Users Guide
Table Of Contents
- Table of Contents
- Preface
- 1 Functionality and Features
- 2 Configuring Teaming in Windows Server
- 3 Virtual LANs in Windows
- 4 Installing the Hardware
- 5 Manageability
- 6 Boot Agent Driver Software
- 7 Linux Driver Software
- Introduction
- Limitations
- Packaging
- Installing Linux Driver Software
- Load and Run Necessary iSCSI Software Components
- Unloading or Removing the Linux Driver
- Patching PCI Files (Optional)
- Network Installations
- Setting Values for Optional Properties
- Driver Defaults
- Driver Messages
- bnx2x Driver Messages
- bnx2i Driver Messages
- BNX2I Driver Sign-on
- Network Port to iSCSI Transport Name Binding
- Driver Completes Handshake with iSCSI Offload-enabled C-NIC Device
- Driver Detects iSCSI Offload Is Not Enabled on the C-NIC Device
- Exceeds Maximum Allowed iSCSI Connection Offload Limit
- Network Route to Target Node and Transport Name Binding Are Two Different Devices
- Target Cannot Be Reached on Any of the C-NIC Devices
- Network Route Is Assigned to Network Interface, Which Is Down
- SCSI-ML Initiated Host Reset (Session Recovery)
- C-NIC Detects iSCSI Protocol Violation - Fatal Errors
- C-NIC Detects iSCSI Protocol Violation—Non-FATAL, Warning
- Driver Puts a Session Through Recovery
- Reject iSCSI PDU Received from the Target
- Open-iSCSI Daemon Handing Over Session to Driver
- bnx2fc Driver Messages
- BNX2FC Driver Signon
- Driver Completes Handshake with FCoE Offload Enabled C-NIC Device
- Driver Fails Handshake with FCoE Offload Enabled C-NIC Device
- No Valid License to Start FCoE
- Session Failures Due to Exceeding Maximum Allowed FCoE Offload Connection Limit or Memory Limits
- Session Offload Failures
- Session Upload Failures
- Unable to Issue ABTS
- Unable to Recover the IO Using ABTS (Due to ABTS Timeout)
- Unable to Issue I/O Request Due to Session Not Ready
- Drop Incorrect L2 Receive Frames
- Host Bus Adapter and lport Allocation Failures
- NPIV Port Creation
- Teaming with Channel Bonding
- Statistics
- Linux iSCSI Offload
- 8 VMware Driver Software
- Introduction
- Packaging
- Download, Install, and Update Drivers
- Driver Parameters
- FCoE Support
- iSCSI Support
- 9 Windows Driver Software
- Supported Drivers
- Installing the Driver Software
- Modifying the Driver Software
- Repairing or Reinstalling the Driver Software
- Removing the Device Drivers
- Viewing or Changing the Properties of the Adapter
- Setting Power Management Options
- Configuring the Communication Protocol to Use with QCC GUI, QCC PowerKit, and QCS CLI
- 10 Citrix XenServer Driver Software
- 11 iSCSI Protocol
- iSCSI Boot
- Supported Operating Systems for iSCSI Boot
- iSCSI Boot Setup
- Configuring the iSCSI Target
- Configuring iSCSI Boot Parameters
- MBA Boot Protocol Configuration
- iSCSI Boot Configuration
- Enabling CHAP Authentication
- Configuring the DHCP Server to Support iSCSI Boot
- DHCP iSCSI Boot Configuration for IPv4
- DHCP iSCSI Boot Configuration for IPv6
- Configuring the DHCP Server
- Preparing the iSCSI Boot Image
- Booting
- Other iSCSI Boot Considerations
- Troubleshooting iSCSI Boot
- iSCSI Crash Dump
- iSCSI Offload in Windows Server
- iSCSI Boot
- 12 Marvell Teaming Services
- Executive Summary
- Teaming Mechanisms
- Teaming and Other Advanced Networking Properties
- General Network Considerations
- Application Considerations
- Troubleshooting Teaming Problems
- Frequently Asked Questions
- Event Log Messages
- 13 NIC Partitioning and Bandwidth Management
- 14 Fibre Channel Over Ethernet
- Overview
- FCoE Boot from SAN
- Preparing System BIOS for FCoE Build and Boot
- Preparing Marvell Multiple Boot Agent for FCoE Boot (CCM)
- Preparing Marvell Multiple Boot Agent for FCoE Boot (UEFI)
- Provisioning Storage Access in the SAN
- One-Time Disabled
- Windows Server 2016/2019/Azure Stack HCI FCoE Boot Installation
- Linux FCoE Boot Installation
- VMware ESXi FCoE Boot Installation
- Booting from SAN After Installation
- Configuring FCoE
- N_Port ID Virtualization (NPIV)
- 15 Data Center Bridging
- 16 SR-IOV
- 17 Specifications
- 18 Regulatory Information
- 19 Troubleshooting
- Hardware Diagnostics
- Checking Port LEDs
- Troubleshooting Checklist
- Checking if Current Drivers Are Loaded
- Running a Cable Length Test
- Testing Network Connectivity
- Microsoft Virtualization with Hyper-V
- Removing the Marvell 57xx and 57xxx Device Drivers
- Upgrading Windows Operating Systems
- Marvell Boot Agent
- Linux
- NPAR
- Kernel Debugging Over Ethernet
- Miscellaneous
- A Revision History
12–Marvell Teaming Services
Executive Summary
Doc No. BC0054508-00 Rev. R
January 21, 2021 Page 151 Copyright © 2021 Marvell
The Link Aggregation control function determines which links may be aggregated
and then binds the ports to an Aggregator function in the system and monitors
conditions to determine if a change in the aggregation group is required. Link
aggregation combines the individual capacity of multiple links to form a high
performance virtual link. The failure or replacement of a link in an LACP trunk will
not cause loss of connectivity. The traffic will simply be failed over to the remaining
links in the trunk.
SLB (Auto-Fallback Disable)
This type of team is identical to the Smart Load Balance and Failover type of
team, with the following exception—when the standby member is active, if a
primary member comes back on line, the team continues using the standby
member rather than switching back to the primary member. This type of team is
supported only for situations in which the network cable is disconnected and
reconnected to the network adapter. It is not supported for situations in which the
adapter is removed/installed through Device Manager or Hot-Plug PCI.
If any primary adapter assigned to a team is disabled, the team functions as a
Smart Load Balancing and Failover type of team in which auto-fallback occurs.
Software Components
Teaming is implemented through an NDIS intermediate driver in the Windows
operating system environment. This software component works with the miniport
driver, the NDIS layer, and the protocol stack to enable the teaming architecture
(see Figure 12-2 on page 159). The miniport driver controls the host LAN
controller directly to enable functions such as sends, receives, and interrupt
processing. The intermediate driver fits between the miniport driver and the
protocol layer multiplexing several miniport driver instances, and creating a virtual
adapter that looks like a single adapter to the NDIS layer. NDIS provides a set of
library functions to enable the communications between either miniport drivers or
intermediate drivers and the protocol stack. The protocol stack implements IP,
IPX, and ARP. A protocol address such as an IP address is assigned to each
miniport device instance, but when an Intermediate driver is installed, the protocol
address is assigned to the virtual team adapter and not to the individual miniport
devices that make up the team.
The Marvell-supplied teaming support is provided by three individual software
components that work together and are supported as a package. When one
component is upgraded, all the other components must be upgraded to the
supported versions.










