (local) Hold Down: 0 sec, Preempt: TRUE, AdvInt: 1 sec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 278, Gratuitous ARP sent: 1 Virtual MAC address: 00:00:5e:00:01:01 Virtual IP address: 10.1.1.100 Authentication: (none) Vlan 400, IPv4 VRID: 10, Version: 2, Net: 20.1.1.
Figure 129. VRRP for IPv6 Topology NOTE: In a VRRP or VRRPv3 group, if two routers come up with the same priority and another router already has MASTER status, the router with master status continues to be master even if one of two routers has a higher IP or IPv6 address.
NOTE: You must configure a virtual link local (fe80) address for each VRRPv3 group created for an interface. The VRRPv3 group becomes active as soon as you configure the link local address. Afterwards, you can configure the group’s virtual IPv6 address. R2(conf-if-te-1/1/1-vrid-10)#virtual-address fe80::10 NOTE: The virtual IPv6 address you configure should be the same as the IPv6 subnet to which the interface belongs.
State: Backup, Priority: 100, Master: fe80::201:e8ff:fe6a:c59f Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 11, Bad pkts rcvd: 0, Adv sent: 0 Virtual MAC address: 00:00:5e:00:02:0a Virtual IP address: 1::10 fe80::10 Dell#show vrrp tengigabitethernet 1/1/1 TenGigabitEthernet 1/1/1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 0 default State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down: 0 centisec,
State: Master, Priority: 100, Master: fe80::201:e8ff:fe8a:e9ed (local) Hold Down: 0 centisec, Preempt: TRUE, AdvInt: 100 centisec Accept Mode: FALSE, Master AdvInt: 100 centisec Adv rcvd: 0, Bad pkts rcvd: 0, Adv sent: 443 Virtual MAC address: 00:00:5e:00:02:ff Virtual IP address: 10:1:1::255 fe80::255 Dell#show vrrp vrf vrf2 port-channel 1 Port-channel 1, IPv6 VRID: 255, Version: 3, Net: fe80::201:e8ff:fe8a:fd76 VRF: 2 vrf2 State: Backup, Priority: 90, Master: fe80::201:e8ff:fe8a:e9ed Hold Down: 0 centisec
S-Series Debugging and Diagnostics 58 This chapter describes debugging and diagnostics for the device. Offline Diagnostics The offline diagnostics test suite is useful for isolating faults and debugging hardware. The diagnostics tests are grouped into three levels: • Level 0 — Level 0 diagnostics check for the presence of various components and perform essential path verifications. In addition, Level 0 diagnostics verify the identification registers of the components on the board.
NOTE: The system reboots when the offline diagnostics complete. This is an automatic process. The following warning message appears when you implement the offline stackunit command: Warning - Diagnostic execution will cause stack-unit to reboot after completion of diags. Proceed with Offline-Diags [confirm yes/no]:y After the system goes offline, you must reload or run the online stack-unit stack-unit-number command for the normal operation. 2. Confirm the offline status.
-- Stack Info -Unit UnitType Status ReqTyp CurTyp Version Ports ----------------------------------------------------------------------------------0 Management offline S6000 S6000 9.4(0.
S25P, 28 ports) 00:09:00: %S25P:2 %CHMGR-0-PS_UP: Power supply 0 in unit 2 is up 00:09:00: %STKUNIT1-M:CP %CHMGR-5-STACKUNITUP: Stack unit 2 is up [output from the console of the unit in which diagnostics are performed] Dell(stack-member-2)# Diagnostic test results are stored on file: flash:/TestReport-SU-2.txt Diags completed... Rebooting the system now!!! The following example shows the show file flash:\\ command (standalone member).
diagS6000IsPsuGood[954]: ERROR: Psu:1, Power supply is not present. Test 8.001 - Psu1 Fan AirFlow Type Test .............................NOT PRESENT Test 8 - Psu Fan AirFlow Type Test ..................................NOT PRESENT Test 9 - Power Rail Status Test ..................................... PASS Test 10.000 - FanTray0 Presence Test ................................ PASS Test 10.001 - FanTray1 Presence Test ................................
