User Manual
Table Of Contents
- 1 Legal disclaimer
- 2 Warnings & Cautions
- 3 Notice to user
- 4 Customer help
- 5 Quick Start Guide
- 6 Parts lists
- 7 A note about ergonomics
- 8 Camera parts
- 9 Screen elements
- 10 Navigating the menu system
- 11 External devices and storage media
- 12 Pairing Bluetooth devices
- 13 Configuring Wi-Fi
- 14 Fetching data from external Extech meters
- 15 Handling the camera
- 15.1 Charging the battery
- 15.2 Inserting the battery
- 15.3 Removing the battery
- 15.4 Turning on and turning off the camera
- 15.5 Adjusting the angle of lens
- 15.6 Mounting an additional lens
- 15.7 Removing an additional infrared lens
- 15.8 Attaching the sunshield
- 15.9 Using the laser pointer
- 15.10 Calibrating the compass
- 15.11 Calibrating the touchscreen LCD
- 16 Working with images and folders
- 17 Working with fusion
- 18 Working with video
- 19 Working with measurement tools and isotherms
- 20 Annotating images
- 21 Programming the camera
- 22 Changing settings
- 23 Cleaning the camera
- 24 Technical data
- 25 Pin configurations
- 26 Dimensions
- 27 Application examples
- 28 About Flir Systems
- 29 Glossary
- 30 Thermographic measurement techniques
- 31 History of infrared technology
- 32 Theory of thermography
- 33 The measurement formula
- 34 Emissivity tables
The measurement formula33
magnitudes of the three radiation terms. This will give indications about when it is impor-
tant to use correct values of which parameters.
The figures below illustrates the relative magnitudes of the three radiation contributions
for three different object temperatures, two emittances, and two spectral ranges: SW and
LW. Remaining parameters have the following fixed values:
• τ = 0.88
• T
refl
= +20°C (+68°F)
• T
atm
= +20°C (+68°F)
It is obvious that measurement of low object temperatures are more critical than measur-
ing high temperatures since the ‘disturbing’radiation sources are relatively much stronger
in the first case. Should also the object emittance be low, the situation would be still more
difficult.
We have finally to answer a question about the importance of being allowed to use the
calibration curve above the highest calibration point, what we call extrapolation. Imagine
that we in a certain case measure U
tot
= 4.5 volts. The highest calibration point for the
camera was in the order of 4.1 volts, a value unknown to the operator. Thus, even if the
object happened to be a blackbody, i.e. U
obj
= U
tot
, we are actually performing extrapola-
tion of the calibration curve when converting 4.5 volts into temperature.
Let us now assume that the object is not black, it has an emittance of 0.75, and the trans-
mittance is 0.92. We also assume that the two second terms of Equation 4 amount to 0.5
volts together. Computation of U
obj
by means of Equation 4 then results in U
obj
= 4.5 / 0.75
/ 0.92 – 0.5 = 6.0. This is a rather extreme extrapolation, particularly when considering
that the video amplifier might limit the output to 5 volts! Note, though, that the application
of the calibration curve is a theoretical procedure where no electronic or other limitations
exist. We trust that if there had been no signal limitations in the camera, and if it had been
calibrated far beyond 5 volts, the resulting curve would have been very much the same as
our real curve extrapolated beyond 4.1 volts, provided the calibration algorithm is based
on radiation physics, like the Flir Systems algorithm. Of course there must be a limit to
such extrapolations.
Figure 33.2 Relative magnitudes of radiation sources under varying measurement conditions (SW cam-
era). 1: Object temperature; 2: Emittance; Obj: Object radiation; Refl: Reflected radiation; Atm: atmosphere
radiation. Fixed parameters: τ = 0.88; T
refl
= 20°C (+68°F); T
atm
= 20°C (+68°F).
#T559772; r.5948/5948; en-US
98










