Owner`s manual

3
2) The Output Stage – There are two output stages, one for each channel. Each
output stage consists of :
a. the output transformer,
b. output tubes (2 per channel), and
c. cathode bias resistor (the original value was 15.6 ohms and had the
appearance of a white ceramic tubular device connected to pins 1 & 8 of
both output tubes).
d. The output tube sockets should also be considered a “component” in the
output stage – they have a higher incidence of failure than the typical
mechanical component due to the constant high temperature exposure.
That’s it – really simple. It is important for you to know that the output stage
tubes are meant to conduct a little “bias” current when the amp is idle. This bias
current is controlled by placing a negative
voltage at the control grid (pin 5 of the
EL34 output tubes). Note - if this negative voltage were to disappear, the control
grid will fall to zero volts and at this point the tubes will conduct way too much
current causing the familiar glowing red plate elements (from the heat).
Eventually the fuse will trip or, if too late, the tubes will be destroyed. The
negative voltage needed to keep the tubes conducting the desired current is
produced in the bias supply (located in the power supply section) and is delivered
to the control grid (pin 5) via the tube socket. Therefore should the tube socket
corrode or otherwise fail to connect to the tube control grid pin (5), the voltage
appearing at the control grid (pin 5) will fall to zero causing the tube to conduct
excessive (and destructive) current. You may want to think of the negative control
grid voltage as the adjustable safety valve. Because each tube differs from unit to
unit, it is necessary to make this voltage variable and user adjustable. This
adjustment
is made via the BIAS ADJUSTMENT pots (located on the amp
between the rectifier tube and Quad filter capacitor). As the user adjusts the
voltage on the control grid, the current flowing through the tube (from plate to
cathode) flows into the Cathode Bias Resistor (the 15.6 ohm resistor discussed
above) causing a voltage drop to appear across this resistor (via ohms law). The
user then measures
the voltage across the resistor as an indicator of the current
flowing through the tube (via ohms law Voltage = Current X Resistance). Since
the current flowing through each tube should be about 50mA, and since both
tubes (in one channel) have their cathode current flowing through a single
common Bias Resistor, the total current through the bias resistor will total 2X
50mA, or 100mA. By Ohms law, 100mA X 15.6 ohms = 1.56 Volts (DC) – and
this is the Bias Voltage specified by Dynaco. Failures in the output section usually
manifest themselves as bias difficulties (too much or too little) usually the result
of problems in the bias supply, weak or shorted tubes, defective tube sockets
(loose or corroded terminals), or (rarely) defective output transformers.
3) The Driver Amplifier & Phase Splitter – This is perhaps the most complex part
of the Stereo 70 power amplifier. It is the 7” X 4 “ (approximate) PC board
located in the front center of the amp between the two pairs of output tubes. It