Trace Logs In addition to the syslog buffer, Dell Networking OS buffers trace messages which are continuously written by various Dell Networking OS software tasks to report hardware and software events and status information. Each trace message provides the date, time, and name of the Dell Networking OS process. All messages are stored in a ring buffer. You can save the messages to a file either manually or automatically after failover.
Recognize an Overtemperature Condition An overtemperature condition occurs, for one of two reasons: the card genuinely is too hot or a sensor has malfunctioned. Inspect cards adjacent to the one reporting the condition to discover the cause. • If directly adjacent cards are not normal temperature, suspect a genuine overheating condition. • If directly adjacent cards are normal temperature, suspect a faulty sensor. When the system detects a genuine over-temperature condition, it powers off the card.
Recognize an Under-Voltage Condition If the system detects an under-voltage condition, it sends an alarm. To recognize this condition, look for the following system message: %CHMGR-1-CARD_SHUTDOWN: Major alarm: stack unit 2 down - auto-shutdown due to under voltage. This message indicates that the specified card is not receiving enough power. In response, the system first shuts down Power over Ethernet (PoE). If the under-voltage condition persists, line cards are shut down, then the RPMs.
OID String OID Name Description .1.3.6.1.4.1.6027.3.16.1.1.6 fpStatsPerCOSTable View the forwarding plane statistics containing the packet buffer statistics per COS per port. Buffer Tuning Buffer tuning allows you to modify the way your switch allocates buffers from its available memory and helps prevent packet drops during a temporary burst of traffic.
– Available packet pointers (2k per interface). Each packet is managed in the buffer using a unique packet pointer. Thus, each interface can manage up to 2k packets. You can configure dynamic buffers per port on both 1G and 10G FPs and per queue on CSFs. By default, the FP dynamic buffer allocation is 10 times oversubscribed.
• Define a buffer profile for the FP queues. CONFIGURATION mode • buffer-profile fp fsqueue Define a buffer profile for the CSF queues. CONFIGURATION mode • buffer-profile csf csqueue Change the dedicated buffers on a physical 1G interface. BUFFER PROFILE mode • buffer dedicated Change the maximum number of dynamic buffers an interface can request. BUFFER PROFILE mode • buffer dynamic Change the number of packet-pointers per queue.
correctly returns to the default values, but the profile name remains. Remove it from the show bufferprofile [detail | summary] command output by entering no buffer [fp-uplink |csf] linecard port-set buffer-policy from CONFIGURATION mode and no buffer-policy from INTERFACE mode. To display the allocations for any buffer profile, use the show commands. To display the default buffer profile, use the show buffer-profile {summary | detail} command from EXEC Privilege mode.
Queue# Dedicated Buffer (Kilobytes) 0 3.00 1 3.00 2 3.00 3 3.00 4 3.00 5 3.00 6 3.00 7 3.00 Buffer Packets 256 256 256 256 256 256 256 256 Using a Pre-Defined Buffer Profile Dell Networking OS provides two pre-defined buffer profiles, one for single-queue (for example, nonquality-of-service [QoS]) applications, and one for four-queue (for example, QoS) applications.
Example of a Single Queue Application with Default Packet Pointers ! buffer-profile fp fsqueue-fp buffer dedicated queue0 3 queue1 3 queue2 3 queue3 3 queue4 3 queue5 3 queue6 3 queue7 3 buffer dynamic 1256 ! buffer-profile fp fsqueue-hig buffer dedicated queue0 3 queue1 3 queue2 3 queue3 3 queue4 3 queue5 3 queue6 3 queue7 3 buffer dynamic 1256 ! buffer fp-uplink stack-unit 1 port-set 0 buffer-policy fsqueue-hig buffer fp-uplink stack-unit 1 port-set 1 buffer-policy fsqueue-hig ! Interface range tengigabit
• • clear hardware stack-unit stack-unit-number cpu party-bus statistics clear hardware stack-unit stack-unit-number stack-port 48-51 Displaying Drop Counters To display drop counters, use the following commands. • Identify which stack unit, port pipe, and port is experiencing internal drops. • show hardware stack-unit stack-unit-number drops [unit 0 [port port-number]] Display drop counters. • show hardware stack-unit drops unit port Identify which interface is experiencing internal drops.
