User Manual
Table Of Contents
- 1 Legal disclaimer
- 2 Warnings & Cautions
- 3 Notice to user
- 4 Customer help
- 5 Quick Start Guide
- 6 Parts lists
- 7 A note about ergonomics
- 8 Camera parts
- 9 Screen elements
- 10 Navigating the menu system
- 11 External devices and storage media
- 12 Pairing Bluetooth devices
- 13 Configuring Wi-Fi
- 14 Fetching data from external Extech meters
- 15 Handling the camera
- 15.1 Charging the battery
- 15.2 Inserting the battery
- 15.3 Removing the battery
- 15.4 Turning on and turning off the camera
- 15.5 Adjusting the angle of lens
- 15.6 Mounting an additional lens
- 15.7 Removing an additional infrared lens
- 15.8 Attaching the sunshield
- 15.9 Using the laser pointer
- 15.10 Calibrating the compass
- 15.11 Calibrating the touchscreen LCD
- 16 Working with images and folders
- 17 Working with fusion
- 18 Working with video
- 19 Working with measurement tools and isotherms
- 20 Annotating images
- 21 Programming the camera
- 22 Changing settings
- 23 Cleaning the camera
- 24 Technical data
- 25 Pin configurations
- 26 Dimensions
- 27 Application examples
- 28 About Flir Systems
- 29 Glossary
- 30 Thermographic measurement techniques
- 31 History of infrared technology
- 32 Theory of thermography
- 33 The measurement formula
- 34 Emissivity tables
Theory of thermography32
• A selective radiator, for which ε varies with wavelength
According to Kirchhoff’s law, for any material the spectral emissivity and spectral absorp-
tance of a body are equal at any specified temperature and wavelength. That is:
From this we obtain, for an opaque material (since α
λ
+ ρ
λ
= 1):
For highly polished materials ε
λ
approaches zero, so that for a perfectly reflecting material
(i.e. a perfect mirror) we have:
For a graybody radiator, the Stefan-Boltzmann formula becomes:
This states that the total emissive power of a graybody is the same as a blackbody at the
same temperature reduced in proportion to the value of ε from the graybody.
Figure 32.8 Spectral radiant emittance of three types of radiators. 1: Spectral radiant emittance; 2: Wave-
length; 3: Blackbody; 4: Selective radiator; 5: Graybody.
#T559772; r.5948/5948; en-US
94