IPv4 L3UC Aged & Drops TTL Threshold Drops INVALID VLAN CNTR Drops L2MC Drops PKT Drops of ANY Conditions Hg MacUnderflow TX Err PKT Counter --- Error counters--Internal Mac Transmit Errors Unknown Opcodes Internal Mac Receive Errors : : : : : : : 0 0 0 0 0 0 0 : 0 : 0 : 0 Dell#show hardware drops interface tengigabitethernet 2/1/1 Drops in Interface Te 2/1/1: --- Ingress Drops --Ingress Drops IBP CBP Full Drops PortSTPnotFwd Drops IPv4 L3 Discards Policy Discards Packets dropped by FP (L2+L3) Drops Por
Unknown Opcodes Internal Mac Receive Errors : 0 : 0 Dell#show hardware drops interface gigabitethernet 2/1 Drops in Interface Gi 2/1: --- Ingress Drops --Ingress Drops IBP CBP Full Drops PortSTPnotFwd Drops IPv4 L3 Discards Policy Discards Packets dropped by FP (L2+L3) Drops Port bitmap zero Drops Rx VLAN Drops --- Ingress MAC counters--Ingress FCSDrops Ingress MTUExceeds --- MMU Drops --Ingress MMU Drops HOL DROPS(TOTAL) HOL DROPS on COS0 HOL DROPS on COS1 HOL DROPS on COS2 HOL DROPS on COS3 HOL DROPS on
Total Egress Drops : 0 Dell#show hardware stack-unit 1 drops unit 0 UserPort PortNumber Ingress Drops EgMac Drops Egress Drops 1 1 0 0 0 0 2 2 0 0 0 0 3 3 0 0 0 0 4 4 0 0 0 0 5 5 0 0 0 0 6 6 0 0 0 0 7 7 0 0 0 0 8 8 0 0 0 0 9 9 0 0 0 0 10 10 0 0 0 0 11 11 0 0 0 0 12 12 0 0 0 0 13 13 0 0 0 0 14 14 0 0 0 0 15 15 0 0 0 0 16 16 0 0 0 0 17 17 2144854 124904297 0 0 18 18 0 0 0 0 19 19 0 0 0 0 20 20 0 0 0 0 21 21 0 0 0 0 22 22 0 0 0 0 23 23 0 0 0 0 24 24 0 0 0 0 25 25 0 0 0 0 26 26 0 0 0 0 27 27 0 0 0 0 28 28 0 0
30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 49 0 49 0 49 0 52 0 52 0 52 0 52 0 53 0 53 0 53 0 53 0 54/1 0 1076 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 52 0 61 0 62 0 63 0 64 0 65 0 66 0 67 0 68 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54/2 0 54/3 0 54/4 0 Internal 0 Internal 0 70 0 71 0 72 0 53 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4659499 0 Dataplane Statistics The show hardware stack-unit cpu data-plane statistics command provides insight into the packet types coming to the CPU. The show hardware stack-unit cpu party-bus statistics command displays input and output statistics on the party bus, which carries inter-process communication traffic between CPUs.
txPkt(COS7) txPkt(UNIT0) :0 :0 Example of Viewing Party Bus Statistics Dell#sh hardware stack-unit 2 cpu party-bus statistics Input Statistics: 27550 packets, 2559298 bytes 0 dropped, 0 errors Output Statistics: 1649566 packets, 1935316203 bytes 0 errors Display Stack Port Statistics The show hardware stack-unit stack-port command displays input and output statistics for a stack-port interface.
GRBCA.ge0 GT64.ge0 GT127.ge0 GT255.ge0 GT511.ge0 GTPKT.ge0 GTBCA.ge0 GTBYT.ge0 RUC.cpu0 TDBGC6.
TX TX TX TX TX TX - Over size packet counter Jabber counter VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter Interface Te 0/1 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Packets RX - IPV6 L3 Unicast Frame Counter --------------------Interface Fo 0/60 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Packets RX - IPV6 L3 Unicast Frame Counter RX - IPV6 L3 routed multicast Packets RX - Unicast Packet Cou
TX TX TX TX TX TX TX TX TX - Byte Counter Control frame counter Pause control frame counter Over size packet counter Jabber counter VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter 0 0 0 0 0 0 0 0 0 Dell# show hardware stack-unit 1 unit 0 counters Interface Gi 1/1 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Packets RX - IPV6 L3 Unicast Frame Counter RX - IPV6 L3 routed multicast Packets RX - Unicast Packet Counter RX - 64 Byte Fr
TX TX TX TX - VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter Interface Gi Description RX - IPV4 L3 RX - IPV4 L3 RX - IPV6 L3 --------------------- 1/1 : Unicast Frame Counter routed multicast Packets Unicast Frame Counter 0 0 0 0 Value 0 0 0 Dell# show hardware stack-unit 1 unit 0 counters Interface Te 1/1/1 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Packets RX - IPV6 L3 Unicast Frame Counter RX - IPV6 L3 routed multicast Pa
TX TX TX TX TX TX TX TX TX TX - Broadcast Frame Counter Byte Counter Control frame counter Pause control frame counter Over size packet counter Jabber counter VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter Interface Te 1/1/1 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Packets RX - IPV6 L3 Unicast Frame Counter --------------------Interface Fo 1/60 : Description RX - IPV4 L3 Unicast Frame Counter RX - IPV4 L3 routed multicast Pac
TX TX TX TX TX TX TX TX TX TX TX TX TX - Packet/frame Counter Unicast Packet Counter Multicast Packet Counter Broadcast Frame Counter Byte Counter Control frame counter Pause control frame counter Over size packet counter Jabber counter VLAN tag frame counter Double VLAN tag frame counter RUNT frame counter Fragment counter 0 0 0 0 0 0 0 0 0 0 0 0 0 Example of Displaying Counter Information for a Specific Interface Dell#show hardware counters interfac tengigabitethernet 5/1/1 unit: 0 port: 2 (interface
Enabling Application Core Dumps Application core dumps are disabled by default. A core dump file can be very large. Due to memory requirements the file can only be sent directly to an FTP server; it is not stored on the local flash. To enable full application core dumps, use the following command. • Enable RPM core dumps and specify the Shutdown mode. CONFIGURATION mode logging coredump server To undo this command, use the no logging coredump server command.
flash: 3104256 bytes total (2959872 bytes free) Dell# Example of a Mini Core Text File VALID MAGIC -----------------PANIC STRING ----------------panic string is : ---------------STACK TRACE START--------------0035d60c : 00274f8c : 0024e2b0 : 0024dee8 : 0024d9c4 : 002522b0 : 0026a8d0 : 0026a00c : ----------------STACK TRACE END-----------------------------------FREE MEM
Standards Compliance 59 This chapter describes standards compliance for Dell Networking products. NOTE: Unless noted, when a standard cited here is listed as supported by the Dell Networking Operating System (OS), Dell Networking OS also supports predecessor standards. One way to search for predecessor standards is to use the http://tools.ietf.org/ website.
Force10 PVST+ SFF-8431 SFP+ Direct Attach Cable (10GSFP+Cu) MTU 9,252 bytes RFC and I-D Compliance Dell Networking OS supports the following standards. The standards are grouped by related protocol. The columns showing support by platform indicate which version of Dell Networking OS first supports the standard. General Internet Protocols The following table lists the Dell Networking OS support per platform for general internet protocols. Table 84.
General IPv4 Protocols The following table lists the Dell Networking OS support per platform for general IPv4 protocols. Table 85. General IPv4 Protocols RFC# Full Name S-Series 791 Internet Protocol 7.6.1 792 Internet Control Message Protocol 7.6.1 826 An Ethernet Address Resolution Protocol 7.6.1 1027 Using ARP to Implement Transparent Subnet Gateways 7.6.1 1035 DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION (client) 7.6.
General IPv6 Protocols The following table lists the Dell Networking OS support per platform for general IPv6 protocols. Table 86. General IPv6 Protocols RFC# Full Name S-Series 1886 DNS Extensions to support IP version 6 7.8.1 1981 (Partial) Path MTU Discovery for IP version 6 7.8.1 2460 Internet Protocol, Version 6 (IPv6) Specification 7.8.1 2462 (Partial) IPv6 Stateless Address Autoconfiguration 7.8.1 2464 Transmission of IPv6 Packets over Ethernet Networks 7.8.
RFC# Full Name S-Series/Z-Series 2545 Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing 2796 BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP) 2842 Capabilities Advertisement with BGP-4 7.8.1 2858 Multiprotocol Extensions for BGP-4 7.8.1 2918 Route Refresh Capability for BGP-4 7.8.1 3065 Autonomous System Confederations for BGP 7.8.1 4360 BGP Extended Communities Attribute 7.8.1 4893 BGP Support for Four-octet AS Number Space 7.8.
Intermediate System to Intermediate System (IS-IS) The following table lists the Dell Networking OS support per platform for IS-IS protocol. Table 89.
RFC# Full Name S-Series 4191 Default Router Preferences and More- 8.3.12.0 Specific Routes Multicast The following table lists the Dell Networking OS support per platform for Multicast protocol. Table 91. Multicast RFC# Full Name S-Series 1112 Host Extensions for IP Multicasting 7.8.1 2236 Internet Group Management Protocol, 7.8.1 Version 2 2710 Multicast Listener Discovery (MLD) for IPv6 3376 Internet Group Management Protocol, 7.8.
RFC# Full Name S4810 S4820T Z-Series Management Information for TCP/IP-based Internets 1156 Management Information 7.6.1 Base for Network Management of TCP/IPbased internets 1157 A Simple Network Management Protocol (SNMP) 7.6.1 1212 Concise MIB Definitions 7.6.1 1215 A Convention for Defining 7.6.1 Traps for use with the SNMP 1493 Definitions of Managed 7.6.1 Objects for Bridges [except for the dot1dTpLearnedEntryDisc ards object] 1724 RIP Version 2 MIB Extension 1850 OSPF Version 2 7.
RFC# Full Name S4810 2096 IP Forwarding Table MIB 7.6.1 2558 Definitions of Managed Objects for the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/ SDH) Interface Type 2570 Introduction and Applicability Statements for Internet Standard Management Framework 2571 An Architecture for 7.6.
RFC# Full Name S4810 2618 RADIUS Authentication Client MIB, except the following four counters: 7.6.1 S4820T Z-Series 9.5.(0.0) 9.5.(0.0) radiusAuthClientInvalidSer verAddresses radiusAuthClientMalforme dAccessResponses radiusAuthClientUnknown Types radiusAuthClientPacketsD ropped 2698 A Two Rate Three Color Marker 9.5.(0.0) 3635 Definitions of Managed Objects for the Ethernetlike Interface Types 7.6.
RFC# Full Name S4810 S4820T Z-Series Ethernet History HighCapacity Table 3416 Version 2 of the Protocol 7.6.1 Operations for the Simple Network Management Protocol (SNMP) 3418 Management Information 7.6.1 Base (MIB) for the Simple Network Management Protocol (SNMP) 3434 Remote Monitoring MIB Extensions for High Capacity Alarms, HighCapacity Alarm Table (64 bits) 7.6.1 3580 IEEE 802.1X Remote Authentication Dial In User Service (RADIUS) Usage Guidelines 7.6.
RFC# Full Name S4810 draft-ietf-idr-bgp4 -mib-06 Definitions of Managed Objects for the Fourth Version of the Border Gateway Protocol (BGP-4) using SMIv2 7.8.1 draft-ietf-isiswgmib- 16 Management Information Base for Intermediate System to Intermediate System (IS-IS): S4820T Z-Series 9.2(0.0) 9.2(0.
RFC# Full Name S4810 ruzin-mstp-mib-0 2 (Traps) Definitions of Managed Objects for Bridges with Multiple Spanning Tree Protocol 7.6.1 sFlow.org sFlow Version 5 7.7.1 sFlow.org sFlow Version 5 MIB 7.7.1 FORCE10-BGP4V2-MIB Force10 BGP MIB (draftietf-idr-bgp4-mibv2-05) 7.8.1 f10–bmp-mib Force10 Bare Metal Provisioning MIB 9.2(0.
RFC# Full Name S4810 FORCE10-SSCHASSIS-MIB Force10 S-Series Enterprise Chassis MIB 7.6.1 FORCE10-SMI Force10 Structure of 7.6.1 Management Information FORCE10-SYSTEM- Force10 System COMPONENT-MIB Component MIB (enables the user to view CAM usage information) 7.6.1 FORCE10-TC-MIB Force10 Textual Convention 7.6.1 FORCE10-TRAPALARM-MIB Force10 Trap Alarm MIB 7.6.